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Abstract

Relativistic fermions can be of three important varieties: Dirac, Majorana and Weyl.

A Weyl semimetal is a novel quantum solid whose electrons behave like emergent mass-

less fermions with definite handedness or chirality known as the Weyl fermion which

is distinct from Dirac or Majorana fermions. Among all the unusual phenomena that

are enabled by such quantum solids, the chiral anomaly is the most striking one be-

cause it apparently violates the conservation of charge for the particle number with

a given chirality. Here, for the first time, we report experimental studies of the first

Weyl semimetal TaAs which reveals the chiral anomaly in its magnetotransport. Un-

like most metals that become more insulating or resistive under an external magnetic

field, we observe that our high mobility TaAs samples, quite remarkably, become more

conductive as a magnetic field is applied along the direction of the current for certain

ranges of the field and its magnetoconductance disperses quadratically which is nearly

independent of temperatures below 20 K, but depends strongly on the relative angles

between the electric and magnetic fields. These systematic results, corroborated by

additional observations and our theoretical calculations here, collectively suggest the

existence of chiral anomaly or the non-conservation of charge for a given chiral channel

in TaAs analogous to anomalies in quantum field theory. Our results not only provide

the first transport signature for the Weyl fermions in nature, but also paves the way

for utilizing chiral fermions in applications such as the ‘valleytronic’ devices which is

a long-sought platform for the next generation technology frontier.
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The laws of physics rest crucially on symmetries and the associated conservation laws.

Over the last century, physicists have repeatedly observed violations of conservation laws in

particle physics, each time leading to revolutions in our understanding of the basic laws of

nature. One of the most striking phenomena of this type is the breaking of a conservation

law of classical physics by quantum mechanical effects, a so-called anomaly [1]. Perhaps

the most well-known example is the so-called chiral anomaly associated with Weyl fermions

[2–5]. A Weyl fermion is a massless fermion that carries a definite chiral charge. Due to the

chiral anomaly, the chiral charge of Weyl fermions is not conserved by quantum fluctuations.

Realizing a condensed matter analog of the chiral anomaly not only adds another remarkable

example (analogous to Dirac and Majorana fermion) to the correspondence between particle

and condensed-matter physics, but also may lead to new phenomena and devices in solid

state materials that are uniquely enabled by such an exotic quantum anomaly. In order

to realize the chiral anomaly, that is to say, the violation of the conservation of chiral

current, one needs to have a solid state system whose low energy excitations consists of

Weyl fermions and to separate the Weyl fermions of opposite chirality. A straightforward

route is to separate them in real space. This was proposed in a 4D quantum Hall effect

[6], where the “surface” states of this 4D objects are Weyl fermions that have the opposite

chiralities on the opposite surfaces (Fig. 1a). In this case, the Hall current manifests the

chiral anomaly because it transfers charges from one surface to the other, apparently thus

violating the charge conservation on either surface. However, due to the absence of an

experimental access to a 4D space, this is impossible to realize.

On the other hand, recent theoretical advances in topological physics has predicted that

Weyl fermions can arise in the bulk of certain novel semimetals with nontrivial topology [7–

13]. A Weyl semimetal is a bulk crystal whose low energy excitations satisfy the Weyl equa-

tion. Therefore, the conduction and valence bands touch at discrete points, the Weyl nodes,

with a linear dispersion relation in all three momentum space directions moving away from

the Weyl node. Now, although in this case one cannot separate the Weyl fermions with op-

posite chiralities in real space, however the nontrivial topological nature of a Weyl semimetal

guarantees that pairs of Weyl fermions with the opposite chiralities are separated in momen-

tum space (Fig. 1b). Therefore, one can imagine that electrons can be pumped from one

Weyl cone to another one with the opposite chirality that is separated in momentum space,

in the presence of parallel magnetic and electric fields (Figs. 1b and 1c), which violates the
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conservation of the particle number with a given chirality [4, 14, 15]. This gives rise to a

novel analog of the chiral anomaly in a condensed matter system. Apart from this elegant

analogy and correspondence between condensed matter and high energy physics, which by

itself is of great interest, the chiral anomaly also serves as a crucial transport signature for

