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Abstract

We propose a new mechanism for generating both luminous and dark matter during cosmic
inflation. According to this mechanism, ordinary and dark matter carry common charge which
is associated with an anomalous U(1)X group. Anomaly terms source CP and U(1)X charge
violating processes during inflation, producing corresponding non-zero Chern-Simons numbers
which are subsequently reprocessed into baryon and dark matter densities. The general frame-
work developed is then applied to two possible extensions of the Standard Model with anomalous
gauged B and B − L, each with an additional dark matter candidate.
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1 Introduction

Compelling evidence for cosmic inflation [1] has been accumulated in a number of astrophysical
observations [2, 3]. Inflation not only solves several problems of the standard Big Bang the-
ory, but provides an elegant mechanism for generation of primordial inhomogeneities through
the quantum fluctuations of an inflaton field [4]. These spatial irregularities ultimately led
to the formation of galaxies and are imprinted in the temperature anisotropies of the cosmic
microwave background radiation. It has been suggested that inflation may play an even more
prominent role by also generating the observed matter-antimatter asymmetry in the universe
[5, 6]. Namely, in [5] we argued that a successful baryogenesis scenario can be realised during
inflation within models containing anomalous gauge symmetries [7]. According to this mech-
anism the anomaly term acts as a CP and baryon number violating source for production of
non-zero Chern-Simons number carried by the electroweak gauge boson, which subsequently
generates non-zero baryon number via the anomaly.

In this paper we apply the mechanism proposed in [5] to the simultaneous generation of
luminous and dark matter. The idea of a common origin of luminous and dark matter traces
back to 90’s [8] and has received a renewed interest in recent years (see a review in [9] and
references therein). The major motivation to this hypothesis comes from the observation that
the present-day mass density of dark matter is about a factor of five higher than the density of
visible matter [2],

ρDM ≃ 5.5ρB . (1)

The similarity in these observed densities perhaps indicates towards a strong connection between
the physics and cosmological evolution of visible and dark matter. The present-day density, ρB,
of visible matter is believed to be due to the tiny excess of baryons over antibaryons generated
in the early universe, which is quantified by the baryon asymmetry parameter:

ηB =
nb − nb̄

s
≃ 8.5 · 10−11 , (2)

where nb (nb̄) is the baryon (antibaryon) number density and s is the entropy density. Hence,
within this picture a similar asymmetry is expected to be generated among dark matter particles
and antiparticles. In our model, visible and dark matter are connected by a common anomalous
gauged U(1)X , which we introduce in addition to the gauge group of the Standard Model. Then
simultaneous generation of luminous and dark matter proceeds during inflation as suggested in
Ref. [5]. For other recent works relating the ordinary matter-antimatter asymmetry with the
asymmetry in the dark sector within gauged U(1)X extensions of the Standard Model see [10].

The rest of the paper is structured as follows. In section 2 we describe a generalised form
of the model and the two specific examples we will consider. Section 3 considers the dynamics
of the anomalous gauge field during the inflationary epoch. In section 4 we calculate asymme-
tries generated during inflation in the visible and dark sectors of the theory, and discuss their
subsequent evolution in section 5. The last section is reserved for conclusions. An appendix
has been included to provide further details on our calculations.
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2 Models with an anomalous U(1)X

We consider an extension of the Standard Model that is based on SU(3)×SU(2)×U(1)Y ×U(1)X
gauge group and contains an additional fermion/s that shall act as a dark matter candidate.
The introduction of a scalar to play the role of the inflaton is also required, but the detailed
dynamics of inflation is not important for our analysis. The new U(1)X gauge symmetry is
assumed to be anomalous, and hence the corresponding gauge boson will be necessarily massive
with gauge invariance realised non-linearly. The longitudinal degree of freedom of this U(1)X
gauge field is then described by a scalar field θ(x), which allows anomaly cancellation through
the introduction of appropriate counter terms [7].1 In the presence of a cubic anomaly U(1)3X ,
the additional Lagrangian terms important to our analysis are given below,

