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Abstract

We consider backward vector meson exclusive electroproduction off nucleons in the framework

of collinear QCD factorization. Nucleon to vector meson transition distribution amplitudes arise

as building blocks for the corresponding factorized amplitudes. In the near-backward kinematics,

the suggested factorization mechanism results in the dominance of the transverse cross section of

vector meson production (σT ≫ σL) and in the characteristic 1/Q8-scaling behavior of the cross

section. We evaluate nucleon to vector meson TDAs in the cross-channel nucleon exchange model

and present estimates of the differential cross section for backward ρ0, ω and φ meson production

off protons. The resulting cross sections are shown to be measurable in the forthcoming JLab@12

GeV experiments.
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1. INTRODUCTION

The factorization of exclusive amplitudes into a short distance dominated part - the co-

efficient function - calculable in a perturbative way on the one hand, and universal hadronic

matrix elements of non-local operators on the light-cone on the other hand, is a key fea-

ture of quantum chromodynamics (QCD). This allows one to extract information on the

hadronic structure from measurements of specific exclusive processes in specific kinematics.

The textbook examples of such factorization [1, 2] are the nearly forward deeply virtual

Compton scattering (DVCS) and meson hard electroproduction, where generalized parton

(quark and gluon) distributions (GPDs) are the relevant hadronic matrix elements. The ex-

tension of this strategy to other processes, such as backward meson hard electroproduction

and the cross conjugated nucleon-antinucleon annihilation into a lepton pair in association

with a light meson, has been advocated in [3–7] - although the corresponding factorization

theorems are not yet rigorously proven. For this latter class of hard exclusive process, new

hadronic matrix elements of three quark operators on the light cone, the baryon-to-meson

transition distribution amplitudes (TDAs), appear. Baryon-to-meson TDAs share common

features both with baryon DAs (that are defined as the baryon-to-vacuum matrix elements

of the same three quark light-cone operators) and with GPDs, since the matrix element in

question depends on the longitudinal momentum transfer between a baryon and a meson

characterized by the skewness variable ξ. Also, similarly to GPDs [8–10], switching to the

impact parameter space through the Fourier transform in ∆T brings a novel transverse pic-

ture of the nucleon. It encodes new valuable complementary information on the hadronic

3-dimensional structure, whose detailed physical meaning still awaits its clarification.

A collinear factorized description for backward reactions requires the presence of a large

scale Q, to ensure the perturbative expansion of the hard subprocess in the QCD coupling

constant αs(µ) at the factorization scale µ = O(Q). The large scale Q can be taken either

as the space-like virtuality of the electromagnetic probe in the case of electroproduction

processes [6], or, respectively, time-like virtuality of a photon (or mass of heavy quarkonium)

for the case of cross conjugated processes with lepton pair emission (or heavy quarkonium

production) in association with a light meson in antinucleon nucleon annihilation [7, 11, 12].

Our previous studies [6, 7, 11, 13–15] were almost exclusively restricted to the case of

πN TDAs. Thanks to the chiral properties of QCD, πN TDAs possess a well-understood
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soft pion limit, which can be related to the ξ → 1 limit of the TDAs. This easily allows

us to work out the physical normalization of πN TDAs and is helpful for practical model

building.

The special πN TDA case however does not exhaust all interesting possibilities, and the

vector meson sector should be experimentally accessible as well as the pseudoscalar meson

sector [16–19]. In this paper we consider nucleon-to-vector meson (V N) TDAs and address

the possibility of accessing them experimentally through backward hard electroproduction

reactions. The spin-1 nature of the produced mesons gives rise to new structures for TDAs.

This enables to define a set of the leading twist-3 V N TDAs, which in principle may be

accessed separately through a rich variety of polarization dependent observables. In the

present study we enlarge the scope of nucleon to meson distributions to the cases of ρ0,

ω and φ mesons. These three cases share the same JPC quantum numbers, but each of

them addresses a specific question. The φ-meson case deals with the issue of the strangeness

content of the nucleon, which has been the subject of many experimental and theoretical

studies (see e.g. [20] and Refs. therein), while the combined analysis of ρ and ω production

allows one to disentangle the isotopic structure of V N TDAs in the non-strange sector.

The paper is organized as follows: in Section 2 we describe the kinematics of backward

meson electroproduction. In Section 3 we propose a parametrization of nucleon-to-vector-

meson TDAs. We calculate the hard amplitude in Section 4. In Section 5 we compute

the unpolarized cross-section for backward hard meson electroproduction off nucleons and

present estimates for the cross section of the backward ω(782), φ(1020) and ρ0(770) produc-

tion within the cross-channel nucleon exchange model of the V N TDAs. Section 6 brings our

conclusions. Appendix A explores the isospin constraints and the permutation properties of

the V N TDAs; appendix B derives the cross channel nucleon exchange model for the V N

TDAs.

2. KINEMATICS OF BACKWARD VECTOR MESON HARD ELECTROPRO-

DUCTION

We consider the exclusive electroproduction of vector mesons off nucleons

e(k) +N(p1, s1) → (γ∗(q, λγ) +N(p1, s1)) + e(k′) → e(k′) +N(p2, s2) + V (pV , λV ), (1)
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within the generalized Bjorken limit, in which Q2 = −q2 and s are large1; the Bjorken

variable xB ≡ Q2

2p1·q
is fixed and the u-channel momentum transfer squared is small compared

to Q2 and s: |u| ≡ |∆2| ≪ Q2, s. Within such kinematics, the amplitude of the hard

subprocess of the reaction (1) is supposed to admit a collinear factorized description in

terms of nucleon-to-vector-meson TDAs and nucleon DAs, as it is shown on Fig. 1. The

small u corresponds to the vector meson produced in the near-backward direction in the γ∗N

center-of-mass system (CMS). Therefore in what follows, we refer the kinematical regime in

question as the near-backward kinematics. We would like to emphasize that this kinematical

regime is complementary to the more familiar generalized Bjorken limit (Q2 and s - large;

xB - fixed; |t| ≪ Q2, s), known as the near-forward kinematics. In this latter kinematical

regime the conventional collinear factorization theorem [1, 2] leading to the description of

(1) in terms of GPDs and vector meson DAs is established (see Fig. 2).

p1 pV

γ∗

V N TDA

u

s = W 2

CF

N DA

p2

Q2

ρ, ω, φ

FIG. 1: Collinear factorization of γ∗N → NV in the near-backward kinematics regime

(large Q2, s; fixed xB; |u| ∼ 0); V N TDA stands for the transition distribution amplitude

from a nucleon to a vector meson; N DA stands for the nucleon distribution amplitude;

CF denotes hard subprocess amplitudes (coefficient functions).

We choose the z-axis along the colliding virtual-photon-nucleon and introduce the light-

cone vectors p and n (2p · n = 1). Keeping the first-order corrections in the masses and ∆2
T ,

we establish the following Sudakov decomposition for the momenta of the reaction (1) in

1 Throughout this paper we employ the usual Mandelstam variables for the hard subprocess of the reaction

(1): s = (p1 + q)2 ≡ W 2; t = (p2 − p1)
2; u = (pV − p1)

2 ≡ ∆2.
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p1 p2

γ∗

N GPD

t

s = W 2

CF ′

V DA

pV

Q2

ρ, ω, φ

p1 p2

γ∗

t

s = W 2

V DA

pV

Q2

ρ, ω, φ

CF ′′

N GPD

FIG. 2: Collinear factorization of γ∗N → NV in the near-forward kinematics regime (large

Q2, s; fixed xB; |t| ∼ 0); N GPD stand for, respectively, quark and gluon nucleon GPDs; V

DA stands for the vector meson distribution amplitude; CF ′ and CF ′′ denote the

corresponding hard subprocess amplitudes.

the near-backward kinematical regime (cf. [6]):

p1 = (1 + ξ)p+
M2

1 + ξ
n ;

p2 ≃ −2ξ
(∆2

T −M2)

Q2
p+


 Q2

2ξ
(
1 +

(∆2

T−M2)

Q2

) − m2
V −∆2

T

1− ξ
+

M2

1 + ξ


n−∆T ;

q ≃ −2ξ
(
1 +

(∆2
T −M2)

Q2

)
p+

Q2

2ξ
(
1 +

(∆2

T−M2)

Q2

)n ;

pV = (1− ξ)p+
m2

V −∆2
T

1− ξ
n+∆T ;

∆ = −2ξp+
[m2

V −∆2
T

1− ξ
− M2

1 + ξ

]
n +∆T . (2)

Here M and mV denote respectively the nucleon and the vector meson masses and ξ stands

for the u-channel skewness parameter introduced with respect to the u-channel momentum

transfer

ξ = −(pV − p1) · n
(pV + p1) · n

, (3)

and

∆2
T =

1− ξ

1 + ξ

(
∆2 − 2ξ

[
M2

1 + ξ
− m2

V

1− ξ

])
(4)

is the u-channel transverse momentum transfer squared. We introduce u0 corresponding to

5



∆2
T = 0:

u0 = −2ξ (m2
V (1 + ξ)−M2(1− ξ))

1− ξ2
. (5)

It is the maximal possible value of u for given ξ. For ∆2
T = 0 (u = u0) the vector meson is

produced exactly in the backward direction in the γ∗N CMS (θ∗V = π).