Weyl fermions in a Weyl semimetal phase. Furthermore, theories have recently predicted

its potential applications in ‘valleytronic’ devices [16]. Despite these, the chiral anomaly

in condensed matter bulk solids has not been observed because a material realization of

the Weyl semimetal phase remained elusive for many many years. Very recently, photoe-

mission (ARPES) experiments have provided strong evidence for the first Weyl semimetal

realization in an inversion breaking, stoichiometric solid, TaAs [17–20]. Here, we measure

the condensed matter chiral anomaly in the Weyl semimetal TaAs by directly observing

its key signature in the form of a quadratic positive large magnetoresistance. We further

show that such a positive magnetoconductance has a very weak temperature dependence

below 20 K, but depends strongly on the relative angle between the electrical and magnetic

fields. These systematic results, corroborated by our other observations and theoretical

calculations, collectively demonstrate the chiral anomaly in the Weyl semimetal compound

TaAs.

We start by studying the surface electronic structure of the TaAs samples that are used in

our electrical transport experiments by angle-resolved photoemission spectroscopy (ARPES),

because a Weyl semimetal is a gapless topological state of matter described by a unique

bulk-boundary correspondence and because ARPES is the most natural and direct probe of

surface state band structure, Fermi surface, and topological properties. Figure 1d shows our

ARPES measured Fermi surface of the (001) surface. Specifically, in the vicinity of each X̄

point, we observe a bow-tie shaped surface state; Near each midpoint between Γ̄ and X̄ or

Γ̄ and Ȳ , we observe a pair of open curves, Fermi arcs, that are terminated into two points,

which are the Weyl nodes. These observations are in qualitatively consistent with our first-

principles calculation shown in Fig. 1e. The observation of Fermi arc surface states and the

agreement with the theoretical calculation provide strong evidence showing that the TaAs

samples used in our transport experiments are indeed Weyl semimetals. Since transport

mostly probes the bulk electronic states, we need to understand the electronic structure

of the bulk Weyl cones. In Fig. 1f we show distribution of the Weyl nodes throughout

the first bulk Brillouin zone (BZ). There are in total 24 Weyl nodes and the sign of their
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chiral charges are color coded in black and white. Moreover, these 24 Weyl nodes can be

characterized into two groups. Namely, there are 8 Weyl nodes located on the kz = π plane

that have the same energy, and we note them as W1. The other 16 Weyl nodes, which are

away from the kz = π plane, are noted as W2.

After checking the electronic ground state of our TaAs samples, we study their electrical

transport properties. Fig. 1g shows the longitudinal resistivity as a function of temperature

at different external magnetic fields. The current is applied along the in-plane crystallo-

graphic direction (a and b are equivalent because of the tetragonal lattice) whereas the

magnetic field is out-of-plane. The temperature dependent resistivity of TaAs at the zero

magnetic field (Fig. 1g) shows a metallic profile. When a low magnetic field (0.3 T) is ap-

plied, the resistivity changes to an insulating profile. Similar behavior has been observed in

bismuth and graphite, where the low-field effect was attributed to a magnetic-field-induced

excitonic insulator transition of Dirac fermions [21]. In Fig. 1h, we show the magnetore-

sistance [MR ≡ (ρH=0 − ρH)/ρH=0] as a function of the external magnetic field at differ-

ent temperatures. At temperatures below 10 K, the MR of TaAs shows extremely strong

Shubnikov-de Haas (SdH) oscillations. Remarkably, the MR reaches 5400 at 10 K in 9 T,

which is three times larger than that in the recently reported compound WTe2 at 2 K in

9 T (see, Nature (2014)) [22]. Moreover, unlike in other semimetals where the MR has a

parabolic dependence on the magnetic field, the titanic MR of TaAs disperses linearly as

a function of the magnetic field and is not saturated at the highest applied field of 56 T

(Fig. 1j).

In order to understand the electronic states that contribute to our transport signals, we

study the SdH oscillation. Figure 2a shows the Hall resistance ρyx at different temperatures.