1√−gLX =− 1

4
gµαgνβXµνXαβ +

1

2
f 2
Xg

µν (gXXµ − ∂µθ) (gXXν − ∂νθ)

−A2
g2X
16π2

θ(x)XµνX̃
µν , (3)

where Xµν denotes the field strength of the U(1)X gauge boson with corresponding coupling
constant gX = mX/fX , fX is a parameter that defines the mass of the U(1)X boson (mX),
and X̃µν = 1

2
√−g ǫ

µνρσXρσ is the dual field strength, in which ǫµνρσ is the Levi-Civita tensor.
We have omitted fermion interactions and the charged current jX terms. The final term in
Eq. (3) is responsible for maintaining gauge invariance of the full quantum theory description
under U(1)X transformations, and is reminiscent of the term for a massive gauge boson in the
Stuekelberg formalism [11]. In the proceeding analysis any associated gravitational anomaly is
ignored as it is considered to be negligible with respect to the other anomalous contributions.

In this paper we shall consider two applications of this general model for cogenesis. Namely,
we consider the extensions involving an anomalous gauged B−L and B. These models contain
a fermionic field(s) ψ, which carries a chiral charge under the anomalous gauge symmetry and
is sterile under the Standard Model gauge symmetry. The charges of each of the fermions under
these additional gauge symmetries are given in Table 1. The mass mψ is an extra parameter
which can be directly introduced within the non-linear realisation of the anomalous gauge
symmetry. Typically, such a mass is also generated radiatively within the low-energy effective
theory, reflecting a more conventional mechanism for mass generation within an ultraviolet
anomaly-free completion [12].

Case 1: U(1)B−L and a sterile fermion ψ

In the Standard Model an additional U(1)B−L gauge symmetry is anomalous unless three right
handed neutrinos are introduced. The associated anomalies are trace and cubic: A0(U(1)B−L) =
−3 and A1(U(1)

3
B−L) = −3. We introduce Nψ new right-handed (for definiteness) Weyl

fermions ψ, some of which act as dark matter candidates in our model. For simplicity we

1This theory can be viewed as a low energy limit of an anomaly-free theory, either within ordinary QFT or

string theory.
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Fermion Field SU(3) SU(2) U(1)Y Case 1 U(1)B−L Case 2 U(1)B

Qi
L =

(

u
d

)i

L

3 2 1/6 1/3 1/3

uiR 3 1 2/3 1/3 1/3
diR 3 1 −1/3 1/3 1/3

Li =

(

ν
e

)i

L

1 2 −1/2 −1 0

eiR 1 1 −1 −1 0
ψ 1 1 0 qψ qψ

Table 1: The representations of the Standard Model and dark fermion ψ in reference to the gauge

symmetries.

assume that they carry the same B − L charge qψ and interact only via exchange of the
B − L gauge boson. The addition of these states alters the B − L anomalies as follows:
A0 := A0(U(1)B−L) = −Nψqψ − 3 and A1 := A1(U(1)

3
B−L) = −Nψq

3
ψ − 3. In this case the

dark matter fermion does not introduce any new anomalies. We will ignore the gravitational
anomaly A0 in our analysis, but it should be noted that taking qψ = −3 or −1 and Nψ = 1 or
3, respectively, eliminates this gravitational anomaly leaving only the cubic anomaly non-zero.
Obviously, Nψ = 3, qψ = −1 removes all anomalies, so we are not interested in such charge
assignment in this paper.

The addition of the B − L gauge symmetry and dark matter candidate to the Standard
Model leads to a Lagrangian density of the same form given for the general case presented in
Eq. (3).

