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Abstract

We consider backward vector meson exclusive electroproduction off nucleons in the framework
of collinear QCD factorization. Nucleon to vector meson transition distribution amplitudes arise
as building blocks for the corresponding factorized amplitudes. In the near-backward kinematics,
the suggested factorization mechanism results in the dominance of the transverse cross section of
vector meson production (o > o) and in the characteristic 1/@Q8-scaling behavior of the cross
section. We evaluate nucleon to vector meson TDAs in the cross-channel nucleon exchange model
and present estimates of the differential cross section for backward p°, w and ¢ meson production

off protons. The resulting cross sections are shown to be measurable in the forthcoming JLab@12
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GeV experiments.
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1. INTRODUCTION

The factorization of exclusive amplitudes into a short distance dominated part - the co-
efficient function - calculable in a perturbative way on the one hand, and universal hadronic
matrix elements of non-local operators on the light-cone on the other hand, is a key fea-
ture of quantum chromodynamics (QCD). This allows one to extract information on the
hadronic structure from measurements of specific exclusive processes in specific kinematics.
The textbook examples of such factorization [, P are the nearly forward deeply virtual
Compton scattering (DVCS) and meson hard electroproduction, where generalized parton
(quark and gluon) distributions (GPDs) are the relevant hadronic matrix elements. The ex-
tension of this strategy to other processes, such as backward meson hard electroproduction
and the cross conjugated nucleon-antinucleon annihilation into a lepton pair in association
with a light meson, has been advocated in [B-f] - although the corresponding factorization
theorems are not yet rigorously proven. For this latter class of hard exclusive process, new
hadronic matrix elements of three quark operators on the light cone, the baryon-to-meson
transition distribution amplitudes (TDAs), appear. Baryon-to-meson TDAs share common
features both with baryon DAs (that are defined as the baryon-to-vacuum matrix elements
of the same three quark light-cone operators) and with GPDs, since the matrix element in
question depends on the longitudinal momentum transfer between a baryon and a meson
characterized by the skewness variable £. Also, similarly to GPDs [§-[(], switching to the
impact parameter space through the Fourier transform in A7 brings a novel transverse pic-
ture of the nucleon. It encodes new valuable complementary information on the hadronic
3-dimensional structure, whose detailed physical meaning still awaits its clarification.

A collinear factorized description for backward reactions requires the presence of a large
scale (), to ensure the perturbative expansion of the hard subprocess in the QCD coupling
constant ay(p) at the factorization scale p = O(Q). The large scale @) can be taken either
as the space-like virtuality of the electromagnetic probe in the case of electroproduction
processes [[], or, respectively, time-like virtuality of a photon (or mass of heavy quarkonium)
for the case of cross conjugated processes with lepton pair emission (or heavy quarkonium
production) in association with a light meson in antinucleon nucleon annihilation [q, [[1], [2].

Our previous studies [, [, [T, [3[[H were almost exclusively restricted to the case of
mN TDAs. Thanks to the chiral properties of QCD, 7N TDAs possess a well-understood



soft pion limit, which can be related to the & — 1 limit of the TDAs. This easily allows
us to work out the physical normalization of 7N TDAs and is helpful for practical model
building.

The special 7N TDA case however does not exhaust all interesting possibilities, and the
vector meson sector should be experimentally accessible as well as the pseudoscalar meson
sector [[G-L9. In this paper we consider nucleon-to-vector meson (VN) TDAs and address
the possibility of accessing them experimentally through backward hard electroproduction
reactions. The spin-1 nature of the produced mesons gives rise to new structures for TDAs.
This enables to define a set of the leading twist-3 VN TDAs, which in principle may be
accessed separately through a rich variety of polarization dependent observables. In the
present study we enlarge the scope of nucleon to meson distributions to the cases of p°,

JPC quantum numbers, but each of

w and ¢ mesons. These three cases share the same
them addresses a specific question. The ¢-meson case deals with the issue of the strangeness
content of the nucleon, which has been the subject of many experimental and theoretical
studies (see e.g. [BQ] and Refs. therein), while the combined analysis of p and w production
allows one to disentangle the isotopic structure of VN TDAs in the non-strange sector.

The paper is organized as follows: in Section P we describe the kinematics of backward
meson electroproduction. In Section [ we propose a parametrization of nucleon-to-vector-
meson TDAs. We calculate the hard amplitude in Section f]. In Section f| we compute
the unpolarized cross-section for backward hard meson electroproduction off nucleons and
present estimates for the cross section of the backward w(782), ¢(1020) and p°(770) produc-
tion within the cross-channel nucleon exchange model of the V. N TDAs. Section [ brings our
conclusions. Appendix [A] explores the isospin constraints and the permutation properties of
the VN TDAs; appendix [B] derives the cross channel nucleon exchange model for the VN
TDAs.

2. KINEMATICS OF BACKWARD VECTOR MESON HARD ELECTROPRO-
DUCTION

We consider the exclusive electroproduction of vector mesons off nucleons

e(k) + N(p1,s1) = (7" (¢, \y) + N(p1,51)) + e(K') = e(k)) + N(p2, 52) + Vipv, Av), (1)



within the generalized Bjorken limit, in which Q> = —¢? and s are large'; the Bjorken
variable xg = % is fixed and the u-channel momentum transfer squared is small compared
to Q2 and s: |u| = |A?| < Q% s. Within such kinematics, the amplitude of the hard
subprocess of the reaction ([) is supposed to admit a collinear factorized description in
terms of nucleon-to-vector-meson TDAs and nucleon DAs, as it is shown on Fig. . The
small u corresponds to the vector meson produced in the near-backward direction in the v* N
center-of-mass system (CMS). Therefore in what follows, we refer the kinematical regime in
question as the near-backward kinematics. We would like to emphasize that this kinematical
regime is complementary to the more familiar generalized Bjorken limit (Q* and s - large;
rp - fixed; |[t| < Q2 s), known as the near-forward kinematics. In this latter kinematical

regime the conventional collinear factorization theorem [fl], B leading to the description of

(0) in terms of GPDs and vector meson DAs is established (see Fig. B).

FIG. 1: Collinear factorization of v*N — NV in the near-backward kinematics regime
(large Q?, s; fixed xp; |u| ~ 0); VN TDA stands for the transition distribution amplitude
from a nucleon to a vector meson; N DA stands for the nucleon distribution amplitude;

C'F denotes hard subprocess amplitudes (coefficient functions).