It can be seen that the ρyx shows a positive magnetic field response at temperatures above

100 K, which reveals that the majority carriers are hole-like at these higher temperatures. By

contrast, the field response becomes clearly negative below 75 K, which shows the dominance

of electron-like carriers in the Hall measurements at low temperatures. In order to obtain

the carrier density n and the mobility for the electron and hole carriers, we fit the Hall

conductivity tensor using a two band model (see Supplementary Information (SI) for details).

As shown in Fig. 2b, the carrier density for both carriers are on the order of 1017 cm−3,

which is consistent with the semimetallic nature of TaAs. At temperatures above 100 K,

the transport data can be fitted by considering only the hole-like band. However, as one
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decreases the temperature below 100 K, the electron band sets in and its mobility increases

dramatically. We note that the mobility of the electron band is as high as µe = 5×105 cm2/V·
s at T = 2 K, which is comparable to that in Cd3As2 [23].

In order to obtain the critically important electronic band structure parameters, we an-

alyze the SdH quantum oscillation data at T = 2 K. We note that since at T = 2 K the

SdH oscillation is dominated by the electron carriers, the obtained band parameters will

correspond to the electron-like band. We use the following expression to analyze the SdH

oscillation data, ρxx at T = 2 K, for a 3D system, ρxx = ρ0[1 + A(B, T ) cos 2π(F/B + γ)]

[24], where ρ0 is the non-oscillatory part of the resistivity, A(B, T ) is the amplitude of the

SdH oscillations, B is the magnetic field, γ is the Onsager phase, and F = ~

2πe
AF is the

frequency of the oscillations. Here, AF is the extremal cross-sectional area of the Fermi

surface (FS) associated with the Landau level index ν, e is the electron charge, and ~ is the

Planck’s constant. We obtain a Fermi surface area ofAF = 7.07×10−4 Å
−2

and a Fermi wave

vector kF is
√

AF/π = 0.015 Å
−1
. We note that since the magnetic field is parallel to the

c crystallographic axis, the obtained Fermi surface area corresponds to the 2D cross-section

of the 3D Fermi pocket that is perpendicular to the kz direction. Then the Landau level

index ν (1/µ0H) is plotted as a function of the inverse of the magnetic field strength in

Fig. 2d, from which one can see that, for all four samples, the linear interpolation of the

curve intersects with the x axis at ν = 0. This suggests that the electron carriers arise from a

linearly dispersive band with a non-trivial Berry’s phase [24], which is likely the Weyl cone.

In order to obtain the Fermi vector, the Fermi velocity, the energy position of the chemical

potential, and other important band parameters, we apply the Lifshitz-Kosevich formula

for a 3D system (see the SI). This enable us a cyclotron mass mcyc of 0.15me. From the

cyclotron mass, we obtain the Fermi wave vector kF is
√

AF/π = 0.015 Å
−1
, and the fermi

velocity vF is ~kF/mcyc = 1.16 × 105 m/s. By assuming a linear dispersion of this electron

pocket, we obtain the chemical potential (relative to the energy of the Weyl node) to be

EF = mcycv
2
F = 11.48 meV. We further study the anisotropy of the electron-like pocket by

tilting the magnetic field away from the c direction. Our data (Fig. 2e) shows that the Fermi

surface area along the a axis is about 5 times larger that of along the c axis. Therefore, we

find that the electron-like Fermi pocket is an ellipsoid that is elongated along the c axis.

We now systematically check if the obtained band parameters make sense and if the

electron-like band indeed corresponds to the Weyl cone. In order to do so, we place the
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chemical potential at 11.48 meV above the Weyl nodes W1 in our first-principles calculations

and try to compare the calculated band parameters to those of obtained from transport.

We have found an excellent agreement between calculation and transport: (1) As shown in

Figs. 2f and 2g, if the chemical potential is placed at 11.48 meV above W1, calculation shows

that electron-like (purple) pockets and hole-like (yellow) pockets indeed coexist at the Fermi

level, which is consistent with our Hall measurements shown in Fig. 2a. (2) Our calculation

shows that the electron-like pocket is indeed the Weyl cones (Fig. 2g). This agrees with

our Landau fan diagram analysis (Fig. 2d) which suggests a linear band dispersion with

a nontrivial Berry’s phase. (3) The calculated carrier density of the electron pockets is

5.07× 1017 cm−3, which also agrees well with our experimentally measured value in Fig. 2d.