Case 2: U(1)B and a sterile baryon ψ

Gauging the baryon number symmetry of the Standard Model results in the inclusion of two
mixed anomalies involving the weak and hypercharge gauge groups: A2(SU(2)

2×U(1)B) = 3/2
and A3(U(1)

2
Y × U(1)B) = −3/2. The addition of a new sterile state ψ leaves these mixed

anomalies unchanged, but introduces two new unmixed anomalies: A0 := A0(U(1)B) = −Nψqψ
and A1 := A1(U(1)

3
B) = −Nψq

3
ψ. Hence there are now four anomalies, each of which will

contribute to baryonic charge generation during the inflationary epoch, but only two of which
include generation of fermions in the dark matter sector (A0 and A1).

The presence of additional mixed anomalies means that extra anomaly cancelling terms are
required with respect to the gauged B − L case considered above, i.e.

1√−gLX =− 1

4
gµαgνβXµνXαβ +

1

2
f 2
Xg

µν (gXXµ − ∂µθ) (gXXν − ∂νθ)

−A1
g2Xθ(x)

16π2
XµνX̃

µν −A2
g21θ(x)

16π2
BµνB̃

µν −A3
g22θ(x)

16π2
W a
µνW̃

aµν (4)
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where Bµν and Wµν denote the hypercharge and weak field strengths respectively, with corre-
sponding coupling constants g1 and g2.

3 Dynamics of an anomalous gauge field during inflation

For a model to successfully produce a charge asymmetry in the early universe it must satisfy the
well known Sakharov conditions [13]. We will now discuss the framework of our new mechanism
for cogenesis and how it satisfies these criteria.

Firstly, we wish to describe the universe using the Robertson-Walker metric tensor, which
represents a homogeneous, isotropic and spatially flat cosmological spacetime. In conformal
coordinates the metric can be expressed as: gµν = a2(τ)ηµν . During inflation the scale factor
a(τ) is given by the following:

a(τ) = −1/Hinfτ , (5)

where Hinf is the expansion rate during inflation (Hinf
∼= const.) and τ ∈ [−∞, 0] is the

conformal time.
To allow analytical treatment, the analysis that follows requires certain simplifying assump-

tions. For the θ field we only consider a classical homogeneous background configuration,
θ(τ, ~x) = θ(τ), and ignore quantum fluctuations over it. We take gX ≪ 1 such that the θ(x)
and Xµ(x) fields essentially decouple from each other. This also implies that the U(1)X boson is
light relative to the scale fX , mX/fX ≪ 1, and hence we will not be interested in its dynamics
during inflation. With these assumptions the Lagrangian Eq. (4) becomes:

LX =− 1

4
ηµαηνβXµνXαβ +

1

2
a(τ)2ηµν (mXXµ − ∂µφ(τ)) (mXXν − ∂νφ(τ))

−A1
g2Xφ(τ)

32π2fX
ǫµναβXµνXαβ , (6)

where φ(τ) ≡ fXθ(τ). From this Lagrangian follows the equation of motion for φ(τ):

(

a2φ′)′ = 0 , (7)

where φ′ ≡ dφ/dτ and we have ignored any terms quadratic in Xµ. Solving for φ′(τ) we obtain:

φ′(τ) =
φ′
0

a2(τ)
, (8)

where φ′
0 is an integration constant associated with the ‘field velocity’ at the start of inflation,

which is defined at τ = τ0, where a(τ0) = 1. Substituting Eq. (8) into the linearized equation
of motion for the Xµ gauge field gives:

(

∂2τ − ~▽2
+

(

mX

Hinfτ

)2
)

X i + κXτ
2ǫijk∂jXk = 0 , (9)
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where

κX = |A1|
g2Xφ

′
0H

2
inf

4π2fX
. (10)

and the gauge X0 = ∂iXi = 0 has been chosen. The source of CP violation in our model is
apparent in Eq. (9) where the two terms have opposite P, and hence, CP transformations.

