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Quantum–mechanical picture of peripheral chiral dynamics
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The nucleon’s peripheral transverse charge and magnetization densities are computed in chiral
effective field theory. The densities are represented in first–quantized form, as overlap integrals of
chiral light–front wave functions describing the transition of the nucleon to soft pion–nucleon inter-
mediate states. The orbital motion of the pion causes a large left–right asymmetry in a transversely
polarized nucleon. The effect attests to the relativistic nature of chiral dynamics [pion momenta
k = O(Mπ)] and could be observed in form factor measurements at low momentum transfer.
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The long–distance behavior of strong interactions is
governed by the spontaneous breaking of chiral symme-
try in the microscopic theory of Quantum Chromody-
namics. The associated Goldstone bosons — the pions —
are almost massless on the hadronic scale, couple weakly
to other hadrons (proportional to their momentum), and
mediate long–distance interactions. The resulting “chiral
dynamics” can be studied systematically using methods
of effective field theory (EFT) [1, 2] and explains nu-
merous phenomena in low–energy pion–pion and pion–
nucleon scattering, the nucleon–nucleon interaction at
large distances, and electroweak interactions of hadrons.

Chiral dynamics represents an essentially relativistic
dynamical system, as the pion 4–momenta in typical pro-
cesses are of the order of the pion mass, k = O(Mπ)
[1], and the number of particles changes due to quantum
fluctuations. Chiral EFT is therefore usually formulated
and solved as a second–quantized field theory. While
this allows one to calculate most observables of interest,
for many purposes it would be desirable to have a first–
quantized, particle–based formulation of the dynamics.
It would make it possible to follow the space–time evolu-
tion of chiral processes and gain a more intuitive under-
standing of their effects. It would introduce the concept
of a wave function and its densities and help quantify the
spatial structure of hadrons, the orbital motion of pions,
and polarization effects.

The light–front (LF) formulation of relativistic dynam-
ics [3–5] makes it possible to construct a consistent first–
quantized description of essentially relativistic systems.
In this framework one follows the evolution of the system
in LF time x+ = x0 + x3 ≡ t+ z. The wave functions at
fixed x+ are invariant under Lorentz boosts in the lon-
gitudinal (z−) direction, so that their particle content
and densities are frame–independent and have objective
meaning — in contrast to the equal–time wave function,
where they are frame–dependent. Transverse boosts (in
the x, y–plane) are kinematical and preserve the particle
number. Orbital motion and spin are naturally expressed
and lead to a description in close correspondence to non-

relativistic quantum mechanics [5].
In this work we use chiral EFT in the LF formulation to

compute the long–distance contributions to the nucleon’s
electromagnetic current matrix element and explain their
properties. The form factors are expressed in terms of the
transverse densities of charge and magnetization at fixed
LF time [6–9]. We calculate the isovector densities at
peripheral transverse distances b = O(M−1

π ) using chi-
ral EFT in the leading–order (LO) approximation. We
represent the densities in first–quantized form, as over-
lap integrals of chiral LF wave functions describing the
transition of the nucleon to soft pion–nucleon interme-
diate states. The new representation leads to a simple
quantum–mechanical picture, according to which the or-
bital motion of the soft pion causes a left-right asymme-
try of the “plus” current density in a transversely polar-
ized nucleon [8]. The effect is sizable and attests to the
essentially relativistic nature of chiral dynamics. Details
will be presented elsewhere [10].
The transition matrix element of the electromagnetic

current between nucleon states with 4–momenta p1 and
p2 is parametrized by the Dirac and Pauli form factors,
F1(t) and F2(t), which are functions of the invariant mo-
mentum transfer t ≡ ∆2 = (p2−p1)

2 (we follow the nota-
tion of Ref. [11]). In a frame where the momentum trans-
fer is transverse, ∆T ≡ (∆x,∆y) 6= 0, ∆0 = ∆z = 0, the
form factors are represented as a Fourier integral over a
transverse coordinate b ≡ (bx, by) [7, 9]