(4) Finally, the anisotropy of the Fermi surface area is found to be 4.9, which is also in

line with the experimentally determined value of 5. All these agreements, taken collectively,

provide compelling evidence that the electron-like bands that dominate the SdH oscillations

are indeed the Weyl cones W1, and that the chemical potential is ∼ 11.5 meV above the

energy of the Weyl nodes W1. We note that according to our band calculations, the energy

position of the Weyl nodes W2 is ∼ 13 meV higher than that of W1. Therefore, based

on our systematic measurements and our careful comparison with calculations, we obtain

a band diagram presented in Fig. 2f. The chemical potential lies ∼ 11.5 meV above W1

but it is extremely close to W2. This means that although the contribution of Weyl cones

W2 to the SdH oscillation (Fig. 2a, H ⊥ i, where i is the direction of the current) is not

significant due to its extremely small size of Fermi surface, the Weyl cones W2 will play

the most essential role in the chiral anomaly, the positive magnetoconductance at H ‖ i,

because the chemical potential is extremely close to the Weyl nodes of W2.

Keeping the experimentally determined band diagram Fig. 2f in mind, we now turn to the

measurements of the chiral anomaly. We first discuss how the chiral anomaly manifests itself

in a magnetoconductance measurement in the presence of parallel electrical and magnetic

fields (H ‖ i). In the semiclassical regime, in which our measurements are performed, the

Weyl nodes act as sources of Berry flux in the BZ. This Berry flux alters the semiclassical

equation of motion for the momentum k of an electronic wave-packet by an additional term

∝ (E ·B)Ωk [25, 26], where E and B are the applied electric and magnetic fields and Ωk is

the momentum-dependent Berry field strength. Close to the Weyl node, which we assume to

be isotropic for simplicity, Ωk has the monopole-configuration Ωk = ±kv3F/(2|EF|3) ∝ E−2
F ,
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where the sign ± is the chirality of the Weyl node. Since the Weyl nodes are separated

in momentum space, the scattering of electrons between them is suppressed and the extra

contribution to the equations of motion alters the transport properties of the Weyl semimetal

at nonzero applied E and B field as long as E ·B 6= 0. For small magnetic fields parallel to

E, the contribution to the conductivity from an isotropic Weyl node is at low temperatures

given by [26, 27]

σchiral ≈ σ0

2e2Ω2
F

3~2
B2, (1)

where σ0 is the conductivity originating from inter-node scattering and ΩF is the Berry field

strength at the Fermi energy. Because the Fermi energy of the Weyl nodes W1 is about

7 times larger than that of W2, the contribution of W1 to σchiral is suppressed by a factor

of ∼ 50 as compared to the contribution from W2. We can thus assume that the chiral

anomaly in TaAs is dominated by the Weyl node W2. On the basis of these considerations,

we expect σchiral to show the following behavior: 1) It has a weak temperature dependence

for temperatures small compared to the |EF| and is reduced for temperatures much larger

than |EF|. 2) It is largest for E ‖ B and zero for E ⊥ B. 3) It scales ∝ E−2
F for sufficiently

small EF [26]. We will now show that our data is consistent with each of these points.

In the following, we present the magnetoconductivity instead of the magnetoresistance

for two reasons: i) The conductivity is a sum of contributions from the chiral anomaly an

conventional transport, which makes it easier to disentangle the two contributions. ii) The

resistivity at zero field is dominated by the conventional contribution and it is therefore

unnatural to normalize the contribution from the chiral anomaly that we want to single out

by this nonuniversal value.