In the discussion that follows we treat the U(1)X gauge boson as a massless particle, as we
have assumed mX ≪ Hinf . To then quantize this model we promote the X gauge boson fields
to operators and assume that the boson has two possible circular polarisation states:

Xi =

∫

d3~k

(2π)3/2

∑

α

[

Gα(τ, k)ǫiαâαe
i~k·~x +G∗

α(τ, k)ǫ
∗
iαâ

†
αe

−i~k·~x
]

, (11)

where ~ǫ± denotes the two possible helicity states of the U(1)X gauge boson (~ǫ∗+ = ~ǫ−) and the

creation, â†α(
~k), and annihilation, âα(~k), operators satisfy the canonical commutation relations:

[

âα(~k), â
†
β(
~k′)
]

= δαβδ
3(~k − ~k′) . (12)

and
âaα(

~k)|0〉τ = 0 . (13)

where |0〉τ is an instantaneous vacuum state at time τ .
The mode functions in Eq. (11) are described by the following equations, from Eq. (9),

G′′
± +

(

k2 +
λ2

τ 2
∓ κXτ

2k

)

G± = 0 , (14)

where λ = mX
Hinf

, which is assumed to be small as stated above.

The equations for the mode functions G± given in Eq. (14) have the following solutions,

G+(τ, k) = 2
1+ν
2 e−z2τ

1

2
+ν

[

C1U

(

1 + ν

2
− Ωk

4
, 1 + ν, z

)

+ C2M

(

1 + ν

2
− Ωk

4
, 1 + ν, z

)]

(15)

and

G−(τ, k) = 2
1+ν
2 ezτ

1

2
+ν

[

C3U

(

1 + ν

2
− iΩk

4
, 1 + ν,

z

i

)

+ C4M

(

1 + ν

2
− iΩk

4
, 1 + ν,

z

i

)]

(16)

where z = k2τ2

Ωk
, Ωk =

(

k3

κX

)1/2

, ν = 1
2

√
1− 4λ2 ∼ 1

2
−λ2, U(a, b, z) is a confluent hypergeometric

function of the second kind, and M(a, b, z) is a confluent hypergeometric function of the first
kind (Kummer Function).

In the limit |τ | → 0 (or k2 + λ2

τ2
≫ κXτ

2k), CP-invariant wave modes are obtained. These
are described by,

Xi =

∫

d3~k

(2π)3/2

∑

α

[

Fα(τ, k)ǫiαb̂αe
i~k·~x + F ∗

α(τ, k)ǫ
∗
iαb̂

†
αe

−i~k·~x
]

, (17)
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where the wave mode functions F± are found to be,

F+(τ, k) =

√
πτ

2
H(2)
ν (kτ)e−i

π
2
( 1
2
+ν) and F−(τ, k) =

√
πτ

2
H(1)
ν (kτ)ei

π
2
( 1
2
+ν) (18)

By matching the modes in Eq. (15) and (16) to those in Eq. (18) and using the known
Wronskian normalisation we can determine the coefficients C1−4. For more details on this
calculation and the form of the coefficients see App. A.

We can now compare the birefringent and CP-invariant modes to derive the Bogoluibov
coefficients relating the two sets of creation and annihilation operators, {âaα, âa†α } and {b̂aα, b̂a†α },
in Eqs (11) and (17). The Bogoluibov transformations are defined by,

b̂aα(
~k) = ααa

a†
α (
~k) + β∗

αâ
a
α(
~k) (19)

b̂a†α (
~k) = α∗

αa
a
α(
~k) + βαâ

a†
α (
~k) (20)

In this scenario the relevant Bogoliubov coefficients are found to be:

α± = 1− 1

21−ν

(

1± iλ2

(kτ)1−2λ2

(

1− π(kτ)1−2λ2

2ν

)

∓ i21−ν(kτ)λ
2

√
k

e∓iπλ
2/2G′∗

±|κτ2
k
,k|τ |→0

)

(21)

β± =
e∓iπλ

2

21−ν

(

1∓ iλ2

(kτ)1−2λ2

(

1− π(kτ)1−2λ2

2ν

)

± i21−ν(kτ)λ
2

√
k

e±iπλ
2/2G′∗

∓|κτ2
k
,k|τ |→0

)

(22)

where we have considered the superhorizon modes (k|τ | ≈ 0).