We choose the z-axis along the colliding virtual-photon-nucleon and introduce the light-
cone vectors p and n (2p-n = 1). Keeping the first-order corrections in the masses and A%,

we establish the following Sudakov decomposition for the momenta of the reaction () in

! Throughout this paper we employ the usual Mandelstam variables for the hard subprocess of the reaction
@M: s =+ =Wt =(pa—p1)%u=(pv —p1)* = A%



FIG. 2: Collinear factorization of v*N — NV in the near-forward kinematics regime (large
Q?, s; fixed zp; |t| ~ 0); N GPD stand for, respectively, quark and gluon nucleon GPDs; V/
DA stands for the vector meson distribution amplitude; C'F” and CF” denote the

corresponding hard subprocess amplitudes.

the near-backward kinematical regime (cf. [):

2
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Here M and my denote respectively the nucleon and the vector meson masses and ¢ stands

for the u-channel skewness parameter introduced with respect to the u-channel momentum

transfer
_(pv—pl)'n
 (pv+pi)n 3)
and
A2:5<A2_2£|:M2 . m%/ :|) (4)
T 14¢ 1+¢& 1-¢

is the u-channel transverse momentum transfer squared. We introduce uq corresponding to



_ 26 (miy(1 48— M (1 =¢))
Uy = — 1_ 52 . (5)

It is the maximal possible value of u for given &. For A% = 0 (u = ug) the vector meson is
produced exactly in the backward direction in the v*N CMS (6} = 7).

In the initial nucleon rest frame (corresponding to the JLab laboratory frame, (LAB))
the light-cone vectors p and n read

M 1+¢
=——11,0,0,—1}; =—>41,0,0,1}. 6
p|LAB 2(1+§){ s Uy Yy }7 n|LAB 2M{> s Uy } ()

With the help of the appropriate boost we establish the expressions for the light-cone vectors
in the v*N CMS:

p|'y*NCMS = {Oé,0,0, —Oé}, p|'y*NCMS = {ﬁ>0aoaﬁ}a (7)

with

MPH QP+ WEH AW Q% M)
“= A1+ OW ’
(148 (M* 4+ Q>+ W? = A (W?, —Q*, M?))
AM2W ’ (®)

b=

where A is the usual Mandelstam function

A(z,y,2) = Va2 +y? + 22 — 20y — 222 — 22 9)

The V-meson scattering angle in the v*N CMS for the u-channel factorization regime
then can be expressed as:

—(1=8a+ mg, —Ar®
cos by, = -9 S : (10)

V= ga+ A g A2

One may check that for Az? = 0 indeed cos;, = —1, which means backward scattering.
For skewness variable £ we employ the approximate expression neglecting order of mass

and A2 corrections

= B Q2

~ ~ . 11
2—5(73 Q2—|—2W2 ( )



From the transversality of the polarization vector of the vector meson

EXpv,Av) py =0 (12)

[43

we establish the following condition for the “—”-light-cone component of the polarization

vector of the vector meson:

mi — A2, 1 *
W(g (Pv, >\v) n) — —(5 (pv, >\V) ’ AT)- (13)

Epv.Av) - p=— ¢

3. PARAMETRIZATION OF NUCLEON-TO-VECTOR MESON TRANSITION
DISTRIBUTION AMPLITUDES

Nucleon-vector-meson TDAs are formally defined as the matrix elements of the light-cone
three quark operator between a nucleon and a vector meson states. For simplicity we leave
the discussion of isotopic spin properties of VN TDAs to the Appendix [A] and consider the

transition matrix element of the uud light-cone operator?

O™ (A, Aany Agn) = €0yepegts) (M) us? (Aan)dS (Agn) (14)

PTX

between the proton |N,) state and a I3 = 0, J“ = 17~ vector meson state (these could be
e.g. (w(782)|, (p°(770)] or (¢(1020)| meson states).

The parametrization for the leading twist VN TDA involves 24 Dirac structures. Indeed,
each of the three quarks and the nucleon have 2 helicity states, while the vector meson has 3.
This leads to 3-2* = 48 helicity amplitudes. However, parity relates helicity amplitudes with
all opposite helicities reducing the overall number of independent helicity amplitudes by the
factor of 2. The procedure for building the corresponding leading twist Dirac structures was

described in Ref. [21]. The revised version® of the leading twist-3 VN TDA parametrization

2 We adopt the light-cone gauge AT = 0 and therefore the gauge link is not shown explicitly in the operator

definition.
3 The original parametrization of Ref. [@] erroneously lacked v5 factors for the Dirac structures. C.f.

eq. (14) of Ref. [T and egs. ([7)-([L9) of the present paper.



reads

AF(V (pv, \v)| O™ \n, Adan, Asn)|[ NP (py, 51))

PTX
= 5(3:1 + X2 + xr3 — 26) X M|: Z (U’}/N)pT,XV’%/N(xl?zQa €3, ga A2)
YT=1e,1T,1n,
+ Z (a";N)pT,XA";N(xlvx%x&g?Az) + Z (t¥N>pT,XT¥N('T17x27x37£7A2)]7
YT=1e,1T,1n, Y=1e,1T,1n,,2T,2n,
(15)
where F stands for the conventional Fourier transform
S DV —
F = Floyaaag)() = (P [ [H Pl CEE (16)
j=1
and the leading twist Dirac structures are defined as
(UYEN)/)T,X = (ﬁc)pr (755*(17\/7 >\V)U+(p17 81))X;
(01 )orx = MTHE (v, Av) - Ar)(BO) pr (VU (p1, 1)) 5
(1) pr = M(E* (pv, Av) - n) (PC) pr (VU (1, 31))X;
(03 ) pr,x = MHDO) pr (Vo278 U™ (p1, 1))
(U;/TN)pﬂx = M_2(5*(pv, Av) - AT)(ﬁC)pr (75ATU+(]?1, 81))X;
(032 )orx = (€7 (v, Av) - 1) (D) pr (VA2 U (1, 51)) (17)
(aYeN)pT,x = (]5750)/)7' (g*(p\h >\V)U+(p17 Sl))X;
(QYY{V)PTJ( = M_l(g*(pVa )\V) ’ AT)(ﬁVSC)pT(U+(p1a Sl))x;
(aYnN)pT,X = M(E (pv, \v) 'n)(ﬁ75c)pr (U+(P1> 31))X;
(a3 )pro = M7HDPY°C)pr (0275 U (p1, 1)) 5
(a;/Y{V)PﬂX = M_2(€*(pVa )\V) : AT)(ﬁVSC)pT (ATU+(p1, Sl))x;
(a3 ) prx = (EX(pv, Av) - ) (DY C) pr (ATU+(p17 51))X§ (18)



()

(tir')

(1)

(t3e )orx = (0pe+C)pr (15U (p1, 81)) 3

(57 )prixx = M72(E(pv, Av) - Ar) (0,0 0) pr (35027 U (p1, 51) )i
(3 Do = (€ (v, W) - 1) (0,2 C) pr (102U (p1, 1))

(B prox = M 0p8,.C) pr (1€ (v, W)U (p1, 51))3

(57 ) prox = M2 E (pv, Av) - Ar) (0570 pr (35U (P15 1)) 5

(t3n orx = (€7 (v, Av) - 1) (0987 C) pr (35U (p1, 81) )i

(1) = M (0pe-C)pr (542U ) 5

(0 rn = ME (v M) - Ar) 03, C)yr (35500 (o1, 50)y
(5 ) pry = MTHE (pv, Av) - 1) (0087 C)pr (5 ATU (p1, 51) ). (19)

Throughout this paper we employ Dirac’s “hat” notation: a = ~,a" and adopt the usual
conventions: o’ = %[7“, V] 0% = v,oM, where v, is an arbitrary 4-vector. The large
and small components of the nucleon Dirac spinor U(p;) are introduced as U™t (py,s1) =
pnlU(p1, s1) and U~ (py, s1) = npU (py, $1).