The magnetoconductivity shown in Fig. 3 was measured in a configuration where the

applied electric and magnetic fields are parallel. Figure 4 shows the change in the magne-

toconductivity as the angle between the applied electric and magnetic fields is varied. The

measurements were performed with two samples, S1 and S2, that differ in the location of

their Fermi energy. Relative to the Weyl node W2, S1 has EF,1 = −1.5 meV and S2 has

EF,2 = +3.0 meV (see Fig. 3d). For both samples, the magnetoconductivity in Fig. 3c shows

two peaks as a function of magnetic field strength, one at zero and one at finite magnetic

field. We identify these as a classical magnetoconductivity of conventional carriers and the

chiral anomaly of the Weyl points, respectively. To support this, we fitted the experimentally
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obtained conductivity with the functional form proposed in [28]

σ(H) =
(

σ0 + a
√
H
)

(

1 + CWH2
)

+
1

ρ+ AH2
+

1

ρ′ + A′ H2
, (2)

where the first term is associated with the Weyl nodes and includes a weak anti-localization

correction with coefficient a < 0, the coefficient CW is due to the chiral anomaly, and the last

two terms with parameters A,A′, ρ, ρ′ > 0 are conventional contributions to the magneto-

conductivity that we attribute to the other Fermi pockets. Using Eq. (2), we obtain excellent

fits to the data at all temperatures and angles, as presented in Fig. 3a and Fig. 4a, respec-

tively. (We found that no satisfactory fit can be obtained, if only one of the conventional

contributions is included.)

As a function of temperature, the chiral anomaly contribution σ0CW , shown in Fig. 3b for

S1, is indeed nearly constant for small temperatures. It rapidly decreases for temperatures

around 20 K, which is comparable to the Fermi energy |EF,1| = 1.5meV of the sample. This

confirms point 1) from the above. As a function of the angle between electric and magnetic

field, the chiral anomaly contribution σ0CW , shown in Fig. 4b for S2, is found to be sharply

peaked for E ‖ B and falls off to nearly zero for relative angles as small as θ ∼ 5◦. This is in

qualitative agreement with point 2) from the above. Finally, with the two samples studied,

we have observed the chiral anomaly contribution to the conductivity for two different Fermi

energies, EF,1 = −1.5 meV and EF,2 = +3.0 meV. We can use the two chiral anomaly

contributions to the magnetoconductivity σ0,1CW,1 and σ0,2CW,2 obtained for S1 and S2 to

test the scaling form σchiral ∝ E−2
F quantitatively. Indeed, σ0,1CW,1/(σ0,2CW,2) = 5.0 (each

taken at T = 2K) compares well with E2
F,2/E

2
F,1 = 4.0, thus confirming point 3) from the

above.

These systematic experimental results corroborated by our ARPES results and our the-

oretical calculations, suggest the existence of Weyl fermion related chiral anomaly in TaAs

analogous to anomalies in quantum field theory. Our results not only provide the first trans-

port signature for the Weyl fermions in TaAs, but also paves the way for realizing new device

platforms for the next generation quantum technology frontier.
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FIG. 1: The Weyl semimetal state and titanic magneto-resistance in TaAs. a, Schematics

of the separation the Weyl fermions with opposite chiralities in a 4D quantum Hall effect. Here,

the 3D Weyl fermions surface states with opposite chiralities reside on the opposite surfaces. b,

Schematics of the separation of the pairs of Weyl fermions in a Weyl semimetal with opposite

chiralities in momentum space, which is a direct consequence of its nontrivial topological nature.

c, Schematics of pumping electrons from one Weyl cone to another one with the opposite chirality,

is separated in momentum space, in the presence of parallel magnetic and electric fields. The red
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FIG. 1: and blue lines represent the zeroth Landau level with + and - chiralities. d, ARPES

Fermi surface map of the (001) cleaving plane of TaAs, clearly resolving Fermi arcs near the X̄

point, Ȳ point, midpoint of the X̄ point and Γ̄ point, and midpoint of the Ȳ point and Γ̄ point of

the surface Brillouin zone. These momentum locations are indicated in e. e, An ab initio band

structure calculation of the surface states on the (001) surface of TaAs, in agreement with our

experimental ARPES data. f, Distribution of the Weyl nodes throughout the first bulk Brillouin

zone (BZ), where a total of 24 Weyl nodes are present and the sign of their chiral charges are color

coded in black and white. 8 of these Weyl nodes are located on the kz = π plane and have the

same energy (W1), whereas the other 16 Weyl nodes are away from the kz = π plane (W2). g,