In the initial nucleon rest frame (corresponding to the JLab laboratory frame, (LAB))

the light-cone vectors p and n read

p|LAB =
M

2(1 + ξ)
{1, 0, 0,−1}; n|LAB =

1 + ξ

2M
{1, 0, 0, 1}. (6)

With the help of the appropriate boost we establish the expressions for the light-cone vectors

in the γ∗N CMS:

p|γ∗N CMS = {α, 0, 0,−α}; p|γ∗N CMS = {β, 0, 0, β}, (7)

with

α =
M2 +Q2 +W 2 + Λ (W 2,−Q2,M2)

4(1 + ξ)W
;

β =
(1 + ξ) (M2 +Q2 +W 2 − Λ (W 2,−Q2,M2))

4M2W
, (8)

where Λ is the usual Mandelstam function

Λ(x, y, z) =
√
x2 + y2 + z2 − 2xy − 2xz − 2yz . (9)

The V -meson scattering angle in the γ∗N CMS for the u-channel factorization regime

then can be expressed as:

cos θ∗V =
−(1− ξ)α+

m2

V −∆T
2

1−ξ
β

√
(−(1− ξ)α +

m2

V −∆T
2

1−ξ
β)2 −∆T

2
. (10)

One may check that for ∆T
2 = 0 indeed cos θ∗V = −1, which means backward scattering.

For skewness variable ξ we employ the approximate expression neglecting order of mass

and ∆2
T corrections

ξ ≃ xB
2− xB

≃ Q2

Q2 + 2W 2
. (11)
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From the transversality of the polarization vector of the vector meson

E∗(pV , λV ) · pV = 0 (12)

we establish the following condition for the “−”-light-cone component of the polarization

vector of the vector meson:

E∗(pV , λV ) · p = −m
2
V −∆2

T

(1− ξ)2
(E∗(pV , λV ) · n)−

1

1− ξ
(E∗(pV , λV ) ·∆T ). (13)

3. PARAMETRIZATION OF NUCLEON-TO-VECTOR MESON TRANSITION

DISTRIBUTION AMPLITUDES

Nucleon-vector-meson TDAs are formally defined as the matrix elements of the light-cone

three quark operator between a nucleon and a vector meson states. For simplicity we leave

the discussion of isotopic spin properties of V N TDAs to the Appendix A and consider the

transition matrix element of the uud light-cone operator2

Ôuud
ρτχ(λ1n, λ2n, λ3n) ≡ εc1c2c3u

c1
ρ (λ1n)u

c2
τ (λ2n)d

c3
χ (λ3n) (14)

between the proton |Np〉 state and a I3 = 0, JPC = 1−− vector meson state (these could be

e.g. 〈ω(782)|, 〈ρ0(770)| or 〈φ(1020)| meson states).

The parametrization for the leading twist V N TDA involves 24 Dirac structures. Indeed,

each of the three quarks and the nucleon have 2 helicity states, while the vector meson has 3.

This leads to 3 ·24 = 48 helicity amplitudes. However, parity relates helicity amplitudes with

all opposite helicities reducing the overall number of independent helicity amplitudes by the

factor of 2. The procedure for building the corresponding leading twist Dirac structures was

described in Ref. [21]. The revised version3 of the leading twist-3 V N TDA parametrization

2 We adopt the light-cone gauge A+ = 0 and therefore the gauge link is not shown explicitly in the operator

definition.
3 The original parametrization of Ref. [21] erroneously lacked γ5 factors for the Dirac structures. C.f.

eq. (14) of Ref. [21] and eqs. (17)-(19) of the present paper.
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reads

4F〈V (pV , λV )|Ôuud
ρτχ(λ1n, λ2n, λ3n)|Np(p1, s1)〉

= δ(x1 + x2 + x3 − 2ξ)×M
[ ∑

Υ=1ε,1T,1n,
2ε,2T,2n

(vV N
Υ )ρτ, χV

V N
Υ (x1, x2, x3, ξ,∆

2)

+
∑

Υ=1ε,1T,1n,
2ε,2T,2n

(aV N
Υ )ρτ, χA

V N
Υ (x1, x2, x3, ξ,∆

2) +
∑

Υ=1ε,1T,1n,ε,2T,2n,
3ε,3T,3n,4ε,4T,4n

(tV N
Υ )ρτ, χT

V N
Υ (x1, x2, x3, ξ,∆

2)
]
,

(15)

where F stands for the conventional Fourier transform

F ≡ F(x1, x2, x3)(. . .) = (P · n)3
∫ [ 3∏

j=1

dλj
2π

]
ei

∑
3

k=1
xkλk(P ·n) , (16)

and the leading twist Dirac structures are defined as

(vV N
1E )ρτ, χ = (p̂C)ρτ

(
γ5Ê∗(pV , λV )U

+(p1, s1)
)
χ
;

(vV N
1T )ρτ, χ =M−1(E∗(pV , λV ) ·∆T )(p̂C)ρτ

(
γ5U+(p1, s1)

)
χ
;

(vV N
1n )ρτ, χ =M(E∗(pV , λV ) · n)(p̂C)ρτ

(
γ5U+(p1, s1)

)
χ
;

(vV N
2ε )ρτ, χ =M−1(p̂C)ρτ

(
γ5σ∆T E∗

U+(p1, s1)
)
χ
;

(vV N
2T )ρτ, χ =M−2(E∗(pV , λV ) ·∆T )(p̂C)ρτ

(
γ5∆̂TU

+(p1, s1)
)
χ
;

(vV N
2n )ρτ, χ = (E∗(pV , λV ) · n)(p̂C)ρτ

(
γ5∆̂TU

+(p1, s1)
)
χ
; (17)

(aV N
1ε )ρτ, χ = (p̂γ5C)ρτ

(
Ê∗(pV , λV )U

+(p1, s1)
)
χ
;

(aV N
1T )ρτ, χ =M−1(E∗(pV , λV ) ·∆T )(p̂γ

5C)ρτ
(
U+(p1, s1)

)
χ
;

(aV N
1n )ρτ, χ =M(E∗(pV , λV ) · n)(p̂γ5C)ρτ

(
U+(p1, s1)

)
χ
;

(aV N
2ε )ρτ, χ =M−1(p̂γ5C)ρτ

(
σ∆T E∗

U+(p1, s1)
)
χ
;

(aV N
2T )ρτ, χ =M−2(E∗(pV , λV ) ·∆T )(p̂γ

5C)ρτ
(
∆̂TU

+(p1, s1)
)
χ
;

(aV N
2n )ρτ, χ = (E∗(pV , λV ) · n)(p̂γ5C)ρτ

(
∆̂TU

+(p1, s1)
)
χ
; (18)

8



(tV N
1ε )ρτ, χ = (σpλC)ρτ (γ5σ

λE∗

U+(p1, s1))χ;

(tV N
1T )ρτ, χ =M−1(E∗(pV , λV ) ·∆T )(σpλC)ρτ (γ5γ

λU+(p1, s1))χ;

(tV N
1n )ρτ, χ =M(E∗(pV , λV ) · n)(σpλC)ρτ (γ5γλU+(p1, s1))χ;