Each of the 24 V' N TDAs defined in ([[J) are functions of three longitudinal momentum
fractions x1, 7, T3, skewness parameter ¢, u-channel momentum transfer squared A? and
of factorization scale u?. TDAs VIV (z1, 29, 23, &, A?) and TY N (21, 2, 3, £, A?) are defined
symmetric under the interchange x; <+ xo, while AXY (zq, 29, 3, &, A?) are antisymmetric
under the interchange xq <> xs.

Note that with the use of the parametrization ([[§) the corresponding TDAs do not
satisfy the polynomiality property in its simple form. Indeed, as explained in Ref. [[4], since
the light-cone kinematics implies the choice of a preferred z-direction, the parametrization
(I3) involves non-covariant kinematical quantities (such as Az and light-cone vectors p and
n). This results in the presence of kinematical singularities for the corresponding invariant
amplitudes (TDAs). In principle, one can define the alternative set of the Dirac structures for
V' N involving only fully covariant kinematical quantities such as four-vectors P = %(pl +pv)

and A. Thus, for the price of the controllable admixture of higher twist contributions the



corresponding set of VN TDAs turns to be free of kinematical singularities and satisfies the
polynomiality condition in its simple form. Therefore, for this set of TDAs one can introduce
the spectral representation [PZ] in terms of quadruple distributions. The relation between
the free-of-kinematical-singularities-set of VN TDAs and those introduced in eq. ([7) is
given by the set of relations similar to eq. (C11) of Ref. [4].

In the present study we, nevertheless, prefer to stay with the VN TDA parametrization
(L3), since it is well suited to keep eye on the Az = 0 limit. Namely, in the limit Ay = 0
only 7 TDAs out of 24 turn to be relevant: V{2V, VIVN AVN - AVN TVN TVN TUN.

In > in > In >

4. CALCULATION OF THE HARD AMPLITUDE

Within the suggested factorized approach, in the leading order (both in a, and 1/Q) the

amplitude of?*
(g, Ay) + NP(p1, s1) = NP(p2, s2) + V(pv, Av) (20)

involves 6 independent tensor structures

(Ao, )* VAT e, fn M
MY = —i - § SWAv Tk (¢ A2, (21)
54Q
Here ay,, = %7 is the electromagnetic fine structure constant and fy is the nucleon light-

cone wave function normalization constant. Throughout this study we employ the value
from Ref. [PJ): fv = 5.2-107% GeV>.
There turn to be two tensor structures independent of Ar:
SNA = U (p, 52)é(q, A)E (pv, W)U (p1, 51);
Ss(?s;w\v = M(E*(pv, \v) 'n)U(p% s2)€(q, )\’*/>U(p17 s1), (22)

and four Ap-dependent tensor structures:

1 — .
S = M(g*(p\/, Av) - A7) U(pz, 52)é(q, \y)U(p1, 51);

1 _
SV = W(S*(PV,AV) - A7) U(pa, $2)2(q, M) ArU pr, 51);
1 . R
SO = 27 Ulp2 52)2(a. M)E (v, W)ArU (pa, 51);
SO = (E%(py, \v) - 1) Ulpa, 52)2(q, A)E (pv, Av)ArU py, s1). (23)

4 For definiteness we take V to be a vector meson with Is = 0: w, p° or ¢.

10



Here £(g, \,) stands for the polarization vector of the incoming virtual photon and £*(py, Ay)
is the polarization vector of the outgoing vector meson.

To the leading order in «g, within the collinear factorized description in terms of VN
TDAs, the amplitude of the reaction (B{) can be computed from the same 21 diagrams listed
in Table I of Ref. [d]. We adopt our common notations for the integral convolutions Z(*),

k=1,...,6:

146 14¢ 1+¢
I (€, A% = / di@’l/ dﬂl’z/ dxs 6(wy + 19 + 23 — 2§)

14+¢ 14+¢ 1+¢&

1 1 1 14
X/dyl/dw/dys O(yr +y2+ys—1) <2ZT(§k) + ZT}J“)) (24)
0 0 0 a=8

a=1 =

The explicit expressions for the coefficients ¥ = D, x NP (no summation over a assumed )
are presented in Table I. Here D, denote the singular kernels originating from the partonic
propagators and NP = NW (w1, 22,&, A% Y1, 92, y3) stand for the appropriate combinations
of VN TDAs and nucleon DAs VP, AP and TP arising in the numerator. The a =1,...,21
index refers for the diagram number and the index k£ = 1,...,6 runs for the contributions

into 6 invariant amplitudes of eq. (BI)).

11



TABLE I: 14 of the 21 diagrams contributing to the hard-

scattering amplitude with their associated coefficient Ték) =

D, x N(gk) (no summation over « assumed). The seven first

ones with u-quark lines inverted are not drawn. The crosses

represent the virtual-photon vertex.

Diagram Numerators
D,
N | = (v — APy (VYN 4 AVN) 4 217 (TYN + TYY)
N N N | = (VP — ar) (VN 4+ AYN) +a1v (TVN + 2 TEN)

e % | | (V7 A7) (VN AT VN )

) o +AT? (Tf}N + TN 4 AL TN )

mE | NS | (V2 — A7) (VY + ARY) + 217 (TYN + TH)
N (V2 — A7) (VN + AYN) — 217 (T4 — TN
N = (Ve — AP) (VYN + AYNY 4277 (TYN + TYN)
N 0

u(zr) u(wn) NP

i T o
NW 0
N 0
N 0
NS |—2mP (TYN + TN

e w7 B R e T

Qu(26)%) N |21 (TN + 1)
(z1—i€) (26 —x2—ie) (w3 —ie)y1 (1—y1)ys NS) o7 (T%N —T4‘2N)

217 (TyN +13.N)

12




Qu(26)?

N VN VN
+ Vo + Agg )

VVN+AVN)

(z1—1€) (26 —w3—i€) (w3 —ie)y1 (1—y1)y3

(VP — AP) (

(VP — AP)

Qu(26)?