4 Simultaneous generation of luminous and dark matter

during inflation

We can now calculate the general X charge density generated during inflation. It is known that
the anomalous non-conservation of the X charge current is given by,

∂µ
(√−gjµX

)

= A1
g2X
32π2

ǫµνρσXµνXρσ ≡ A1
g2X
8π2

∂µ
(√−gKµ

)

, (23)

where Kµ = 1
2
√−g ǫ

µνρσXνρXσ is a topological current. This implies that the net X charge

density nX = nx − nx̄ ≡ a−1(τ)〈0|j0X |0〉 is related to the Chern-Simons number density of the
U(1)X gauge boson by the following equation,

nX = |A1|
g2X
8π2

a(τend)nCS , (24)
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where τ = τend is the conformal time at the end of inflation, and nX(τ0) = nCS(τ0) = 0 at the
start of inflation. The form of the Chern-Simons number is given below, in which we wish to
consider only large scale superhorizon modes (k|τ | ≃ 0).

nCS =
1

a4(τend)
ǫijk lim

k|τ |→0
〈0|Xi∂jXk|0〉

≃ 1

4π2a4(τend)

∫ Λ

µ

kdk
[

∣

∣G′
+

∣

∣

2
κτ2

k
,k|τ |→0

−
∣

∣G′
−
∣

∣

2
κτ2

k
,k|τ |→0

]

−O(λ2) ,

(25)

where we ignore small terms with quadratic or higher orders of λ. Note that the upper limit
in the integral in Eq. (25) simply cuts out sub-horizon modes for which our approximate
calculations are not applicable. The ultraviolet modes do not give significant contribution
anyway, since they act as CP-invariant planewaves which expectantly leads to a cancellation
between the positive and negative frequency modes. The dominant contribution to nCS is given
by infrared modes, and in fact the integral is divergent. This divergence is a reminiscent of
the well-known infrared divergence of de Sitter-invariant two-point functions, which possibly
signals that pure de Sitter approximation of inflationary phase becomes inadequate in our case.
There is no commonly accepted prescription for regularization of this type of divergences in the
literature and we simply introduce an infrared cut-off µ.

We assume that the only non-negligible source of entropy density is reheating after inflation,
for which the entropy density produced is: s ≃ 2π2

45
g∗T

3
rh, where Trh is the associated reheating

temperature and g∗(Trh) ∼ 100. Upon taking a first order expansion around Ωk = 0 in Eq.
(25) we obtain the following expression for the X charge asymmetry parameter generated by
the unmixed anomaly:

ηX =
nX
s

≈ |A1|
30g2X
π10g∗

Γ

(

3

4

)4

e−3Ne

(

κX
µT 2

rh

)
3

2

≈ 7 · 10−11|A1|5/2
( mX

1012 GeV

)5
(

φ′
0

M2
p

)
3

2
(

H

1014 GeV

)(

Trh
1016 GeV

)−2

×
(

fX
1014 GeV

)− 13

2 ( µ

10−42 GeV

)− 3

2

,

(26)

where Ne denotes the minimum number of e-folds required to solve the horizon and flatness
problems, and includes the additional dilution that occurs if the reheating period is not instan-
taneous. The number of e-folds that contribute to the dilution of nX is,

Ne = Ninf +Nrh ≃ 27.5 +
2

3
ln

(

HinfMp

(1 GeV)2

)

− 1

3
ln

(

Trh
1 GeV

)

(27)

where

Ninf ≃ 34 + ln

(

Trh
100 GeV

)

and Nrh ≃ 2

3
ln

(

HinfMp

T 2
rh

)

− 1.89 (28)
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In Eq. (26) the parameter κX is taken to be large in order to increase the asymmetry. Also,
the infrared cut-off µ must be sufficiently small. Here we assume minimal box cut-off [14],
µ = H0 ≈ 10−42 GeV, which accounts for all the modes which are within the present Hubble
horizon.