(tV N
2ε )ρτ, χ = (σpE∗C)ρτ (γ5U

+(p1, s1))χ;

(tV N
2T )ρτ, χ =M−2(E∗(pV , λV ) ·∆T )(σpλC)ρτ (γ5σ

λ∆TU+(p1, s1))χ;

(tV N
2n )ρτ, χ = (E∗(pV , λV ) · n)(σpλC)ρτ (γ5σλ∆TU+(p1, s1))χ;

(tV N
3ε )ρτ, χ =M−1(σp∆T

C)ρτ (γ5Ê∗(pV , λV )U
+(p1, s1))χ;

(tV N
3T )ρτ, χ =M−2(E∗(pV , λV ) ·∆T )(σp∆T

C)ρτ (γ5U
+(p1, s1))χ;

(tV N
3n )ρτ, χ = (E∗(pV , λV ) · n)(σp∆T

C)ρτ (γ5U
+(p1, s1))χ;

(tV N
4ε )ρτ, χ =M−1(σpE∗C)ρτ (γ5∆̂TU

+)χ;

(tV N
4T )ρτ, χ =M−3(E∗(pV , λV ) ·∆T )(σp∆T

C)ρτ (γ5∆̂TU
+(p1, s1))χ;

(tV N
4n )ρτ, χ =M−1(E∗(pV , λV ) · n)(σp∆T

C)ρτ (γ5∆̂TU
+(p1, s1))χ. (19)

Throughout this paper we employ Dirac’s “hat” notation: â ≡ γµa
µ and adopt the usual

conventions: σµν = 1
2
[γµ, γν ]; σvν ≡ vµσ

µν , where vµ is an arbitrary 4-vector. The large

and small components of the nucleon Dirac spinor U(p1) are introduced as U+(p1, s1) =

p̂n̂U(p1, s1) and U
−(p1, s1) = n̂p̂U(p1, s1).

Each of the 24 V N TDAs defined in (15) are functions of three longitudinal momentum

fractions x1, x2, x3, skewness parameter ξ, u-channel momentum transfer squared ∆2 and

of factorization scale µ2. TDAs V V N
Υ (x1, x2, x3, ξ,∆

2) and T V N
Υ (x1, x2, x3, ξ,∆

2) are defined

symmetric under the interchange x1 ↔ x2, while A
V N
Υ (x1, x2, x3, ξ,∆

2) are antisymmetric

under the interchange x1 ↔ x2.

Note that with the use of the parametrization (15) the corresponding TDAs do not

satisfy the polynomiality property in its simple form. Indeed, as explained in Ref. [14], since

the light-cone kinematics implies the choice of a preferred z-direction, the parametrization

(15) involves non-covariant kinematical quantities (such as ∆T and light-cone vectors p and

n). This results in the presence of kinematical singularities for the corresponding invariant

amplitudes (TDAs). In principle, one can define the alternative set of the Dirac structures for

V N involving only fully covariant kinematical quantities such as four-vectors P = 1
2
(p1+pV )

and ∆. Thus, for the price of the controllable admixture of higher twist contributions the
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corresponding set of V N TDAs turns to be free of kinematical singularities and satisfies the

polynomiality condition in its simple form. Therefore, for this set of TDAs one can introduce

the spectral representation [22] in terms of quadruple distributions. The relation between

the free-of-kinematical-singularities-set of V N TDAs and those introduced in eq. (15) is

given by the set of relations similar to eq. (C11) of Ref. [14].

In the present study we, nevertheless, prefer to stay with the V N TDA parametrization

(15), since it is well suited to keep eye on the ∆T = 0 limit. Namely, in the limit ∆T = 0

only 7 TDAs out of 24 turn to be relevant: V V N
1E , V V N

1n , AV N
1E , AV N

1n , T V N
1E , T V N

1n , T V N
2E .

4. CALCULATION OF THE HARD AMPLITUDE

Within the suggested factorized approach, in the leading order (both in αs and 1/Q) the

amplitude of4

γ∗(q, λγ) +Np(p1, s1) → Np(p2, s2) + V (pV , λV ) (20)

involves 6 independent tensor structures

MλγλV
s1s2

= −i(4παs)
2
√
4παemfNM

54Q4

6∑

k=1

S(k) λγλV
s1s2

I(k)(ξ, ∆2). (21)

Here αem = 1
137

is the electromagnetic fine structure constant and fN is the nucleon light-

cone wave function normalization constant. Throughout this study we employ the value

from Ref. [23]: fN = 5.2 · 10−3 GeV2.

There turn to be two tensor structures independent of ∆T :

S(1) λγλV
s1s2

= Ū(p2, s2)ε̂(q, λγ)Ê∗(pV , λV )U(p1, s1);

S(2) λγλV
s1s2

=M(E∗(pV , λV ) · n)Ū(p2, s2)ε̂(q, λγ)U(p1, s1), (22)

and four ∆T -dependent tensor structures:

S(3) λγλV
s1s2

=
1

M
(E∗(pV , λV ) ·∆T ) Ū(p2, s2)ε̂(q, λγ)U(p1, s1);

S(4) λγλV
s1s2

=
1

M2
(E∗(pV , λV ) ·∆T ) Ū(p2, s2)ε̂(q, λγ)∆̂TU(p1, s1);

S(5) λγλV
s1s2

=
1

M
Ū(p2, s2)ε̂(q, λγ)Ê∗(pV , λV )∆̂TU(p1, s1);

S(6) λγλV
s1s2

= (E∗(pV , λV ) · n) Ū(p2, s2)ε̂(q, λγ)Ê∗(pV , λV )∆̂TU(p1, s1). (23)

4 For definiteness we take V to be a vector meson with I3 = 0: ω, ρ0 or φ.
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Here ε(q, λγ) stands for the polarization vector of the incoming virtual photon and E∗(pV , λV )

is the polarization vector of the outgoing vector meson.

To the leading order in αs, within the collinear factorized description in terms of V N

TDAs, the amplitude of the reaction (20) can be computed from the same 21 diagrams listed

in Table I of Ref. [6]. We adopt our common notations for the integral convolutions I(k),

k = 1, . . . , 6:

I(k)(ξ,∆2) ≡
∫ 1+ξ

−1+ξ

dx1

∫ 1+ξ

−1+ξ

dx2

∫ 1+ξ

−1+ξ

dx3 δ(x1 + x2 + x3 − 2ξ)

×
∫ 1

0

dy1

∫ 1

0

dy2

∫ 1

0

dy3 δ(y1 + y2 + y3 − 1)

(
2

7∑

α=1

T (k)
α +

14∑

α=8

T (k)
α

)
. (24)

The explicit expressions for the coefficients T
(k)
α ≡ Dα×N (k)

α (no summation over α assumed)

are presented in Table I. Here Dα denote the singular kernels originating from the partonic

propagators and N
(k)
α ≡ N

(k)
α (x1, x2, ξ,∆

2; y1, y2, y3) stand for the appropriate combinations

of V N TDAs and nucleon DAs V p, Ap and T p arising in the numerator. The α = 1, . . . , 21

index refers for the diagram number and the index k = 1, . . . , 6 runs for the contributions

into 6 invariant amplitudes of eq. (21).
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TABLE I: 14 of the 21 diagrams contributing to the hard-

scattering amplitude with their associated coefficient T
(k)
α ≡

Dα ×N
(k)
α (no summation over α assumed). The seven first

ones with u-quark lines inverted are not drawn. The crosses

represent the virtual-photon vertex.