%)
VVN+A )
)

VP 4 AP VVN AVN

VP AP) (VYN — Ayp + VfN — AYN)

(
( ) (
(VP + AP) (VYN — AV V)
( ) (Vi
(VP + AP) (Vo — Aor)

(w1 —ie)(26—z3—ic)(x3—ie)y1 (1—y2)y3

— (VP4 A7) (Vae" — A5eY)

— (VP 4 AP) (Vz‘r/LN - A;/nN)

u(yr)
u(y2)

d(ys)

o | o | o | O©

Qa(26)?

o (VPVEN — ArAVY)

o (VN A”AVN)

=2 (VP(VYY + VeN)

(
(
( — AP (AYY + ALY)
—2 (VPVN — ApAVN)

(z1—1€)(2€—z3—1i€)?y1 (1—y3)?

2 (VPN — AP AT

2 (VPV N — APAY N

13




NV 0
u(wr) ﬁ— u(y1) N(g) 0
ey A8 W o
N 0
N 0
©)
N = (VP — AP) (VYN + AVN) 21w (TN + TIN)
N ey | A (Y 4 ALY 4 (T R TY)
) IE— ulw) N®|— (V7 = A7) (Vg + AV + Vo' + ALY
9] S dw) a1 (THY + TN + 25T
(2§—x1—ie)gégf);)(l—ylﬁyg N |- (VP — AP) (Vo + AYYN) + 2T (TypY + Ty7)
N (VP — AP) (VN  AYN) — 212 (TYN — TN
N | = (Ve — APy (VN + AYN) 4 277 (TYN + TYN)
N | = (Ve — AP) (VEN + AVN) 4217 (TN + TN
[P A (Y AR T (T + k)
u(w) —_><—%:§— u(ye) N | (VP = A7) (VN + ALY+ Voph + A5eY)
10| ) 2 ) 4P (TIV%N +TYN 4 2@%2 T&N)
eI | N | (v - A7) (v AYY) +are (o + TR
N \(vP — AP) (VEN + ALY — 217 (TYN — TN)
N = (Ve — AP) (VYN 4+ AYNY 4277 (TN + TYN)
N§Y 0
o) ——5 ul) N 0
o A4 | 0
N 0
N 0
N 0

14




N (V7 An) (VY — aYY)

o) ———g— | NP (VP + A7) (VYN — AV )
e S [ [ an (A v - ag)

Qe N (VP 4 av) (VN — ARY)

(z1—t€)(x2—1ic) (26 —z3—ic)y1 (1—y2)y2 N(g5) B (Vp R Ap) (Vz‘gN B AggN)

O 1= (VP 4 4P) (VYN — AYN)

N 21P (TVN 4+ TN

o) g N Jarr (TN + ZL TN
oo A | e (e )
Qu(26)%) NS 2re (ThN + TN
(w1 —1€) (26 —z1—ie) (w2 —i€e)y1 (1—y2)y2 N(g5) o7 (ngN B T4V€N)
N | —aTP (TYN 4 TYN)
N |(vr — ar) (VY + AL
e g | N (v ) (VY A
e T | v (v AR v )
Qu2° N (V7 — av) (VN + AL

NI [ v — ) (v + a)

5. CALCULATION OF THE UNPOLARIZED CROSS SECTION

First of all, we need to specify our conventions for the backward vector meson electro-
production cross section. Within the suggested factorization mechanism only the transverse
virtual photoproduction cross section or receives contribution at the leading twist. Anal-
ogously to how this was done in Ref. [[4], using the explicit expression (eq. (2.12) of [B4])
relating scattering amplitudes of vector meson electroproduction within one photon approxi-
mation and the amplitudes for the virtual photoproduction, we express the unpolarized cross

section of hard electroproduction of a V' meson off a nucleon through the helicity amplitudes

15



of v*N — NV defined in (PI) within the collinear factorized description framework:

d’o
dE'dQ, d0y
A(s,m?, M?) |1 N 12 d*or
—T - Svzy o p e
" 128n2s(s — M?) | 2 DL ML “Vaoy * (25)

Ay AV, 81, 82
Here €., is the differential solid angle for the scattered electron in the LAB frame; €y is
the differential solid angle of the produced vector meson in N’V CMS frame; and A is the
Mandelstam function (g).
By dots in the r.h.s. of eq. (BH) we denote the subleading twist terms supressed by powers
of 1/Q. T stands for the virtual photon flux factor in Hand’s convention
B Ozemk:’gs—M2 1

— 20 . 2
22 kb 2MQ? 1 —e (26)

Here kf and kg% denote the initial state and final state electron energies in the LAB frame
and
(k= K0) +Q 200
tan® —|
Q? 2

is the polarization parameter of the virtual photon, where #% denotes the electron scattering

(27)

€= [14—2

angle in the LAB frame.

We employ the following relation for the sum over photon’s transverse polarizations

* v 1 v v
Do @A) 0 A) = =g s ) (28)
Ayp p
and the V-meson polarization sum reads
PV Py
> (v, WE (v, Av) = —g™ + 5 (29)
A my
»

Let us introduce the notation

D ((4%@8)2\/47ra6mfNM)
T 54 ’

and define

T = &(q, \)E(pv, \W)IW (€, A?) + M(E(pv, Av) - n)é(q, A,) TP (€, A?)

(E(pv, Lv) A7) g, M) IO (e, A2) + (g(pv,]\%) )y, A)Ar T (¢, A?)

é(qa )"Y)g(pVa )‘V)ATI(E’)(& A2) + (g(p‘/, )‘V) : n)g(p‘h )‘V)ATI(G) (5? A2) . (31)

+

1

i

16



We now square the amplitude and sum over the transverse polarization of the virtual photon,
over the spin of outgoing nucleon and over the polarizations of the V-meson and sum over
the spin of the initial nucleon. We make use of kinematic relations summarized in (f) and

keep only the leading twist terms. The resulting expression then reads:

‘MTP _ Z M)WAVMA“’)\V |D|2

5182 5182

o 3 Tr{(ﬁ2+M)FH([)1+M)%FL%}
Ay s AV, 81, 52 Ay s Aw
ppl 2(1+¢) {|I(”|2 (1+ M(1 = €)% + (1 + &)>*(mi, —A%>)
Q¢ mi (1 +¢)?
2 2 2 2
@ M*(1-=¢) W@, ey M1 =¢)
+|Z |74m2v + (ZWZ®r 4 70T )72m2v(1+§)
M?(1-¢)
mi (1 +¢§)
M2(1 —£) | (4)‘2A2 (mv AZ)
2m3, M2m
(1) (4)% (1)%7(4) (mi — A7) 17(5))2 < M2(1 — )2+ (148 (my — A%))
+ (WL + T )77%% 1Z®2 1+ oy I
2M*(1 - §) M?(1-¢)
mi(1+¢) 2m3,
AT(1=¢)
v

2 2
my — AT | (z0 16 4 W6 e

2 2 2
+A_ {_|I(3)|2w + (1(1)1(3)* + I(l)*l'(?»))
M? my

+ (1(2)1(3)* + 1(2)*1(3))

+ (1(1)1(5)* + I(l)*z(5)) + (1(2)1(5)* + 1(2)*1(5))

— (1(3)1'(5)* + 1(3)*1'(5))
mé m

M*(1-¢)
2m3,

M(1 — €)?