A similar relation to Eq. (26) can be derived for the mixed anomalies. In particular, these
can be present in the case of gauged baryon number (U(1)B), as considered in [5]. In the case
of electroweak and hypercharge mixed anomalies the extra contribution to the total X charge
asymmetry is,

ηmixed
X =

nmixed
X

s
≈ (|A2|5/2g51 + 3|A3|5/2g52)

15

4π13g∗
Γ

(

3

4

)4

e−3Ne

(

κ

µT 2
rh

)
3

2

. (29)

where κ =
φ′
0
H2

inf

fX
, and we have assumed that they have the same IR cut-off µ. The choice of IR

cut-off will be discussed further in the next section.
In the derivation of the asymmetry parameters above, Eq. (26) and (29), we have assumed

that the only non-negligible contribution to the generated charge is produced during the infla-
tionary epoch. The conditions for the mechanism considered here may still be active during
the radiation epoch, but the overall effect will be negligible as the push out of equilibrium is
considered to be too small in later epochs; hence the total X charge is assumed to be conserved
once inflation ends. One exception to this is the possibility of sphaleron redistribution which
will violate both B and L equally. The mutual dilution of the charge and the entropy densities,
after reheating, ensures there is no further dilution of the asymmetry parameter. No additional
washout processes have been considered in the above derivation.

In the following section we utilise the known properties of sphaleron transitions to determine
the distribution of X charges amongst fermionic species after the electroweak phase transition,
if the reheating temperature is greater than the critical temperature (Tc ∼ 100). How the
sphaleron processes redistribute the X charge is dependent on the specific model being con-
sidered: the type of charge gauged, the associated anomalies, and the properties of the new
fermion/s introduced.

5 Computing ρDM/ρB and ηB

Now that the X charge asymmetry parameter has been calculated we can derive the predicted
dark to luminous matter mass density ratio and the baryon asymmetry parameter. The gener-
ated X charge density can be decomposed into Standard Model and dark matter components
as follows,

nX = nSMX + nD (30)

The Standard Model component will have an associated B − L charge which will be repro-
cessed by the action of sphaleron transitions, at the electroweak phase transition (Tc ∼ 100
GeV), into a known fermionic distribution. The dark matter candidate considered here will be
unaffected by the sphaleron transitions as it is a singlet under the electroweak interactions, but
this does not have to be the case.

8



After the electroweak phase transition the B −L charge will be distributed between B and
L charges as follows: (B−L)SM = 79

28
B and (B−L)SM = −79

51
L. We require that the resultant

Standard Model baryon number asymmetry is consistent with that which is observed Eq. (2).
From this we obtain the following relation,

ηB = ǫ(ηmixed−SM
X + ηunmixed−SM

X ) (31)

where ǫ is a step function defined by:

ǫ := ǫ(Trh) =

{

28
79

Trh > Tc

1 Trh < Tc
(32)

Henceforth we will assume that the mixed anomalies only contribute to the standard model
sector ηmixed

X = ηmixed−SM
X , as our dark matter candidate is sterile under the standard model

gauge groups; although this does not have to be the case.
It is assumed that the X charge density generated is initially uniformly distributed between

each of the applicable fermion degrees of freedom:

ηSMX = ηmixed
X +

∑

iN
i
SM |qiSM |

∑

iN
i
SM |qiSM |+∑iN

i
D|qiD|

ηunmixed
X (33)

ηD =

∑

iN
i
D|qiD|

∑

iN
i
SM |qiSM |+

∑

iN
i
D|qiD|

ηunmixed
X (34)

where the index i corresponds to the particle species, Ni is the corresponding number of
degrees of freedom, and qi is the associated X charge. Therefore, the baryon asymmetry
parameter defined above is given by,

ηB = ǫ

(

ηmixed
X +

∑

iN
i
SM |qiSM |

∑

iN
i
SM |qiSM |+

∑

iN
i
D|qiD|

ηunmixed
X

)

(35)

The predicted dark matter to luminous matter mass density ratio is given by,

ρD
ρB

=
mψ

mB

qBηD
qψηB

=
ηD
qψηB

( mψ

1 GeV

)

(36)

where we have assumed mB = 1 GeV and qB = 1. Now to consider this framework in the two
scenarios introduced in Sec. 2: gauged B − L and gauged B number, each including a sterile
fermion charged under the given group.