α Diagram Numerators

Dα

1

u(y1)

u(y2)

d(y3)d(x3)

u(x2)

u(x1) ×

Qu(2ξ)2

(2ξ−x1−iǫ)2(x3−iǫ)(1−y1)2y3

N
(1)
α − (V p −Ap)

(
V V N
1E +AV N

1E

)
+ 2T p

(
T V N
1E + T V N

2E

)

N
(2)
α − (V p −Ap)

(
V V N
1n +AV N

1n

)
+ 4T p

(
T V N
1n +

∆2

T
2M2T

V N
4n

)

N
(3)
α

− (V p −Ap)
(
V V N
1T +AV N

1T + V V N
2E +AV N

2E

)

+4T p
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5. CALCULATION OF THE UNPOLARIZED CROSS SECTION

First of all, we need to specify our conventions for the backward vector meson electro-

production cross section. Within the suggested factorization mechanism only the transverse

virtual photoproduction cross section σT receives contribution at the leading twist. Anal-

ogously to how this was done in Ref. [14], using the explicit expression (eq. (2.12) of [24])

relating scattering amplitudes of vector meson electroproduction within one photon approxi-

mation and the amplitudes for the virtual photoproduction, we express the unpolarized cross

section of hard electroproduction of a V meson off a nucleon through the helicity amplitudes
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of γ∗N → NV defined in (21) within the collinear factorized description framework:

d5σ

dE ′dΩe′dΩV

= Γ× Λ(s,m2
V ,M

2)

128π2s(s−M2)




1

2

∑

λγT , λV , s1, s2

|MλγλV
s1s2

|2 + . . .



 = Γ×

{
d2σT
dΩV

+ . . .

}
. (25)

Here Ωe′ is the differential solid angle for the scattered electron in the LAB frame; ΩV is

the differential solid angle of the produced vector meson in N ′V CMS frame; and Λ is the

Mandelstam function (9).

By dots in the r.h.s. of eq. (25) we denote the subleading twist terms supressed by powers

of 1/Q. Γ stands for the virtual photon flux factor in Hand’s convention

Γ =
αem

2π2

k′L0
kL0

s−M2

2MQ2

1

1− ǫ
. (26)

Here kL0 and k
′L
0 denote the initial state and final state electron energies in the LAB frame

and

ǫ =
[
1 + 2

(
kL0 − k′L0

)2
+Q2

Q2
tan2 θ

L
e

2

]−1

, (27)

is the polarization parameter of the virtual photon, where θLe denotes the electron scattering

angle in the LAB frame.

We employ the following relation for the sum over photon’s transverse polarizations

∑

λγT

εν(q, λγ)ε
µ∗(q, λγ) = −gµν + 1

(p · n)(p
µnν + pνnµ), (28)

and the V -meson polarization sum reads

∑

λV

Eρ(pV , λV )Eσ(pV , λV ) = −gρσ + pρV p
σ
V

m2
V

. (29)

Let us introduce the notation

D = −i
(
(4παs)

2
√
4παemfNM

54

)
, (30)

and define

ΓH = ε̂(q, λγ)Ê(pV , λV )I(1)(ξ, ∆2) +M(E(pV , λV ) · n)ε̂(q, λγ) I(2)(ξ, ∆2)

+
(E(pV , λV ) ·∆T )

M
ε̂(q, λγ) I(3)(ξ, ∆2) +

(E(pV , λV ) ·∆T )

M2
ε̂(q, λγ)∆̂T I(4)(ξ, ∆2)

+
1

M
ε̂(q, λγ)Ê(pV , λV )∆̂T I(5)(ξ, ∆2) + (E(pV , λV ) · n)Ê(pV , λV )∆̂TI(6)(ξ, ∆2) . (31)
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We now square the amplitude and sum over the transverse polarization of the virtual photon,

over the spin of outgoing nucleon and over the polarizations of the V -meson and sum over

the spin of the initial nucleon. We make use of kinematic relations summarized in (2) and

keep only the leading twist terms. The resulting expression then reads:

|MT |2 =
∑

λγT , λV , s1, s2

MλγλV
s1s2

MλγλV
s1s2

∗
= |D|2 1

Q8

∑

λγT , λω

Tr
{
(p̂2 +M)ΓH(p̂1 +M)γ0Γ

†
Hγ0

}

= |D|2 1

Q6

2(1 + ξ)

ξ

[
|I(1)|2

(
1 +

M2(1− ξ)2 + (1 + ξ)2(m2
V −∆2

T )

m2
V (1 + ξ)2

)

+|I(2)|2M
2(1− ξ)2

4m2
V

+
(
I(1)I(2)∗ + I(1)∗I(2)

) M2(1− ξ)2

2m2
V (1 + ξ)

+
∆2

T

M2

{
−|I(3)|2 (m

2
V −∆2

T )

m2
V

+
(
I(1)I(3)∗ + I(1)∗I(3)

)M2(1− ξ)

m2
V (1 + ξ)

+
(
I(2)I(3)∗ + I(2)∗I(3)

)M2(1− ξ)

2m2
V

+ |I(4)|2∆
2
T (m

2
V −∆2

T )

M2m2
V

+
(
I(1)I(4)∗ + I(1)∗I(4)

) (m2
V −∆2

T )

m2
V

− |I(5)|2
(
1 +

M2(1− ξ)2 + (1 + ξ)2(m2
V −∆2

T )

m2
V (1 + ξ)2

)

+
(
I(1)I(5)∗ + I(1)∗I(5)

) 2M2(1− ξ)

m2
V (1 + ξ)

+
(
I(2)I(5)∗ + I(2)∗I(5)

)M2(1− ξ)

2m2
V

−
(
I(3)I(5)∗ + I(3)∗I(5)

) m2
V −∆2

T

m2
V

+
(
I(4)I(5)∗ + I(4)∗I(5)

) ∆2
T (1− ξ)

m2
V (1 + ξ)

−|I(6)|2M
2(1− ξ)2

4m2
V

−
(
I(1)I(6)∗ + I(1)∗I(6)

)M2(1− ξ)

2m2
V

−
(
I(4)I(6)∗ + I(4)∗I(6)

) ∆2
T (1− ξ)

2m2
V

+
(
I(5)I(6)∗ + I(5)∗I(6)

) M2(1− ξ)2

2m2
V (1 + ξ)

}]
. (32)

We end up with the following expression for the LO unpolarized cross section of hard

photoproduction of backward vector mesons off nucleons:

d2σT
dΩV

=
Λ(s,m2

V ,M
2)

128π2s(s−M2)

1

2
|MT |2, (33)

where σT refers to the transverse polarization of the virtual photon and 1
2
stands for averaging

over the initial nucleon spin.

Thus we conclude that there are two essential marking signs of the onset of the suggested

factorization regime for hard vector meson production in the near-backward kinematics,

which can be tested experimentally.

• The dominance of the transverse polarization of the virtual photon resulting in the

suppression of the σL cross section by at least 1/Q2. In fact, the preliminary analysis
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[25] of backward ω-meson production JLab Hall C 6 GeV data hints at σT > σL

already for Q2 ≃ 2.4 GeV2 and W ≃ 2.2 GeV.

• The characteristic 1/Q8-scaling behavior of the transverse cross section (33) for fixed

xB .

In what follows we present our estimates for the LO unpolarized cross section of hard

photoproduction of backward ω(782), φ(1020) and ρ0(770) mesons off protons within the u-

channel nucleon exchange model for V N TDAs presented in the Appendix B. This is a simple

TDA model which populates V N TDAs only within the ERBL-like support region. However,

it can be seen as a reliable estimate of the V N TDAs magnitude for the intermediate values

of skewness parameter ξ = 0.1÷ 0.4. As inputs this model requires the values of the vector

and tensor GV, T
V NN couplings (B1) and the phenomenological solutions for the leading twist

nucleon DAs.

On the choice of phenomenological parametrization for the nucleon DA

The choice of the phenomenological solution for the leading twist nucleon DA and the

corresponding value of the strong coupling represents a complicated problem (see e.g. dis-

cussion in Ref. [26]). Roughly speaking, there exist two distinct classes of the leading twist

nucleon DA parametrizations.

• The models with the shape of nucleon DA close to the asymptotic form [27]

V p(y1, y2, y3) = T p(y1, y2, y3) = 120y1y2y3; Ap(y1, y2, y3) = 0 (34)

already at a low normalization scale. Prominent examples are the Bolz-Kroll (BK) [28]

and Braun-Lenz-Wittmann (BLW) LO and NLO models [29, 30]. Also, the advanced

lattice calculations of the nucleon DA [31] favor such nucleon DAs.