F1,2(t = −∆
2
T ) =

∫
d2b ei∆T ·b ρ1,2(b). (1)

The functions ρ1,2(b ≡ |b|) describe the transverse spatial
distribution of charge and magnetization in the nucleon
at fixed LF time. Specifically, in a state where the nu-
cleon is localized in transverse space at the origin, and
spin–polarized in the y–direction, the expectation value
of the current J+ ≡ J0 + J3 at LF time x+ = 0 and
transverse position xT = b is

〈J+(b)〉loc = (...)[ρ1(b) + (2Sy) cosφ ρ̃2(b)], (2)
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FIG. 1. Interpretation of the transverse densities in a nucleon
state polarized in the y–direction, Eq. (2).

ρ̃2(b) ≡
∂

∂b

[
ρ2(b)

2MN

]
, (3)

where (...) hides a trivial factor arising from the normal-
ization of states, cosφ ≡ bx/b, and Sy = ±1/2 is the
y–spin projection in the nucleon rest frame (see Fig. 1)
[7, 11]. Thus ρ1(b) describes the spin–independent (left–
right symmetric) and cosφ ρ̃2(b) the spin–dependent
(left–right antisymmetric) plus current in the y–polarized
nucleon. Choosing Sy = +1/2 and looking at two oppo-
site points on the x–axis, b = ∓bex, one has

〈J+(∓bex)〉loc = (...) [ρ1(b) ∓ ρ̃2(b)]

≡ (...) ρleft/right(b), (4)

which shows that ρ1(b) and ρ̃2(b) can be determined
directly as the left–right symmetric and antisymmetric
parts of the plus current on the x–axis.
At peripheral distances b = O(M−1

π ) the transverse
densities are governed by chiral dynamics and can be
computed from first principles using chiral EFT [11, 12].
The densities can be obtained from the relativistic chi-
ral EFT results for the form factors [13–15]. Periph-
eral contributions arise from the chiral processes in which
the current couples to the nucleon through two–pion ex-
change, i.e., contributions to the two–pion cut of the
isovector form factors at t > 4M2

π . At LO these are
given by the Feynman diagrams of Fig. 2a, where the ver-
tices are those of the relativistic chiral Lagrangian [16].
The first diagram contains a term in which the pole of
the intermediate nucleon propagator is canceled by the
numerator; this term is of the same form as the con-
tact term from the second diagram and can be combined
with it. Effectively this amounts to replacing the πNN
vertices in the first diagram by the pseudoscalar vertex
MNgAγ5/Fπ, and changing the ππNN contact coupling
in the second as 1/F 2

π → (1− g2A)/F
2
π [11, 12]. With this

rearrangement the first Feynman diagram is given en-
tirely by the nucleon pole contribution. It can therefore
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FIG. 2. (a) Feynman diagrams of LO chiral EFT processes
contributing to the peripheral transverse densities (two–pion
cut of the form factors). Indicated below are the effective
vertices obtained after isolating the nucleon pole term of the
first diagram. (b) Chiral LF wave function of the nucleon.

be represented as a LF time–ordered process in which the
initial nucleon makes a transition to a soft pion–nucleon
intermediate state and back [10]. The transition is de-
scribed by the chiral LF wave function (Fig. 2b)

Ψ(y,kT ; pol) ≡
Γ(y,kT ; pol)

∆M2(y,kT )
, (5)

where y = k+/p+1 is the LF plus momentum fraction of
the pion, kT its transverse momentum relative to the ini-
tial nucleon with p1T = 0, and “pol” denotes generic spin
quantum numbers characterizing the initial and interme-
diate nucleon. In the numerator Γ is the on-shell pseu-
doscalar πNN vertex between the initial nucleon and the
intermediate one with LF momentum (1−y)p+1 and −kT .
In the denominator ∆M2 denotes the invariant mass dif-
ference between the initial and intermediate state,

∆M2(y,kT ) ≡ [k2
T +M2

T (y)]/[y(1− y)], (6)