PO S _ gz 4 70070
4m?,

2 2 2
_(ZWTOr  TWeg©) 2T A1 =€) L+ (ZOTO" 4 TO+70) M*(1-¢) . (32)
2m3, 2mi(1+¢€)
We end up with the following expression for the LO unpolarized cross section of hard
photoproduction of backward vector mesons off nucleons:

o A(s, mV,MQ)
dQy — 12872s(s — M?2) 2

5IMel’, (33)

where o refers to the transverse polarization of the virtual photon and % stands for averaging
over the initial nucleon spin.

Thus we conclude that there are two essential marking signs of the onset of the suggested
factorization regime for hard vector meson production in the near-backward kinematics,

which can be tested experimentally.

e The dominance of the transverse polarization of the virtual photon resulting in the

suppression of the oy, cross section by at least 1/Q?. In fact, the preliminary analysis
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B3] of backward w-meson production JLab Hall C 6 GeV data hints at or > oy
already for Q% ~ 2.4 GeV? and W ~ 2.2 GeV.

e The characteristic 1/Q%-scaling behavior of the transverse cross section (B3) for fixed

rB.

In what follows we present our estimates for the LO unpolarized cross section of hard
photoproduction of backward w(782), ¢(1020) and p°(770) mesons off protons within the u-
channel nucleon exchange model for VN TDAs presented in the Appendix [B This is a simple
TDA model which populates VN TDAs only within the ERBL-like support region. However,
it can be seen as a reliable estimate of the VN TDAs magnitude for the intermediate values
of skewness parameter £ = 0.1 =+ 0.4. As inputs this model requires the values of the vector

and tensor GK’]CVFN couplings (BT) and the phenomenological solutions for the leading twist

nucleon DAs.

On the choice of phenomenological parametrization for the nucleon DA

The choice of the phenomenological solution for the leading twist nucleon DA and the
corresponding value of the strong coupling represents a complicated problem (see e.g. dis-
cussion in Ref. [G]). Roughly speaking, there exist two distinct classes of the leading twist

nucleon DA parametrizations.

e The models with the shape of nucleon DA close to the asymptotic form [27]

VP(yr,y2,y3) = TP (y1, y2, y3) = 1200192y3;  AP(y1,92,93) = 0 (34)

already at a low normalization scale. Prominent examples are the Bolz-Kroll (BK) 23]
and Braun-Lenz-Wittmann (BLW) LO and NLO models [29, BJ. Also, the advanced

lattice calculations of the nucleon DA [B]] favor such nucleon DAs.

e The Chernyak-Zhitnitsky (CZ)-type models with a shape of nucleon DA considerably
different from the the asymptotic limit at a low normalization scale. The examples of
this type of nucleon DA models are the CZ R3], King-Sachrajda (KS) [BZ], Chernyak-
Ogloblin-Zhitnitsky (COZ) [B3] and Gari-Stefanis (GS) [B4] solutions.

18



Both types of nucleon DA models were employed to provide a description of the nucleon
electromagnetic form factors. As it is well known, the asymptotic form of the nucleon DA
(B4) results in a vanishing pQCD contribution for the proton form factor. Therefore, using
the nucleon DA with a shape close to the asymptotic form implies that the standard pQCD
contribution must be be complemented by the so-called soft or end-point corrections (see
e.g. discussion in Refs. [, 9, B3, BA)).

However, the nucleon electromagnetic form factor appears as a building block of the
backward amplitude within our u-channel nucleon exchange model for VN TDAs. Therefore,
within our simple model for VN TDAs, we need to assure that the pQCD contribution into
the nucleon electromagnetic form factor is close to the experimental value. This implies that
we are forced to use the CZ-type solutions for nucleon DA.

In the following phenomenological estimates we have chosen to employ the COZ [BJ] and
KS [BF] solutions for the leading twist nucleon DAs and set a compromise value of the strong

coupling oy = 0.3.

Backward w -meson hard photoproduction

As the first example we consider backward w(782) meson hard photoproduction off proton

(g Ay) + p(p1, 81) = W(Pw, M) + p(p2, 52)- (35)

We take the Grein’80 estimates for the w-meson couplings to nucleons [B7] (see also Table

9.2 of Ref. BY))

We take the kinematical point from the foreseen Jlab@12 GeV setup for Hall C
(Fpi-3 (E06-12-101) w-channel kinematics) [Bg] W = 3.20 GeV. On Fig. B we plot the

don

o (B3) within the u-channel nucleon exchange model

resulting unpolarized cross section

for wN TDAs as a function of @Q* for A% = 0 (i.e. for the w-meson produced exactly in the
backward direction in the v*N CMS: 0} = ).
On Fig. f] we show the d C5L cross section as a function of A% for several values of W and

Q? (i.e. for u < ug or, equlvalently, 0 < ).
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500

2001 \\

/
/

d?o/dQ,, [nb/sr]
S
/
/

/
/

0% [GeV?]

FIG. 3: Unpolarized cross section Ccl;g‘f (in nb/sr) for backward v* + p — p + w for fixed

W = 3.20 GeV as a function of Q% in the u-channel nucleon exchange model for w N TDAs.
COZ [B3 (long-dashed lines) and KS [BZ] (solid) solutions for the leading twist nucleon DA

are used as the phenomenological input.
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FIG. 4: Unpolarized cross section ‘25 L (in nb/sr) for backward v* + p — p + w for several

values of W and Q? as a function of A% in the u-channel nucleon exchange model for wN
TDAs. COZ (long-dashed lines) and KS B3] (solid) solutions for the leading twist

nucleon DA are used as the phenomenological input.

We may conclude that qualitatively the expected cross sections are similar to the back-
ward m-electroproduction case. Depending on the phenomenological input, and kinematics

the cross section turns to be about ~ 10 <+ 100 [nb/sr] which lies within the reach of future
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JLab Hall A, B and C experiments.

Backward ¢ -meson hard photoproduction
The second example is the ¢(1020) meson hard photoproduction

(4, M) + p(p1; 51) = (D2, 52) + (Do As)- (37)

Some controversy exists in the literature for the values of the phenomenological ¢-meson
to nucleon vector and tensor couplings. As the numerical input for the u-channel nucleon
exchange model for N TDAs we employ the phenomenological ¢-meson to nucleon vector

and tensor coupling presented in Ref. [fI(]] (see also Table 2 of Ref. [[])):
Giny =9.18; Glyy = —2.02, (38)

that are roughly consistent with the estimates of Ref. [[].