• The Chernyak-Zhitnitsky (CZ)-type models with a shape of nucleon DA considerably

different from the the asymptotic limit at a low normalization scale. The examples of

this type of nucleon DA models are the CZ [23], King-Sachrajda (KS) [32], Chernyak-

Ogloblin-Zhitnitsky (COZ) [33] and Gari-Stefanis (GS) [34] solutions.
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Both types of nucleon DA models were employed to provide a description of the nucleon

electromagnetic form factors. As it is well known, the asymptotic form of the nucleon DA

(34) results in a vanishing pQCD contribution for the proton form factor. Therefore, using

the nucleon DA with a shape close to the asymptotic form implies that the standard pQCD

contribution must be be complemented by the so-called soft or end-point corrections (see

e.g. discussion in Refs. [28, 29, 35, 36]).

However, the nucleon electromagnetic form factor appears as a building block of the

backward amplitude within our u-channel nucleon exchange model for V N TDAs. Therefore,

within our simple model for V N TDAs, we need to assure that the pQCD contribution into

the nucleon electromagnetic form factor is close to the experimental value. This implies that

we are forced to use the CZ-type solutions for nucleon DA.

In the following phenomenological estimates we have chosen to employ the COZ [33] and

KS [32] solutions for the leading twist nucleon DAs and set a compromise value of the strong

coupling αs = 0.3.

Backward ω -meson hard photoproduction

As the first example we consider backward ω(782) meson hard photoproduction off proton

γ∗(q, λγ) + p(p1, s1) → ω(pω, λω) + p(p2, s2). (35)

We take the Grein’80 estimates for the ω-meson couplings to nucleons [37] (see also Table

9.2 of Ref. [38])

GV
ωNN = 10.1; GT

ωNN = 1.42. (36)

We take the kinematical point from the foreseen Jlab@12 GeV setup for Hall C

(Fpi-3 (E06-12-101) u-channel kinematics) [39] W = 3.20 GeV. On Fig. 3 we plot the

resulting unpolarized cross section d2σT

dΩω
(33) within the u-channel nucleon exchange model

for ωN TDAs as a function of Q2 for ∆2
T = 0 (i.e. for the ω-meson produced exactly in the

backward direction in the γ∗N CMS: θ∗ω = π).

On Fig. 4 we show the d2σT

dΩω
cross section as a function of ∆2

T for several values of W and

Q2 (i.e. for u ≤ u0 or, equivalently, θ∗ω ≤ π).
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FIG. 3: Unpolarized cross section d2σT

dΩV
(in nb/sr) for backward γ∗ + p → p + ω for fixed

W = 3.20 GeV as a function of Q2 in the u-channel nucleon exchange model for ωN TDAs.

COZ [33] (long-dashed lines) and KS [32] (solid) solutions for the leading twist nucleon DA

are used as the phenomenological input.
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FIG. 4: Unpolarized cross section d2σT

dΩω
(in nb/sr) for backward γ∗ + p → p + ω for several

values of W and Q2 as a function of ∆2
T in the u-channel nucleon exchange model for ωN

TDAs. COZ [33] (long-dashed lines) and KS [32] (solid) solutions for the leading twist

nucleon DA are used as the phenomenological input.

We may conclude that qualitatively the expected cross sections are similar to the back-

ward π-electroproduction case. Depending on the phenomenological input, and kinematics

the cross section turns to be about ∼ 10÷ 100 [nb/sr] which lies within the reach of future
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JLab Hall A, B and C experiments.

Backward φ -meson hard photoproduction

The second example is the φ(1020) meson hard photoproduction

γ∗(q, λγ) + p(p1, s1) → p(p2, s2) + φ(pφ, λφ). (37)

Some controversy exists in the literature for the values of the phenomenological φ-meson

to nucleon vector and tensor couplings. As the numerical input for the u-channel nucleon

exchange model for φN TDAs we employ the phenomenological φ-meson to nucleon vector

and tensor coupling presented in Ref. [40] (see also Table 2 of Ref. [41]):

GV
φNN = 9.18; GT

φNN = −2.02, (38)

that are roughly consistent with the estimates of Ref. [42].

On Fig. 5 we plot the backward φ-meson hard photoproduction cross section d2σT

dΩφ
for

∆2
T = 0 (i.e. corresponding to exactly backward scattering θ∗φ = −π) as a function of Q2 for

the Q2 range corresponding to Fpi-3 (E06-12-101) u-channel kinematics [39].

On Fig. 6 we show the d2σT

dΩφ
cross section as a function of ∆2

T for several values of W and

Q2 (i.e. for u ≤ u0 or, equivalently, θ∗φ ≤ π).
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FIG. 5: Unpolarized cross section d2σT

dΩφ
(in nb/sr) for backward γ∗ + p → p + φ for fixed

W = 3.20 GeV as a function of Q2 in the u-channel nucleon exchange model for φN TDAs.

COZ [33] (long-dashed lines) and KS [32] (solid) solutions for the leading twist nucleon DA

are used as the phenomenological input.
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FIG. 6: Unpolarized cross section d2σT

dΩφ
(in nb/sr) for backward γ∗ + p → p + φ for several

values of W and Q2 as a function of ∆2
T in the u-channel nucleon exchange model for φN

TDAs. COZ [33] (long-dashed lines) and KS [32] (solid) solutions for the leading twist

nucleon DA are used as the phenomenological input.

24



Backward ρ0 -meson hard photoproduction

Finally, we consider the ρ0(770) meson hard photoproduction

γ∗(q, λγ) + p(p1, s1) → p(p2, s2) + ρ0(pφ, λφ). (39)

As the numerical input for the u-channel nucleon exchange model for ρN TDAs we em-

ploy the Pietarinen’77 phenomenological ρ-meson to nucleon vector and tensor couplings

presented in Table 9.2 of Ref. [38]:

GV
ρNN = 2.6; GT

ρNN = 16.1. (40)

On Fig. 7 we plot the backward φ-meson hard photoproduction cross section d2σT

dΩρ
for

∆2
T = 0 (i.e. corresponding to exactly backward scattering θ∗ρ = −π) as a function of Q2 for

the Q2 range corresponding to Fpi-3 (E06-12-101) u-channel kinematics [39].

On Fig. 8 we show the d2σT

dΩρ
cross section as a function of ∆2

T for several values of W and

Q2 (i.e. for u ≤ u0 or, equivalently, θ∗ρ ≤ π).
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FIG. 7: Unpolarized cross section d2σT

dΩρ
(in nb/sr) for backward γ∗ + p → p + ρ0 for fixed

W = 3.20 GeV as a function of Q2 in the u-channel nucleon exchange model for ρN TDAs.

COZ [33] (long-dashed lines) and KS [32] (solid) solutions for the leading twist nucleon DA

are used as the phenomenological input.
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FIG. 8: Unpolarized cross section d2σT

dΩρ
(in nb/sr) for backward γ∗ + p → p + ρ0 for several

values of W and Q2 as a function of ∆2
T in the u-channel nucleon exchange model for ρN

TDAs. COZ [33] (long-dashed lines) and KS [32] (solid) solutions for the leading twist

nucleon DA are used as the phenomenological input.

It is interesting to note that as the ρ-meson is mostly coupled to nucleon through the

tensor coupling the cross section turns out to be suppressed at least by a factor 3 as compared

to the ω meson case.
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6. CONCLUSIONS AND OUTLOOK

In this paper we applied the nucleon-to-meson TDA approach to the case of near-

backward leptoproduction of light vector mesons off nucleons. We defined 24 leading twist-3

V N TDAs and computed the corresponding leading order hard amplitude. We estimated

the differential cross section of backward ρ0, ω and φ production within a simple cross-

channel nucleon exchange model for V N TDAs. The cross sections were found to be sizable

enough to be studied at future JLab experiments. The study of hard leptoproduction of

vector meson in the backward direction can also be seen as an opportunity for COMPASS

at CERN and future EIC. Bringing experimental evidences for the suggested scaling behav-

ior will improve our understanding of the on-set of perturbative QCD description of hard

reactions.

The same V N TDAs can also be addressed in nucleon-antinucleon annihilation into a

lepton pair in association with a vector meson to be studied at P̄ANDA, thus checking the

universality of TDAs. Therefore, a feasibility study for pp̄→ γ∗V and pp̄→ J/ψ V reactions

for the P̄ANDA conditions is highly needed.