Case 1: U(1)B−L and a sterile fermion

In this scenario we must sum over all the Standard model fermions,
∑

iN
i
SM |qiSM | = 21, as-

suming no RH neutrinos have been added. Only the unmixed cubic anomaly contributes to the

9



B − L charge generation. Using these facts and requiring that Eq. (35) is consistent with Eq.
(2) gives the following dark matter to luminous matter mass density ratio:

ρD
ρB

≈ 1

21ǫ

( mψ

1 GeV

)

⇒ mψ ≈ 116ǫ GeV (37)

where we have chosen Nψ = 1 and also require that Eq. (1) is satisfied.
It is found that the dark matter candidate ψ must have a mass mψ ≈ 41 GeV, or mψ ≈ 116

GeV; for Trh > Tc and Trh < Tc respectively. Interestingly, this ratio is found to be only
dependent the mass of the associated dark fermion, and independent of the B−L charge of the
dark matter candidate. Although it must be noted that this relation assumes the correct baryon
asymmetry parameter is generated, and hence the parameters of the model are constrained.

The required replication of the observed baryon asymmetry results in the following condition
on the model parameters,

ηB ≈ ǫ|A1|5/2
101

21 + |qψ|
1

π13g∗

m5
X

f 5
X

e−3Ne

(

κ

µT 2
rh

)
3

2

(38)

≈ 3.5× 10−18 GeV−1/2 ǫ
|A1|5/2
21 + |qψ|

m5
X

f 5
X

Hinf

T 2
rh

(

φ′
0

fX

)
3

2

(39)

It is found that this can satisfy Eq. (2) for a wide range of parameter values.

Case 2: U(1)B and a sterile baryon

If we now consider a gauged baryon number extension to the Standard Model we must sum over
all of the baryonic degrees of freedom,

∑

iN
i
SM |qiSM | = 12. In this scenario the contributions

of the mixed anomalies SU(2)2 ×U(1)B and U(1)2Y ×U(1)B must be included, which generate
a net charge only in the form of luminous matter. Hence we find that the dark matter to
luminous matter mass density ratio is given by,

ρD
ρB

=
1

ǫ

Nψ

12 +Nψ|qψ|
|A1|5/2

12|A1|5/2
Nψ |qψ|+12

m5
X

f5X
+ |A2|5/2g51 + 3|A3|5/2g52

m5
X

f 5
X

( mψ

1 GeV

)

(40)

≈ 1

ǫ

|qψ|15/2

12|qψ|15/2m
5
X

f5X
+ |qψ|+ 12

m5
X

f 5
X

( mψ

1 GeV

)

(41)

where mB = 1 GeV and qB = 1 have been set. In the second line we have taken g21 ≃ 4π
60
and

g22 ≃ 4π
29
, and used the anomaly values given in Sec. 2: A2 = 3/2 and A3 = −3/2. Upon

rearranging and requiring Eq. (1) and (2), we find the following expression for the mass of the
dark matter candidate,

mψ ≈ ǫ
f 5
X

m5
X

11(12|qψ|15/2m
5
X

f5X
+ |qψ|+ 12)

2|qψ|15/2
GeV (42)
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It is expected that the required dark matter mass would be greater than that found in
the previous case due to the additional contributions to the luminous sector from the mixed
anomalies. For example, if we let |qψ| = 1 and g2X = mX

fX
∼ 0.01 then mψ ≈ 2.5 × 106 GeV or

mψ ≈ 7.2 × 106 GeV, for Trh < Tc and Trh > Tc respectively. Once again in the derivations of
Eq. (41) and (42) we have assumed the satisfaction of Eq. (2).