On Fig. f we plot the backward ¢-meson hard photoproduction cross section CZ‘;Z for
A?% =0 (i.e. corresponding to exactly backward scattering 6% = —) as a function of Q? for

the Q? range corresponding to Fpi-3 (E06-12-101) u-channel kinematics [BY].
On Fig. § we show the % cross section as a function of A% for several values of W and

@ (i.e. for u < g or, equivalently, 67 < ).
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FIG. 5: Unpolarized cross section Cfgj (in nb/sr) for backward v* + p — p + ¢ for fixed

W = 3.20 GeV as a function of )2 in the u-channel nucleon exchange model for N TDAs.
COZ [B3 (long-dashed lines) and KS [BZ] (solid) solutions for the leading twist nucleon DA

are used as the phenomenological input.
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FIG. 6: Unpolarized cross section ngs (in nb/sr) for backward v* 4+ p — p + ¢ for several

values of W and Q? as a function of A% in the u-channel nucleon exchange model for ¢N
TDAs. COZ (long-dashed lines) and KS B3] (solid) solutions for the leading twist

nucleon DA are used as the phenomenological input.
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Backward p° -meson hard photoproduction

Finally, we consider the p°(770) meson hard photoproduction

v (g, \y) + p(p1, s1) = p(pa, s2) + po(%a Ag)- (39)

As the numerical input for the u-channel nucleon exchange model for pN TDAs we em-

ploy the Pietarinen’77 phenomenological p-meson to nucleon vector and tensor couplings

presented in Table 9.2 of Ref. [BY):

Gyyy =2.6; Glyy=16.1. (40)
On Fig. [] we plot the backward ¢-meson hard photoproduction cross section ng: for
AZ% =0 (i.e. corresponding to exactly backward scattering 0, = —7) as a function of Q? for

the Q? range corresponding to Fpi-3 (E06-12-101) u-channel kinematics [BY].

. — 2 . .
On Fig. a we show the dor cross section as a function of A2 for several values of W and
d§2 1
p

@ (i.e. for u < ug or, equivalently, 6% < ).

Y +p - p+p% W=3.20 GeV; [A}|= 0 GeV?;

50
AN
Z20 N
£ N
= 10 ~
g ~
= ~
N 5 ~ -
~
~
2 ~
~
~~
-~
3 4 5 6 7
0? [GeV?]

FIG. 7: Unpolarized cross section ngpT (in nb/sr) for backward v* + p — p + p° for fixed
W = 3.20 GeV as a function of Q? in the u-channel nucleon exchange model for pN TDAs.
COZ B3 (long-dashed lines) and KS [BZ] (solid) solutions for the leading twist nucleon DA

are used as the phenomenological input.
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nucleon DA are used as the phenomenological input.

tensor coupling the cross section turns out to be suppressed at least by a factor 3 as compared

It is interesting to note that as the p-meson is mostly coupled to nucleon through the

to the w meson case.
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6. CONCLUSIONS AND OUTLOOK

In this paper we applied the nucleon-to-meson TDA approach to the case of near-
backward leptoproduction of light vector mesons off nucleons. We defined 24 leading twist-3
VN TDAs and computed the corresponding leading order hard amplitude. We estimated
the differential cross section of backward p", w and ¢ production within a simple cross-
channel nucleon exchange model for VN TDAs. The cross sections were found to be sizable
enough to be studied at future JLab experiments. The study of hard leptoproduction of
vector meson in the backward direction can also be seen as an opportunity for COMPASS
at CERN and future EIC. Bringing experimental evidences for the suggested scaling behav-
ior will improve our understanding of the on-set of perturbative QCD description of hard
reactions.

The same VN TDAs can also be addressed in nucleon-antinucleon annihilation into a
lepton pair in association with a vector meson to be studied at PANDA, thus checking the
universality of TDAs. Therefore, a feasibility study for pp — v*V and pp — J/¢ V reactions
for the PANDA conditions is highly needed.

Our formalism can be naturally generalized to the case of nucleon-to-photon TDAs [A3],
which can be accessed in backward DVCS. Potentially, this is the cleanest process involving
TDAs that could bring new information on hadronic structure. However, the experimental

feasibility of backward DVCS requires further studies.
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A. ISOSPIN AND PERMUTATION SYMMETRY PROPERTIES OF VN TDAS

In this Appendix we present a brief overview of the isospin properties of VN TDAs.
Throughout this analysis we literally follow the system of notations and conventions adopted

in Ref. [[J].

e Letters from the beginning of the Greek alphabet are reserved for the SU(2) isospin

indices o, 8, v, t, k=1, 2.

e We have to distinguish between upper (contravariant) and lower (covariant) SU(2)
isospin indices. We introduce the totally antisymmetric tensor €,4 for lowering indices

and £ for rising indices (g1, = 12 = 1): U5 = Yg, U, = U and §% = —&% =
(0%

Eﬁ'

e Letters from the beginning of the Latin alphabet a,b,c = 1, 2, 3 are reserved for indices
of the adjoint representation of the SU(2) isospin group. o, stand for the usual Pauli

matrices.

e Letters from the second half of the Greek alphabet p, 7, x are reserved for the Dirac

indices.
e Letters ¢y, ¢, ¢3 stand for SU(3) color indices.

We consider the VN matrix element of light-cone three-quark operators

O (21, 29, 23) = O°P1(1,2,3) = Eercacy U (21 ) U2 (23) W (23). (A1)

PTX PTX

For the case of I = 0 vector meson (w(782) and ¢(1020) being the examples) the isotopic
structure of VN TDA coincides with that of the leading twist nucleon DA. Therefore, the

invariant isospin parametrization reads (for definiteness we consider the wN TDA case)

Aw(Puy M) O%27(1,2,3)|N,(p1, 51)) = P57 MEN U2 (1,3, 2) 4 2767 M2 (1,2, 3), (A2)

PTX PXT pTX
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where the invariant amplitude M};"T]i{u}(l, 2,3) is symmetric with respect to interchange of

first two variables:

MeN2H(1,2,3) = MU (2,1, 3), (A3)

PTX TPX

and satisfies the isospin identity (c.f. eq. (32) of Ref. [[J])

MeNO2 (] 2 3y 4 eV 02 (13 9) + MeN02 (23 1) = 0. (A4)

PTX PXT TXP

The Dirac structure of M (1,2, 3) is that of eq. ([3). It is straightforward to check
that

4<W(pw, )‘w)|OAUUd(1> 2a 3)|Np(p1> Sl)) = _4<w(pw> )‘w)|OAddu(1a 27 3)|NN(p1a 51)>

PTX PTX

= M“N U212, 3). (A5)

pTX

To work out the consequences of the isospin identity ([Ad) for particular TDAs of (L) one
has to employ the set of the Fierz identities (JAT))-(JATq) for the relevant Dirac structures

(I2), (I9), (I9).