Our formalism can be naturally generalized to the case of nucleon-to-photon TDAs [43],

which can be accessed in backward DVCS. Potentially, this is the cleanest process involving

TDAs that could bring new information on hadronic structure. However, the experimental

feasibility of backward DVCS requires further studies.
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A. ISOSPIN AND PERMUTATION SYMMETRY PROPERTIES OF V N TDAS

In this Appendix we present a brief overview of the isospin properties of V N TDAs.

Throughout this analysis we literally follow the system of notations and conventions adopted

in Ref. [13].

• Letters from the beginning of the Greek alphabet are reserved for the SU(2) isospin

indices α, β, γ, ι, κ = 1, 2.

• We have to distinguish between upper (contravariant) and lower (covariant) SU(2)

isospin indices. We introduce the totally antisymmetric tensor εαβ for lowering indices

and εαβ for rising indices (ε1 2 = ε1 2 = 1): Ψαεαβ = Ψβ, Ψαε
αβ = Ψβ and δαβ = −εαβ =

ε α
β .

• Letters from the beginning of the Latin alphabet a, b, c = 1, 2, 3 are reserved for indices

of the adjoint representation of the SU(2) isospin group. σa stand for the usual Pauli

matrices.

• Letters from the second half of the Greek alphabet ρ, τ, χ are reserved for the Dirac

indices.

• Letters c1, c2, c3 stand for SU(3) color indices.

We consider the V N matrix element of light-cone three-quark operators

Ôαβγ
ρτχ (z1, z2, z3) ≡ Ôαβγ

ρτχ (1, 2, 3) = εc1c2c3Ψ
c1α
ρ (z1)Ψ

c2β
τ (z2)Ψ

c3α
χ (z3). (A1)

For the case of I = 0 vector meson (ω(782) and φ(1020) being the examples) the isotopic

structure of V N TDA coincides with that of the leading twist nucleon DA. Therefore, the

invariant isospin parametrization reads (for definiteness we consider the ωN TDA case)

4〈ω(pω, λω)|Ôαβγ
ρτχ (1, 2, 3)|Nι(p1, s1)〉 = εαβδγιM

ωN{12}
ρχτ (1, 3, 2) + εαγδγιM

ωN{12}
ρτχ (1, 2, 3),(A2)
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where the invariant amplitude M
ωN{12}
ρτχ (1, 2, 3) is symmetric with respect to interchange of

first two variables:

MωN{12}
ρτχ (1, 2, 3) =MωN{12}

τρχ (2, 1, 3), (A3)

and satisfies the isospin identity (c.f. eq. (32) of Ref. [13])

MωN{12}
ρτχ (1, 2, 3) +MωN{12}

ρχτ (1, 3, 2) +MωN{12}
τχρ (2, 3, 1) = 0. (A4)

The Dirac structure of M
ωN {12}
ρτχ (1, 2, 3) is that of eq. (15). It is straightforward to check

that

4〈ω(pω, λω)|Ôuud
ρτχ(1, 2, 3)|Np(p1, s1)〉 = −4〈ω(pω, λω)|Ôddu

ρτχ(1, 2, 3)|Nn(p1, s1)〉

=MωN {12}
ρτχ (1, 2, 3). (A5)

To work out the consequences of the isospin identity (A4) for particular TDAs of (15) one

has to employ the set of the Fierz identities (A11)–(A17) for the relevant Dirac structures

(17), (18), (19).

For the case of I = 1 vector meson (ρ(770) being the obvious example) the isotopic

structure of V N TDA coincides with that of the leading twist nucleon πN TDA. Therefore

we can write down the following isospin decomposition

4〈ρa|Ôαβγ
ρτχ (z1, z2, z3)|Nι〉 = (fa)

{αβγ}
ι M

(ρN)3/2
ρτχ (1, 2, 3)

+εαβ(σa)
γ
ιM

(ρN)1/2 {12}
ρχτ (1, 3, 2) + εαγ(σa)

β
ιM

(ρN)1/2 {12}
ρτχ (1, 2, 3) , (A6)

where the totally symmetric tensor (fa)
{αβγ}

ι reads

(fa)
{αβγ}

ι =
1

3

(
(σa)

α
δε

δβδγι + (σa)
α
δε

δγδβι + (σa)
β
δε

δγδαι

)
. (A7)

The properties of the u-channel isospin-1
2
invariant amplitude M

(ρN)1/2 {12}
ρτχ are fully anal-

ogous to that of the corresponding invariant amplitude of eq. (A2). It is symmetric under

the simultaneous interchange of two first arguments and the Dirac indices:

M
(ρN)1/2 {12}
ρτχ (1, 2, 3) =M

(ρN)1/2 {12}
τρχ (2, 1, 3), (A8)

and satisfies the isospin identity (c.f. eq. (32) of Ref. [13])

M
(ρN)1/2 {12}
ρτχ (1, 2, 3) +M

(ρN)1/2 {12}
ρχτ (1, 3, 2) +M

(ρN)1/2 {12}
τχρ (2, 3, 1) = 0. (A9)
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The Dirac structure of M
(ρN)1/2 {12}
ρτχ is again that of eq. (15).

As a consequence of the permutation and isotopic symmetry, the u-channel isospin-3
2

invariant amplitude M
(ρN)3/2 {12}
ρτχ is completely symmetric under simultaneous permutations

of the arguments and the Dirac indices:

M
(ρN)3/2
ρτχ (1, 2, 3) =M

(ρN)3/2
ρχτ (1, 3, 2) =M

(ρN)3/2
τρχ (2, 1, 3)

=M
(ρN)3/2
τχρ (2, 3, 1) =M

(ρN)3/2
χτρ (3, 2, 1) =M

(ρN)3/2
χρτ (3, 1, 2) . (A10)

The Dirac structure of M
(ρN)3/2 {12}
ρτχ is also that of eq. (15).

Below, to the leading twist-3 accuracy, we present the set of Fierz identities for the

relevant Dirac structures (17), (18), (19) needed to establish the consequences of the isotopic

and permutation symmetry (A10) for V N TDAs.

(vV N
1E )ρτ, χ =

1

2

(
vV N
1E − aV N

1E + tV N
1E + tV N

2E

)
χτ, ρ

;

(aV N
1E )ρτ, χ =

1

2

(
−vV N

1E + aV N
1E + tV N

1E + tV N
2E

)
χτ, ρ

;

(tV N
1E )ρτ, χ =

1

2

(
vV N
1E + aV N

1E + tV N
1E − tV N

2E

)
χτ, ρ

(tV N
2E )ρτ, χ =

1

2

(
vV N
1E + aV N

1E − tV N
1E + tV N

2E

)
χτ, ρ

; (A11)

(vV N
1T )ρτ, χ =

1

2

(
vV N
1T − aV N

1T + tV N
1T

)
χτ, ρ

;

(aV N
1T )ρτ, χ =

1

2

(
−vV N

1T + aV N
1T + tV N

1T

)
χτ, ρ

;

(tV N
1T )ρτ, χ =

(
vV N
1T + (aV N

1T

)
χτ, ρ

; (A12)

(vV N
1n )ρτ, χ =

1

2

(
vV N
1n − aV N

1n + tV N
1n

)
χτ, ρ

;

(a1n)ρτ, χ =
1

2

(
−vV N

1n + aV N
1n + tV N

1n

)
χτ, ρ

;

(tV N
1n )ρτ, χ =

(
vV N
1n + aV N

1n

)
χτ, ρ

; (A13)

(vV N
2E )ρτ, χ =

1

2

(
vV N
2E − aV N

2E + tV N
3E − tV N

4E

)
χτ, ρ

;

(aV N
2E )ρτ, χ =

1

2

(
−vV N

2E + aV N
2E + tV N

3E − tV N
4E

)
χτ, ρ

;

(tV N
3E )ρτ, χ =

1

2

(
vV N
1T + vV N

2E + aV N
1T + aV N

2ε + tV N
3E − tV N

1T + tV N
4E

)
χτ, ρ

;

(tV N
4E )ρτ, χ =

1

2

(
−vV N

2E + vV N
1T − aV N

2E + aV N
1T + tV N

3E − tV N
1T + tV N

4E

)
χτ, ρ

; (A14)
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(vV N
2T )ρτ, χ =

1

2

(
vV N
2T − aV N

2T + tV N
2T + tV N

3T

)
χτ, ρ

;