Temperature dependence of resistivity at different magnetic fields perpendicular to the current.

h, Magneto-resistance (MR) at various temperatures. i, Schematics of the experimental setup

showing the directions of the magnetic field and electric current. j, MR of the sample in a pulse

magnetic field as high as 56 T. The red line is the fitting to the experimental result. All transport

data are obtained from sample S1. [Chenglong Zhang, Su-Yang Xu, Ilya Belopolski, Zhujun Yuan

et.al., (2015)]
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FIG. 2: Probing the Weyl bands via quantum oscillation measurements. a, Hall resistiv-

ity versus magnetic field in the temperature range from 2 to 300 K. Strong SdH oscillations were

observed at 2 K. Inset: the high temperature Hall resistivity. b, Mobilities and carrier concentra-

tions of the electrons and holes, clearly showing the coexistence of Weyl electrons and trivial holes

in our samples. No information of the electrons can be obtained above 100 K in this measurement.

c, The oscillatory parts of σxx at various temperatures, showing the π Berry’s phase of the Weyl

electron pocket. d, The SdH fan diagram for four different samples. All of the four intercepts are

located around zero, suggesting the π Berrys phase of the Weyl electron pocket e, Magnetic field

dependence of resistivity at representative Φ angles
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FIG. 2: between 0◦ - 90◦ at 2K for S1, after heating the sample. The MR decreases rapidly when

the magnetic field is tilted from c to the direction of the current i. Inset: the frequency F versus Φ.

The dashed curve is (1/cos Φ)·F0. f, Schematics of the experimentally determined band diagram

indicating the positions of the two different types of Weyl nodes, W1 and W2, as well as the trivial

hole-like band, relative to the Fermi level. g, (left) Shapes and locations of electron and hole

pockets from first-principles calculations. (center) The magnified electron pocket near the Weyl

point 1 (W1). (right) Three extremal cross-section areas along the three crystallographic axes. h,

Schematics of the distribution of the W1 and W2 Weyl nodes in first Brillouin zone. [Chenglong

Zhang, Su-Yang Xu, Ilya Belopolski, Zhujun Yuan et.al., (2015)]
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FIG. 3: Observation of the chiral anomaly in the magnetoconductivity. a, Magnetocon-

ductivity for sample S1 at different temperatures and fits to the data using σ(H) defined in Eq. (2).

The peaks at zero and finite magnetic fields are interpreted as the classical and the chiral anomaly

contribution to the magnetoconductivity, respectively. b, Temperature-dependence of the chiral

anomaly contribution to the magnetoconductivity as obtained from the fits in panel (a). A satura-

tion of the chiral anomaly contribution to the magnetoconductance occurs below the temperature

that corresponds to the Fermi energy, temperatures below the Fermi energy is observed, matching

the theoretical expectation. c, Magnetoconductivity at T = 2 K for two different samples S1 and

S2. d, Locations of the chemical potentials relative to the Weyl node W2 in samples S1 and S2 and

the schematic dependence of the magnitude of the Berry curvature |Ωk| at the Fermi energy on the

distance from the Weyl node. The Berry curvature is in a hedgehog-like monopole configuration

on the Fermi surface. [Chenglong Zhang, Su-Yang Xu, Ilya Belopolski, Zhujun Yuan et.al., (2015)]
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FIG. 4: Dependence of the chiral anomaly on the angle between applied electric and

magnetic field. a, Magnetoconductivity for sample S2 at different angles and T = 2 K as well

as fits to the data using σ(H) defined in Eq. (2). b, Angle-dependence of the chiral anomaly

contribution to the magnetoconductivity as obtained from the fits in panel (a). In line with the

theoretical expectation, the chiral anomaly is largest when electric and magnetic fields are parallel.

As the field is tilted, the chiral anomaly contribution rapidly decreases to zero. [Chenglong Zhang,

Su-Yang Xu, Ilya Belopolski, Zhujun Yuan et.al., (2015)]
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