For the case of I = 1 vector meson (p(770) being the obvious example) the isotopic
structure of VN TDA coincides with that of the leading twist nucleon 7N TDA. Therefore

we can write down the following isospin decomposition

Ao a N
1pa|0%%1 (21, 2, 23)|NL) = (f) 1P MLY% (1,2, 3)

pTX
4B (0, MY U (13,2) + e (0,) My 1P (1,2,3) (A6)
where the totally symmetric tensor (f,)'*”7 reads
1
(f) ) = 3 ((02)5678) + (02)378] + (036755 (A7)
The properties of the u-channel isospin—% invariant amplitude Mp(ﬁg )1/2 {12} are fully anal-

ogous to that of the corresponding invariant amplitude of eq. (AZ). It is symmetric under

the simultaneous interchange of two first arguments and the Dirac indices:
MU (1 3y = Ml 1o 1 3, (A8)
and satisfies the isospin identity (c.f. eq. (32) of Ref. [[J])
MU @ g 3y ¢ R B (1 3 9) ¢ MY (2,3, 1) = 0, (A9)
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122 4 again that of eq. ().

. N)
The Dirac structure of Mp(fx
As a consequence of the permutation and isotopic symmetry, the wu-channel isospin—§
. . . N)
invariant amplitude M, ,Efx 3/2 {12} 4 is completely symmetric under simultaneous permutations

of the arguments and the Dirac indices:

MEDY(1,2,3) = Mywr2(1,3,2) = MY*2(2,1,3)
= MEN2(2,3,1) = MU (3,2,1) = MUN7(3,1,2). (A10)

The Dirac structure of Mp(fg 212} 46 also that of eq. ([3).

Below, to the leading twist-3 accuracy, we present the set of Fierz identities for the
relevant Dirac structures ([7), (I§), (I9) needed to establish the consequences of the isotopic
and permutation symmetry (AI0) for VN TDAs.

1
(018 )prx = =5 (vig" = ale’ + 10" + e )Xﬂp;
1
(ate ) prx = =5 (—otd" +ard’ + ¢ +t¥5N)XT7p§
1
( pT X 5 (Ulé‘ + alc‘,’ t t;/gN)X'r,p
1
(toe )orx =3 (Ulg +ard — 1 + t;/SN)XT,p? (A11)
VN Lo vn ,
(17 )prox = B (07 — iy + 17 )xmﬂ
1
(@37 Dorix = B) (—oir +aif +H7 )XT,p;
o = (02 + (@) (A1)
VN Lo vn
(Uln )pT7X = 5 (Uln - aln _'_t )XT,P7
1
(aln)pT,X 5 ( VN +alN tYnN)XT,p’
(tVnN)pT,X = (Uln + aYnN)XT,pﬂ (A13>
1 VN :
(038 Jorx = =5 (v2e" — azé’ +t3e —tig ) or. )
1
(a3 )or,x =5 (—vpd" +age’ + 15" thN)Xn )
1
(b5 )orx = 5 (017 +ozd +aip +ap +57 =07 + 1)
1
(e )or.x 5( vy Folp —aye +ayp ity — it 4t >x7,p; (Al4)
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1
(037 )pr,x = §(U2T —ayp + ) + by )xnp;
1
(a37" ) prx -9 ( Vo +agp + by + tap )Xﬂp?
1
( pT X 5 (U2T VJ{V + t;/j{V - tgij“v)x,r’p )
1
(t37" )prox = =5 (var +ag —tar +t57) s (Al5)
1
('U2n PTX T 5 (U2n - a’2n + t _I— t )X7'7P )
1
(a2n PT, X 5 ( U2n + a2n + tVN + té/nN)an )
1
( P7'7 - 5 (U2n + a2n +t tgnN)XT’p;
1
( PT X 5 (U2n + a2n t + t )X‘F,P ; (A16)
VN LAY vn v uw VN :
(ag ) prx = 22 (vir —aip —ti7 )xr,p + (L4 Jxr. 3
LAT  yw VN
(tin )pﬂx = 22 (Uln - aln t )XT,p + (t4n )XT,p' (A17)

B. NUCLEON POLE EXCHANGE MODEL FOR VN TDA

In this Appendix we construct a simple u-channel nucleon exchange model for V. N TDAs.
This model populates only the Efremeov-Radyushkin-Brodsky-Lepage (ERBL)-like region
of the VN TDA support domain and represents an analogue of the D-term contribution
supplementary to the spectral representation [ in terms of quadruple distributions.

The effective VNN vertex [Bg]

Veg (N(pl, s1) = V(pv, \v)N (=4, Sp))

_ Oy U ouk
U(=A,sp) [GgNNg (pv, Av) +GVNN27W( A)ver (Pw)\v)] U(pi,s1) (B1)

. . . . . V T
involves two dimensionless phenomenological couplings Gy, 5 and Gy, -

The wu-channel nucleon exchange contribution into the light-cone three-quark-operator
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V' N matrix element occurring in the VN TDA definition ([J) reads:

V (v, W) 0“4 (\n, don, )xgn)\N(pl,sl))‘

PTX

N (940)
uu 7 1 5x
= D (0IOR . o, AN, )0 (- 50) 37 |Gun€ (v )
Opuv v *
+GNNw2;4<—A> & (pvs )| Ulpr, 1) (B2)

The <0\Ogﬁg()\1n, Aan, Asn)|N(—A,s,)) matrix element is then expressed through the lead-

ing twist-3 nucleon DA. Performing the Fourier transform ([Lf]) this yields:

AF (21, 22, 3) (V(py, M) O, Agn, Agn) [N, (p1, sl)>) — §(a1 + T + 5 — 26)

pTX N(940)
Ty T2

x M @ERBL(x17x2’x3)fN1 1) Z{Vp (25 267 2¢

o 22 ) (CAC) (U= sy

1 X9 T A
+Ap <2_é_7 2—27 2—2_) (—A’}%C)pTU(_A? SP>X

Ty T2 T3 A 2 1 Vo b
+1" <i’i’i) (0-arC)pr (v V5U(—A=3p))x}U(—A=3p)m [GVNNS (pv, Av)
o o
+GVNN2X4( A)er (pVa)\V)} U(pi, s1)- (B3)
Here we employ the notation
OrrpL(T1, T2, T3) = [H9 (0 <z < 25)] (B4)

To work out from (BJ) the nucleon pole exchange contributions to particular TDAs one
has to expand it over the set of 24 basic Dirac structures ([7), ([§) and ([9) which is
a straightforward (though tedious) calculation. It turns out that the u-channel nucleon
exchange model populates 22 out of the 24 VN TDAs (77" and T)}," vanish in this model).