M2
T (y) ≡ (1− y)M2

π + y2M2
N , (7)

which is proportional to the LF energy denominator of
the transition [5]. The wave function for a state mov-
ing with overall transverse momentum p1T 6= 0 is ob-
tained by a transverse boost, and analogous formulas de-
scribe the transition back to the final state with p2T .
The chiral wave functions refer to the parametric regime
|kT | = O(Mπ) and y = O(Mπ/MN ), where the pion is
soft and couples weakly to the nucleon, and are used in
this context only. The coordinate–space wave function is

Φ(y, rT , pol) ≡
∫

d2kT
(2π)2

eikT ·rT Ψ(y,kT ; pol), (8)

where rT is the transverse separation of the pion–nucleon
system in the intermediate state and |rT | = O(M−1

π ).
The peripheral transverse densities can be expressed as

overlap integrals of the chiral LF wave functions of the
initial and final nucleon and an effective contact term
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[10]. A particularly simple form is obtained when the
nucleon spin states in the wave function are quantized
in the transverse y–direction. Transversely polarized LF
spinors are constructed by preparing a transverse spinor
in the nucleon rest frame and performing a longitudinal
and a transverse boost to get to the desired LF momen-
tum [5]. We denote the LF wave function Eq. (8) definied
with such transversely polarized nucleon spin states by

Φtr(y, rT ; τ, τ1), (9)

where τ1 and τ are the y–spin quantum numbers of the
initial and the intermediate nucleon states; the complex
conjugate function Φ∗

tr(y, rT ; τ, τ2) describes the transi-
tion back to the final state with y–spin τ2. At the special
points b = ∓bex [cf. Eq. (4)] only the transverse spin–flip
wave function (τ1 = τ2 = +1/2, τ = −1/2) contributes to
the current matrix element; the spin–nonflip wave func-
tion (τ = +1/2) vanishes on the transverse x–axis. We
obtain the isovector densities as [ρV ≡ (ρp − ρn)/2]

ρVleft(b)

ρVright(b)

}
=

∫ 1

0

dy
|Φtr(y,∓rTex;− 1

2 ,
1
2 )|2

2πy(1− y)3

[rT = b/(1− y)]. (10)

The explicit expressions for the spin–flip wave function
at large separations rT ≫ M−1

T are [cf. Eq. (7)]

Φtr(y,∓rTex;− 1
2 ,

1
2 )

=
gAMN y

√
1− y

2
√
2πFπ

[−yMN ∓MT (y)]
e−MT (y)rT

√
MT (y)rT

; (11)

exact expression are given in Ref. [10]. The charge and
magnetization densities are then obtained as

ρV1 (b)

ρ̃V2 (b)

}
=

1

2
[±ρVleft(b) + ρVright(b)]. (12)

The effective contact term in Fig. 2 describes the in-
stantaneous contributions to the current in LF time (zero
modes) and has to be added to Eq. (10). The coupling
∝ (1 − g2A) shows that this term reflects the nucleon’s
internal structure due to non-chiral intermediate states
[10, 11]. Its contribution to the density is left–right sym-
metric and amounts to <10% of ρV1 (b) at b > 1M−1

π .
The peripheral densities are thus practically determined
by the wave function overlap Eq. (10).
The LF representation Eq. (10) (including the con-

tact term) is exactly equivalent to the result of the rel-
ativistically invariant EFT calculation [11] and embod-
ies the entire chiral structure of the peripheral densities
at LO. It reveals several interesting properties: (a) The
left and right densities are of the same parametric order
in the heavy–baryon limit, ρVleft(b)/ρ

V
right(b) = O(1) for

Mπ/MN → 0, because the integral in Eq. (10) is dom-
inated by pion momentum fractions y = O(Mπ/MN).
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FIG. 3. Left and right peripheral transverse densities in LO
chiral EFT, as given by Eq. (10) and the contact term. The
plot shows the densities after extraction of the exponential
factor exp(−2Mπb). The transverse distance b and the densi-
ties are given in units of the pion mass.