The associated constraint imposed by the observed baryon asymmetry is given by

ηB ≈ ǫ
A

π13g∗
e−3Ne

(

κ

µT 2
rh

)
3

2

(43)

≈ 3× 10−19 GeV−1/2 ǫAHinf

T 2
rh

(

φ′
0

fX

)
3

2

(44)

where A =
(

12|qψ |15/2
|qψ|+12

m5
X

f5X
+ |A2|5/2g51 + 3|A3|5/2g52

)

.

Similarly to the previous case, this can be satisfied for a wide range of parameter values.
Although due to the dependence of mψ on both gX we will have extra constraints on the infla-
tionary expansion rate Hinf because we have assumed mψ ≪ Hinf throughout our derivations.

This approximately translates to requiring that g2X =
m2
X

f2X
& 10−5, for qψ = 1 and is relaxed for

larger charges.

6 Conclusion

In this paper we have investigated a model for simultaneous generation of luminous and dark
matter during the inflationary epoch through the introduction of an anomalous gauge interac-
tion and sterile fermion to the Standard Model. It has been found that this scenario for cogenesis
can be successfully reproduce observations for the two possible cases considered: gauged B and
gauged B − L charge. The general mechanism for cogenesis developed here could be applied
to more complex models involving other or extra anomalous gauge symmetries and additional
sterile/non-sterile fermionic states. It is possible that these additions could lead to a lessening
of the parameter constraints imposed by the observed matter-antimatter asymmetry through
extra contributions to the luminous matter generation. This could also alter the required mass
of the dark matter candidate. Further study of these possibilities and the associated collider
phenomenology is of interest.

Acknowledgment. This work was partially supported by the Australian Research Council.
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A Appendix: Further details of calculations

Matching the solutions G± (Eqs. (15) and (16)) to the CP-invariant solutions in Eq. (18) in
the limit |τ | → 0 allows the determination of the coefficients C1 and C3.

C1 =

√
πΓ(1+ν

2
− Ωk

4
)

2
1

2
(3−ν)

(

k

Ωk

)ν

ei
π
2
( 1
2
−ν) (45)

and

C3 =
Γ(1+ν

2
− iΩk

4
)

2
1

2
(3−ν)√π

(

k

Ωk

)ν

e−i
π
4 (46)

We then use the Wronskian normalisation W(G±, G
∗
±) = i to find C2 and C4.

C2 =
kν

2
1

2
(1+ν)

√
π
e−i

π
2
( 1
2
+ν) (47)

and

C4 =

√
πkνei

π
2
( 1
2
+ν)

2
1

2
(3−ν)Γ(1 + ν)

Γ
(

1+ν
2

+ iΩk
4

)

Γ
(

1−ν
2

+ iΩk
4

)Im

(

Γ
(

1+ν
2

+ iΩk
4

)

Γ
(

1−ν
2

+ iΩk
4

)

)−1(

1 + e
πΩk
4

|Γ(1+ν
2

− iΩk
4
)|2

π21−2νΩνk

)

(48)

In the calculation of these coefficients we utilised the following properties of Hypergeometric
functions [15]: In the limit z → 0,

M(a, b, z) = 1 +O(z) (49)

U(a, b, z) =
Γ(b− 1)

Γ(a)
z1−b +

Γ(1− b)

Γ(a− b+ 1)
O(z2−b). (50)

and the known Wronskian relations,

W{M(a, b, z), U(a, b, z)} = −z−be−zΓ(a)Γ(b) (51)

W{M(a, b, z), ezU(b− a, b, e±iπz)} = e∓biπz−bezΓ(b− a)Γ(b) (52)

W{U(a, b, z), ezU(b− a, b, e±iπz)} = e∓(a−b)iπz−bez (53)
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