It is convenient to show the results for the groups of VN TDAs interlinked through the
set of the isospin relations (see Appendix [A]).

o Vie, Aig, Tie, Toe satisfy the isospin symmetry relations based on the Fierz transfor-
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mation set ([ATT]).
‘/l‘gN (Il, T2, T3, 57 A2) ‘N(94O
AYEN(xlu Z2,T3, 57 A2) }N(940)
Tl‘(/i‘N(Ila X2,X3, 67 A

‘N (940) —

VN 2
TQS (zlax23x37€7A ‘N 940)

where

I

K1V (€, A%) = A2

1

= @ERBL(IhSCz,SC?,)

(c

932 xs3

16 (6, A%);

Ty Ty T3

1
e <E 2 E) K", 4%

1 Tr1 T2 I3 VN
(=, 2 2K
2¢)2 (25’25’25) e

1 1 T2 I3 VN
™= = =K
2¢)2 (25’25’25) e

(& AY);

—OgrpL (71, 22, Ig)(

(g’ A2)7
(B5)

—OgrpL (71, T2, Ig)(

28
1+¢&

v 2%(1-¢
VNN 1

s VNNS( —]@—Z))- (B6)

o Vir, Ayp, Ti7 satisfy the isospin symmetry relations based on the Fierz transformation

set (A1)
‘/1‘1/“]\[ (1’1, Tg, X3, €> A2) ‘N(940)
AYTN('ID L2, T3, 57 A2)

‘N(940)

VN 2
TlT (xlu T2, T3, 57 A ‘N 940)

where

KlT(gv Az)

1
= 9ERBL(£1>I2,$3)WVP (;C—é, g—z, ;C—z) KYTN(S, A2)§
1
— @ERBL(LL’l,SL’Q,SL’g)@Ap (g—é, ;—2, ;U—Z) Kl‘;wN(g,A2);
("‘)ERBL(ZL’l,LUQ,Ig) (22>2Tp (;% g_z ;—2) K (5 A2>
(B7)
26(1+ 3
= ﬁ ( GVNN%) : (B8)

o Vi, A1, T, satisfy the isospin symmetry relations based on the Fierz transformation

set (AT3)

VVN

in

1
AYnN(m,SL’2,$3,§7A2>}N(940) - GERBL(m’xz,x?))wAp <

VN
Tln (1'1, T2, T3, 67

(w1, 22, 23, &, A?) ‘N(940)

‘N (940) —

= @ERBL($1,I2,SC3)(2—2)2VP (;—é ;—é ;—2) K (f Az)
T 1’2 .
) KEN( A,

(g’ A2)7
(BY)

1 Tr1 T2 T3 VN
(=2 2K
2¢)? (25’25’25) "

—OgrpL (71, T2, Ig)(
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where

Kln(€> AQ)

N 1+ m*=A) 1 - Lo1-¢)
Ve ( M2(1—€)2 1 +§) <G¥NN( 4€) Jrszwvil y: ) .
(B10)

o Voe, Age, Tse, Tye satisfy the isospin symmetry relations based on the Fierz transfor-
mation set ([Al4]). Within the nucleon u-channel exchange model this set decouples

from the %T, A1T> TlT set.

1 Tl To T
‘/é‘gN(Il>z2a 1'3,6, A2)‘N(940) = @ERBL(xlaléa Z'g)va (2_24 2_2-’ 2_2-) KQ/EN(ga A2)7
VN 2 1 p (%1 L2 T3 VN 2
Age' (w1, 9, 3,6, A )}N(940) = @ERBL(I1,$2,$3)wA 2 2¢’ 2 Kye ' (& A7);
VN 2 1 p [ T1 T2 T3 VN 2.
Tye" (1, 02,73, §, A )‘N(940) = —@ERBL(i)fl,sz,fE?,)WT i, 2—5, % Kye' (& A%);
VN 2 1 p [ T1 L2 T3 VN 2
Tye (xlux%x?ﬁagvA )‘N(940) = GERBL(x17I27x3> (25)2T iv iv i K2€ (gvA )7
(B11)
where
f
K3V (6,A%) = fN]\p (Gyan(—26) + Gy nné) - (B12)

o Vor, Asr, Top, Ty satisfy the isospin symmetry relations based on the Fierz transfor-

mation set (A13).

1 Ty Ty T
V2‘§N($1,$2,3637§7A2)‘N(940):@ERBL(SChImSCs)—Vp( . 3)K¥TN(§,A2);

(202" \2€72¢7 2%

AYN A’ —0 Lo (D012 T8 pvne A2).
or (21, T2, 3, , )}N(940) = ERBL(Ilax%fL'B)W 2—5%,% or (& A7);
TVN A2 — -0 1 TP T1 T2 X3 KVN A2 .
o (%1, 2, 73, &, )‘N(940) = ERBL(!El,Iz,I?,)W E’E’E o1 (& A%);
TN A ) Lo (T3 T2 T pevn e A2
a7 (%1, 2,73, &, )‘N(940) = ERBL(!El,Iz,I?,)W i’%’% or (& A7),

(B13)
where
g1 +¢
K2T(€>A2) = ﬁ (G\CCNN% : (B14)
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o Vo, Aoy, T, T3, satisfy the isospin symmetry relations based on the Fierz transfor-

mation set (AI0).
1

X1 T2 X
‘/2‘2]\[('%173627x37£7A2)‘N(940) = @ERBL(x17x27x3)WVp (2_2-7 2_2-7 2_2) KQV;LN(£7 A2)7

1 Tl Ty T
A;/nN(l’l;$27$37£7A2>}N(940) = @ERBL(xl,SL’z,SL’g) (25)2 p <2_é’ i’ 2_2) K;;N(g,A2);
VN 2 1 » T To I3 VN )
T2n (I1,$2,$3,€,A )‘N(940) = _@ERBL(x1>$2>I3)WT i’ E, E K2n (f’A )’
VN 2 L (71 22 3 -~ ,
T3n (I1,$2,$3,€,A )‘N(940) = _@ERBL(x1>$2>I3)WT i’ E, E Kzn (f’A )’
(B15)
where
f L+¢& (m3 — A2) 1
K;/,:LN(£7 AQ) - AQ _]\[‘1\425 (1 _ 5)2 VM2 T _ 1 _i_é' GXJ;NN (B16>
e [inally,
Tip (w1, w2, w3, AQ)‘N(SMO) =0;
T (@1, 2,0, € A7)y 1) = 0 (B17)

The above formulas can be employed both for I = 0 and I = 1 vector-meson-to-nucleon
TDAs. In the latter case the u-channel nucleon pole exchange contributes only to the u-
channel isospin—% invariant amplitude M,Efg)” ? {12}, thus populating only u-channel isospin—%
TDAs.

It is straightforward to check that the I = 0 and I = 1 vector-meson-to-nucleon TDAs
computed within the u-channel nucleon pole exchange model satisfy the set of isospin iden-
tities following from the appropriate isospin symmetry relations (A4) and (AY). The explicit

form of these isospin identities can be established with the use of the set of the Fierz identities

worked out in App. [l For example for the case of V}?¥ TDA it reads

1
‘/1‘2N@1, Ty, 13, ¢, A2) + 2 (Vl‘gN - AYgN + Tl‘gN + TQ‘QN) (x3, 21, T9, &, A2)
1
+5 (VY = AL + T + TY) (3, 32,21, €, A7) = 0. (B18)

The validity of this and all subsequent isospin identities for VN TDAs within the u-channel

nucleon exchange model turns out to be the consequence of the familiar isospin identity for
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