(aV N
2T )ρτ, χ =

1

2

(
−vV N

2T + aV N
2T + tV N

2T + tV N
3T

)
χτ, ρ

;

(tV N
2T )ρτ, χ =

1

2

(
vV N
2T + aV N

2T + tV N
2T − tV N

3T

)
χτ, ρ

;

(tV N
3T )ρτ, χ =

1

2

(
vV N
2T + aV N

2T − tV N
2T + tV N

3T

)
χτ, ρ

; (A15)

(vV N
2n )ρτ, χ =

1

2

(
vV N
2n − aV N

2n + tV N
2n + tV N

3n

)
χτ, ρ

;

(aV N
2n )ρτ, χ =

1

2

(
−vV N

2n + aV N
2n + tV N

2n + tV N
3n

)
χτ, ρ

;

(tV N
2n )ρτ, χ =

1

2

(
vV N
2n + aV N

2n + tV N
2n − tV N

3n

)
χτ, ρ

;

(tV N
3n )ρτ, χ =

1

2

(
vV N
2n + aV N

2n − tV N
2n + tV N

3n

)
χτ, ρ

; (A16)

(tV N
4T )ρτ, χ =

1

2

∆2
T

M2

(
vV N
1T − aV N

1T − tV N
1T

)
χτ, ρ

+ (tV N
4T )χτ, ρ;

(tV N
4n )ρτ, χ =

1

2

∆2
T

M2

(
vV N
1n − aV N

1n − tV N
1n

)
χτ, ρ

+ (tV N
4n )χτ, ρ. (A17)

B. NUCLEON POLE EXCHANGE MODEL FOR V N TDA

In this Appendix we construct a simple u-channel nucleon exchange model for V N TDAs.

This model populates only the Efremeov-Radyushkin-Brodsky-Lepage (ERBL)-like region

of the V N TDA support domain and represents an analogue of the D-term contribution

supplementary to the spectral representation [22] in terms of quadruple distributions.

The effective V NN vertex [38]

Veff
(
N(p1, s1) → V (pV , λV )N(−∆, sp)

)

= Ū(−∆, sp)
[
GV

V NN Ê∗(pV , λV ) +GT
V NN

σµν
2M

(−∆)νEµ∗(pV , λV )
]
U(p1, s1) (B1)

involves two dimensionless phenomenological couplings GV
V NN and GT

V NN .

The u-channel nucleon exchange contribution into the light-cone three-quark-operator
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V N matrix element occurring in the V N TDA definition (15) reads:

〈V (pV , λV )|Ôuud
ρτχ(λ1n, λ2n, λ3n)|N(p1, s1)〉

∣∣∣
N(940)

=
∑

sp

〈0|Ôuud
ρτχ(λ1n, λ2n, λ3n)|N(−∆, sp)〉Ū(−∆, sp)

1

∆2 −M2

[
GV

V NN Ê∗(pV , λV )

+GT
NNω

σµν
2M

(−∆)νEµ∗(pV , λV )
]
U(p1, s1). (B2)

The 〈0|Ôuud
ρτχ(λ1n, λ2n, λ3n)|N(−∆, sp)〉 matrix element is then expressed through the lead-

ing twist-3 nucleon DA. Performing the Fourier transform (16) this yields:

4F(x1, x2, x3) 〈V (pV , λV )|Ôuud
ρτχ(λ1n, λ2n, λ3n)|Np(p1, s1)〉

∣∣∣
N(940)

= δ(x1 + x2 + x3 − 2ξ)

×M ΘERBL(x1, x2, x3)fN
1

M
× 1

(2ξ)2

∑

sp

{
V p

(
x1
2ξ
,
x2
2ξ
,
x3
2ξ

)
(−∆̂C)ρτ (γ

5U(−∆, sp))χ

+Ap

(
x1
2ξ
,
x2
2ξ
,
x3
2ξ

)
(−∆̂γ5C)ρτU(−∆, sp)χ

+T p

(
x1
2ξ
,
x2
2ξ
,
x3
2ξ

)
(σ−∆λC)ρτ (γ

λγ5U(−∆, sp))χ

}
Ū(−∆, sp)

1

∆2 −M2

[
GV

V NN Ê∗(pV , λV )

+GT
V NN

σµν
2M

(−∆)νEµ∗(pV , λV )
]
U(p1, s1). (B3)

Here we employ the notation

ΘERBL(x1, x2, x3) ≡
[

3∏

k=1

θ(0 ≤ xk ≤ 2ξ)

]
. (B4)

To work out from (B3) the nucleon pole exchange contributions to particular TDAs one

has to expand it over the set of 24 basic Dirac structures (17), (18) and (19) which is

a straightforward (though tedious) calculation. It turns out that the u-channel nucleon

exchange model populates 22 out of the 24 V N TDAs (T V N
4T and T V N

4n vanish in this model).

It is convenient to show the results for the groups of V N TDAs interlinked through the

set of the isospin relations (see Appendix A).

• V1E , A1E , T1E , T2E satisfy the isospin symmetry relations based on the Fierz transfor-
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mation set (A11).

V V N
1E (x1, x2, x3, ξ,∆

2)
∣∣
N(940)

= ΘERBL(x1, x2, x3)
1

(2ξ)2
V p

(
x1
2ξ
,
x2
2ξ
,
x3
2ξ

)
KV N

1E (ξ,∆2);

AV N
1E (x1, x2, x3, ξ,∆

2)
∣∣
N(940)

= ΘERBL(x1, x2, x3)
1

(2ξ)2
Ap

(
x1
2ξ
,
x2
2ξ
,
x3
2ξ

)
KV N

1E (ξ,∆2);

T V N
1E (x1, x2, x3, ξ,∆

2)
∣∣
N(940)

= −ΘERBL(x1, x2, x3)
1

(2ξ)2
T p

(
x1
2ξ
,
x2
2ξ
,
x3
2ξ

)
KV N

1E (ξ,∆2);

T V N
2E (x1, x2, x3, ξ,∆

2)
∣∣
N(940)

= −ΘERBL(x1, x2, x3)
1

(2ξ)2
T p

(
x1
2ξ
,
x2
2ξ
,
x3
2ξ

)
KV N

1E (ξ,∆2),

(B5)

where

KV N
1E (ξ,∆2) =

fN
∆2 −M2

(
GV

V NN

2ξ(1− ξ)

1 + ξ
+GT

V NN ξ

(
2ξ

1 + ξ
− ∆2

M2

))
. (B6)

• V1T , A1T , T1T satisfy the isospin symmetry relations based on the Fierz transformation

set (A12)

V V N
1T (x1, x2, x3, ξ,∆

2)
∣∣
N(940)

= ΘERBL(x1, x2, x3)
1

(2ξ)2
V p

(
x1
2ξ
,
x2
2ξ
,
x3
2ξ

)
KV N

1T (ξ,∆2);

AV N
1T (x1, x2, x3, ξ,∆

2)
∣∣
N(940)

= ΘERBL(x1, x2, x3)
1

(2ξ)2
Ap

(
x1
2ξ
,
x2
2ξ
,
x3
2ξ

)
KV N

1T (ξ,∆2);

T V N
1T (x1, x2, x3, ξ,∆

2)
∣∣
N(940)

= −ΘERBL(x1, x2, x3)
1

(2ξ)2
T p

(
x1
2ξ
,
x2
2ξ
,
x3
2ξ

)
KV N

1T (ξ,∆2),

(B7)

where

K1T (ξ,∆
2) =

fN
∆2 −M2

(
−GV

V NN

2ξ(1 + 3ξ)

1− ξ

)
. (B8)

• V1n, A1n, T1n satisfy the isospin symmetry relations based on the Fierz transformation

set (A13)

V V N
1n (x1, x2, x3, ξ,∆

2)
∣∣
N(940)

= ΘERBL(x1, x2, x3)
1

(2ξ)2
V p

(
x1
2ξ
,
x2
2ξ
,
x3
2ξ

)
KV N

1n (ξ,∆2);

AV N
1n (x1, x2, x3, ξ,∆

2)
∣∣
N(940)

= ΘERBL(x1, x2, x3)
1

(2ξ)2
Ap

(
x1
2ξ
,
x2
2ξ
,
x3
2ξ

)
KV N

1n (ξ,∆2);

T V N
1n (x1, x2, x3, ξ,∆

2)
∣∣
N(940)

= −ΘERBL(x1, x2, x3)
1

(2ξ)2
T p

(
x1
2ξ
,
x2
2ξ
,
x3
2ξ

)
KV N

1n (ξ,∆2),

(B9)
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where

K1n(ξ,∆
2)

=
fN

∆2 −M2

(
(1 + ξ) (m2 −∆2

T )

M2(1− ξ)2
− 1

1 + ξ

)(
GV

V NN(−4ξ) +GT
V NN

ξ(1− ξ)

1 + ξ

)
.