(b) The left and right densities in Eq. (10) are individu-
ally positive, ρVleft/right(b) > 0. The charge and magneti-

zation densities Eq. (12) therefore obey an inequality,

|ρ̃V2 (b)| < ρV1 (b), (13)

as was observed numerically in Ref. [11]. (c) The left-
right asymmetry of the densities produced by chiral dy-
namics is numerically large (see Fig. 3). The ratio
ρVleft(b)/ρ

V
right(b) is ∼10 at b = 1M−1

π and decreases slowly
at larger distances. As a result the charge and magneti-
zation densities Eq. (12) are almost equal and opposite,

ρ̃V2 (b) ≈ −ρV1 (b), (14)

and the inequality Eq. (13) is almost saturated.
Our findings can be summarized in a simple quantum–

mechanical picture of the peripheral transverse densities
in chiral EFT (see Fig. 4), inspired by the general ar-
guments of Ref. [8]. Consider a physical proton with
y–spin projection +1/2 in the rest frame. In the inter-
action picture we may think of this system as a bare nu-
cleon that undergoes transitions to multiple pion–nucleon
states through the chiral EFT interactions. In LO the
peripheral left/right densities (at the points b = ∓bex)
arise from the single π+n intermediate state, in which
the neutron has y–spin −1/2 and the pion is in a state
with orbital angular momentum L = 1 and y–projection
Ly = +1. Because of the orbital motion the pion on
the left moves toward the observer and has net posi-
tive z–momentum kz > 0, while the pion on the right
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FIG. 4. Quantum–mechanical picture of chiral dynamics in
the peripheral transverse densities (explanation in text).

moves away and has kz < 0. The plus current carried
by a free charged pion is 〈π+(k)|J+|π+(k)〉 = 2k+ =
2(
√
|k|2 +M2

π + kz). The observer thus sees a larger
plus current on the left than on the right, resulting in a
left–right asymmetry. If the motion of the pion were non-
relativistic, |k| ≪ Mπ the asymmetry would be small,
ρleft/ρright = 1 + O(|k|/Mπ). That the asymmetry ob-
tained in chiral EFT is large therefore directly attests to
relativistic motion of the pion, |k| = O(Mπ).

The intuitive arguments presented here assume rota-
tional symmetry around the y–axis, which is not present
in the LF formulation. The explicit expressions Eqs. (11)
and (12) show, however, that all the described features
are realized in the LF formulation as well, if the nucleon
transverse spin states are defined as specified above.

In sum, the LF formulation of chiral EFT provides a
concise representation of the peripheral transverse den-
sities, which reveals new properties (positivity, inequal-
ity) and permits a simple mechanical interpretation. The
large left–right asymmetry is rooted in the spin struc-
ture of the pion–nucleon coupling and the essentially rel-
ativistic motion of pions and represents a striking chiral
effect. It could be observed by extracting the periph-
eral transverse densities from precise measurements of
the nucleon’s Dirac and Pauli form factors at low mo-
mentum transfer, using dispersion fits that respect the
analytic properties [17]; see Ref. [18] for details. Similar
chiral left–right asymmetries may be observed in high-
energy proton–proton collisions, by selecting events in
which the scattering takes place on a peripheral pion;
such processes would permit much more direct tests of
the effect described here.

The LF wave function representation of peripheral
transverse densities can be extended to include interme-
diate ∆ isobars and implement the proper scaling behav-

ior in the large–Nc limit of QCD [11, 12]. It can also be
used to compute the peripheral densities of matter and
angular momentum (describing the form form factors of
the energy–momentum tensor) and develop a mechanical
representation of these structures. It can be applied fur-
ther to the nucleon’s peripheral parton densities (gener-
alized parton distributions) [19]. The LF representation
has also been employed to study aspects of chiral nucleon
structure (self–energies, electromagnetic couplings) with-
out restriction to peripheral distances [20].
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