(B10)

• V2E , A2E , T3E , T4E satisfy the isospin symmetry relations based on the Fierz transfor-

mation set (A14). Within the nucleon u-channel exchange model this set decouples

from the V1T , A1T , T1T set.

V V N
2E (x1, x2, x3, ξ,∆

2)
∣∣
N(940)

= ΘERBL(x1, x2, x3)
1

(2ξ)2
V p

(
x1
2ξ
,
x2
2ξ
,
x3
2ξ

)
KV N

2E (ξ,∆2);

AV N
2E (x1, x2, x3, ξ,∆

2)
∣∣
N(940)

= ΘERBL(x1, x2, x3)
1

(2ξ)2
Ap

(
x1
2ξ
,
x2
2ξ
,
x3
2ξ

)
KV N

2E (ξ,∆2);

T V N
3E (x1, x2, x3, ξ,∆

2)
∣∣
N(940)

= −ΘERBL(x1, x2, x3)
1

(2ξ)2
T p

(
x1
2ξ
,
x2
2ξ
,
x3
2ξ

)
KV N

2E (ξ,∆2);

T V N
4E (x1, x2, x3, ξ,∆

2)
∣∣
N(940)

= ΘERBL(x1, x2, x3)
1

(2ξ)2
T p

(
x1
2ξ
,
x2
2ξ
,
x3
2ξ

)
KV N

2E (ξ,∆2),

(B11)

where

KV N
2E (ξ,∆2) =

fN
∆2 −M2

(
GV

V NN (−2ξ) +GT
V NNξ

)
. (B12)

• V2T , A2T , T2T , T3T satisfy the isospin symmetry relations based on the Fierz transfor-

mation set (A15).

V V N
2T (x1, x2, x3, ξ,∆

2)
∣∣
N(940)

= ΘERBL(x1, x2, x3)
1

(2ξ)2
V p

(
x1
2ξ
,
x2
2ξ
,
x3
2ξ

)
KV N

2T (ξ,∆2);

AV N
2T (x1, x2, x3, ξ,∆

2)
∣∣
N(940)

= ΘERBL(x1, x2, x3)
1

(2ξ)2
Ap

(
x1
2ξ
,
x2
2ξ
,
x3
2ξ

)
KV N

2T (ξ,∆2);

T V N
2T (x1, x2, x3, ξ,∆

2)
∣∣
N(940)

= −ΘERBL(x1, x2, x3)
1

(2ξ)2
T p

(
x1
2ξ
,
x2
2ξ
,
x3
2ξ

)
KV N

2T (ξ,∆2);

T V N
3T (x1, x2, x3, ξ,∆

2)
∣∣
N(940)

= −ΘERBL(x1, x2, x3)
1

(2ξ)2
T p

(
x1
2ξ
,
x2
2ξ
,
x3
2ξ

)
KV N

2T (ξ,∆2),

(B13)

where

K2T (ξ,∆
2) =

fN
∆2 −M2

(
GT

V NN

ξ(1 + ξ)

1− ξ

)
. (B14)
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• V2n, A2n, T2n, T3n satisfy the isospin symmetry relations based on the Fierz transfor-

mation set (A16).

V V N
2n (x1, x2, x3, ξ,∆

2)
∣∣
N(940)

= ΘERBL(x1, x2, x3)
1

(2ξ)2
V p

(
x1
2ξ
,
x2
2ξ
,
x3
2ξ

)
KV N

2n (ξ,∆2);

AV N
2n (x1, x2, x3, ξ,∆

2)
∣∣
N(940)

= ΘERBL(x1, x2, x3)
1

(2ξ)2
Ap

(
x1
2ξ
,
x2
2ξ
,
x3
2ξ

)
KV N

2n (ξ,∆2);

T V N
2n (x1, x2, x3, ξ,∆

2)
∣∣
N(940)

= −ΘERBL(x1, x2, x3)
1

(2ξ)2
T p

(
x1
2ξ
,
x2
2ξ
,
x3
2ξ

)
KV N

2n (ξ,∆2);

T V N
3n (x1, x2, x3, ξ,∆

2)
∣∣
N(940)

= −ΘERBL(x1, x2, x3)
1

(2ξ)2
T p

(
x1
2ξ
,
x2
2ξ
,
x3
2ξ

)
KV N

2n (ξ,∆2),

(B15)

where

KV N
2n (ξ,∆2) =

fN
∆2 −M2

ξ

(
1 + ξ

(1− ξ)2
(m2

V −∆2
T )

M2
− 1

1 + ξ

)
GT

V NN . (B16)

• Finally,

T V N
4T (x1, x2, x3, ξ,∆

2)
∣∣
N(940)

= 0;

T V N
4n (x1, x2, x3, ξ,∆

2)
∣∣
N(940)

= 0; (B17)

The above formulas can be employed both for I = 0 and I = 1 vector-meson-to-nucleon

TDAs. In the latter case the u-channel nucleon pole exchange contributes only to the u-

channel isospin-1
2
invariant amplitudeM

(ρN)1/2 {12}
ρτχ , thus populating only u-channel isospin-1

2

TDAs.

It is straightforward to check that the I = 0 and I = 1 vector-meson-to-nucleon TDAs

computed within the u-channel nucleon pole exchange model satisfy the set of isospin iden-

tities following from the appropriate isospin symmetry relations (A4) and (A9). The explicit

form of these isospin identities can be established with the use of the set of the Fierz identities

worked out in App. A. For example for the case of V V N
1E TDA it reads

V V N
1E (x1, x2, x3, ξ,∆

2) +
1

2

(
V V N
1E −AV N

1E + T V N
1E + T V N

2E

)
(x3, x1, x2, ξ,∆

2)

+
1

2

(
V V N
1E − AV N

1E + T V N
1E + T V N

2E

)
(x3, x2, x1, ξ,∆

2) = 0. (B18)

The validity of this and all subsequent isospin identities for V N TDAs within the u-channel

nucleon exchange model turns out to be the consequence of the familiar isospin identity for
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the leading twist nucleon DAs

2T p(y1, y2, y3) = (V p −Ap)(y1, y3, y2)− (V p − Ap)(y2, y3, y1). (B19)
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H. Stüben and A. W. Thomas et al., “Determination of the strange nucleon form factors,”

arXiv:1403.6537 [hep-lat].

[21] J. P. Lansberg, B. Pire and L. Szymanowski, Nucl. Phys. A 782, 16 (2007) [hep-ph/0607130].

[22] B. Pire, K. Semenov-Tian-Shansky and L. Szymanowski, Phys. Rev. D 82, 094030 (2010)

[arXiv:1008.0721 [hep-ph]].

[23] V. L. Chernyak and I. R. Zhitnitsky, Nucl. Phys. B 246, 52 (1984).

[24] P. Kroll, M. Schurmann, P. A. M. Guichon, Nucl. Phys. A598, 435-461 (1996). [hep-

ph/9507298].

[25] G. Huber, private communication.

[26] N. G. Stefanis, Eur. Phys. J. direct C 7, 1 (1999).

[27] G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157 (1980).

[28] J. Bolz and P. Kroll, Z. Phys. A 356, 327 (1996) [hep-ph/9603289].

[29] V. M. Braun, A. Lenz and M. Wittmann, Phys. Rev. D 73, 094019 (2006) [hep-ph/0604050].

[30] A. Lenz, M. Gockeler, T. Kaltenbrunner and N. Warkentin, Phys. Rev. D 79, 093007 (2009)

[arXiv:0903.1723 [hep-ph]].

[31] V. M. Braun, S. Collins, B. Glässle, M. Göckeler, A. Schäfer, R. W. Schiel, W. Söldner and
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