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Abstract. I propose the use of CP-odd invariants, which are independent of basis and valid
for any choice of CP transformation, as a powerful approach to study CP in the presence
of flavour symmetries. As examples of the approach I focus on Lagrangians invariant under
∆(27). I comment on the consequences of adding a specific CP symmetry to a Lagrangian and
distinguish cases where several ∆(27) singlets are present depending on how they couple to the
triplets. One of the examples included is a very simple toy model with explicit CP violation
with calculable phases, which is referred to as explicit geometrical CP violation by comparison
with previously known cases of (spontaneous) geometrical CP violation.

1. Introduction
This contribution to the proceedings of DISCRETE 2014 follows closely the layout of seminar
I presented in the conference. I include here an expanded discussion of situations with ∆(27)
singlets, including cases with explicit geometrical CP violation (first identified recently, in [1]).
Some aspects discussed here are to appear also in a subsequent publication.

1.1. The invariant approach
I refer to the Invariant Approach (IA) to CP [2] as an approach that starts by splitting the
Lagrangian into LCP , a part that automatically conserves CP (e.g. kinetic terms, gauge
interactions) and the remaining part Lrem.:

L = LCP + Lrem. . (1)

The next steps are to

• Impose the most general CP transformations (that leave LCP invariant).

• Apply them and see if it restricts Lrem..

Only if the most general CP transformations restrict the shape of Lrem. can CP be violated.
An example of this type of restrictions is if the most general CP transformations force some
coefficient to be real.

The IA is powerful because:

• Gets results just from the Lagrangian.

• Independent of basis.

• Shows relevant quantities for physical processes.
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1.2. The invariant approach for Standard Model leptons
As a brief review of the IA, I apply it to a study of CP for Standard Model (SM) leptons. The
mass Lagrangian is

− Lm = mleLeR + 1
2mννLν

c
L + h.c. , (2)

where L = (eL, νL) stand for the left-handed neutrino and charged lepton fields in a weak basis;
eR is the right-handed counterpart.

Due to the SU(2)L interactions (inside LCP), the most general CP transformations are:

(CP )L(CP )† = iUγ0CL̄T , (3)

(CP )eR(CP )† = iV γ0CēTR . (4)

I adopt a less precise notation that is more convenient to work with:

L → UL∗ , (5)

eR → V e∗R . (6)

I use this notation throughout, particularly as for simplicity I will mostly consider scalar fields
in future sections, where the shorter notation is precise.

In order for Lm to be CP invariant, under eq(3), eq(4) the terms shown in eq(2) go into the
respective h.c. and vice-versa:

U †mνU
∗ = m∗ν , U †mlV = m∗l . (7)

Defining Hν ≡ mνm
†
ν and Hl ≡ mlm

†
l , I have:

U †HνU = H∗ν , U †HlU = H∗l . (8)

At this stage I follow [2] and build CP-odd invariants (CPI) by constructing combinations
where U and V do not appear. First, I note that from eq(8), I can obtain Tr(HνHl) =
Tr(HνHl)

∗, which does not depend on U , V . As the matrices are Hermitian, Tr(HνHl)
∗ =

Tr(HT
ν H

T
l ) = Tr(HlHν)T = Tr(HlHν), concluding that for any CP transformations U , V ,

Tr((HνHl) − (HlHν)) = 0 is required for CP conservation. Given that this is the trace of a
commutator, this particular CPI automatically vanishes, meaning it is not very useful. A more
useful alternative is the necessary condition for CP conservation:

I1 ≡ Tr [Hν , Hl]
3 = 0 , (9)

valid for any number of fermion generations. For 3 generations (the SM case), it can be shown
that eq(9) is a sufficient condition to have no Dirac-type CP violation in the lepton sector.

2. The invariant approach and flavour symmetries
One of the main points of my talk at the conference and of [1] is that the IA is very useful for
analysing flavour symmetry models. In order to illustrate this, I present some examples.

2.1. Toy model with 4 couplings
I start by considering a version of the toy model presented in section 3.1.1. of [3]. As the
aim here is to show the IA in action, I replace all fermions with scalars to avoid unnecessary
complications. The Lagrangian (with fermions) as presented by [3] is shown in figure 1.

I refer to a similar Lagrangian (with scalars) as L4 (due to its 4 couplings):

L4 = SΨ̄FΣ +XΨ̄GΣ + Y Ψ̄HΨΨ + Y Σ̄HΣΣ + h.c. , (10)



Figure 1. Toy model Lagrangian from [3].

where scalar fields S, X, Y have just one generation, whereas scalar fields Ψ and Σ have n
generations, meaning F , G, HΨ, HΣ are n× n coupling matrices. In the original toy model, Ψ
and Σ are fermions ( with n = 3 generations) and I use the notation Ψ̄ = Ψ†, Σ̄ = Σ† in eq(10)
for easier comparison with the box in figure 1.1

L4 is the Lrem. of this toy model and the most general CP transformations (consistent with
the respective LCP) are independent unitary transformations for each of the fields - phases for
S, X, Y and n× n unitary matrices Q and R for Ψ and Σ:

S → eisS∗ , (11)

X → eixX∗ , (12)

Y → eiyY ∗ , (13)

Ψ → QΨ∗ , (14)

Σ → RΣ∗ . (15)

Imposing CP conservation requires L4 to be invariant under these, which implies that the
terms displayed in eq(10) go into their h.c. and vice-versa. Starting with Y Σ̄HΣΣ, I have

L4 ⊃ Y Σ̄HΣΣ + Y ∗Σ̄∗H∗ΣΣ∗ (16)

and the relevant CP transformations

Y → eiyY ∗ , (17)

Σ → RΣ∗ , (18)

act on Y Σ̄HΣΣ:
Y Σ̄HΣΣ→ eiyY ∗Σ̄∗R†HΣRΣ∗ . (19)

Comparing with the h.c. I conclude that if L4 remains invariant under CP, eiyR†HΣR = H∗Σ. I
repeat the procedure for the other 3 couplings and obtain the 4 relations

eisQ†FR = F ∗ , (20)

eixQ†GR = G∗ , (21)

eiyQ†HΨQ = H∗Ψ , (22)

eiyR†HΣR = H∗Σ . (23)

These 4 relations are necessary and sufficient for L4 to conserve CP. At this stage I build CPIs
by combining the 4 relations to obtain equations where the general CP transformations cancel

1 I reconsider L4 in section 2.3.2 making it invariant under a flavour symmetry, as done in [3].



out, meaning they are independent of s, x, y, Q and R. A relevant example is obtained by
multiplying in order 1. the dagger of eq(20), 2. eq(22), 3. eq(20) and 4. the dagger of eq(23):

R†F †QQ†HΨQQ
†FRR†H†ΣRe

i(−s+y+s−y) = (F †HΨFH
†
Σ)∗ , (24)

removing the phases and leaving unitary matrices only outside the product of couplings:

R†F †HΨFH
†
ΣR = (F †HΨFH

†
Σ)∗ . (25)

Doing the same with eq(21) in steps 1. and 3. I would obtain similarly:

R†G†HΨGH
†
ΣR = (G†HΨGH

†
Σ)∗ . (26)

The remaining dependence on unitary matrix R can be eliminated by taking the trace:

Tr
[
F †HΨFH

†
Σ

]
= Tr

[
F †HΨFH

†
Σ

]∗
→ Im Tr

[
F †HΨFH

†
Σ

]
= 0 , (27)

Tr
[
G†HΨGH

†
Σ

]
= Tr

[
G†HΨGH

†
Σ

]∗
→ Im Tr

[
G†HΨGH

†
Σ

]
= 0 . (28)

These conditions illustrate the power of the IA. Simply from studying the CP properties
of L4 I have found a set of necessary conditions for CP conservation (they are not necessarily
sufficient). The conditions are basis independent, valid for any choice of CP transformation and
for any number of generations n. They also directly constrain quantities that are relevant for
physical processes.

In [3], the authors compute the CP asymmetry in the decay Y → Ψ̄Ψ, as shown in the text and
equation displayed in figure 2. By computing only a single CP asymmetry one might conclude
that CP conservation can be obtained from a cancellation of the two quantities. Instead, by
applying the IA to L4 I conclude that there are at least 2 independent necessary conditions for
CP conservation, eq(27), eq(28).

Figure 2. Decay of Y → Ψ̄Ψ as computed in [3].

2.2. ∆(27) and adding CP
2.2.1. ∆(27) I discuss now the group theory of ∆(27) that is required for the remaining sections.
I define ω ≡ ei2π/3, the cyclic generator c and diagonal generator d of the group (ω3 = 1,
c3 = d3 = 1). There is an additional generator but it is not directly relevant for the discussion
here. The group has irreducible representations that are either 1 or 3 dimensional - referred
as singlets and triplets. The action of generators on singlets is simply multiplying them by a
phase: c1ij = ωi1ij and d1ij = ωj1ij , where i, j = 0, 1, 2 - there are 9 distinct singlets. In a
convenient basis the action of the generators on a 301 triplet A = (a1, a2, a3)01 or a 302 triplet
B̄ = (b̄1, b̄2, b̄3)02 is:

c30j =

0 1 0
0 0 1
1 0 0

 , c301

a1

a2

a3

 =

a2

a3

a1

 , (29)



d301 =

1 0 0
0 ω 0
0 0 ω2

 , d302 =

1 0 0
0 ω2 0
0 0 ω

 . (30)

My nomenclature follows from the action of generators on triplets. The generator d distinguishes
the triplets 301 and 302 according to their subscripts, which are the powers of ω on the first
two diagonal entries of the respective matrix. Hereafter I often refer to 301 as the triplet
representation and to 302 as the anti-triplet representation. The cyclic generator acts equally
on triplet and anti-triplet by cyclic permutation of the components.

The product of singlet with singlet leads to another singlet transforming as the sum of indices
(modulo 3): 1ij × 1kl transforms as 1(i+k)(j+l). The product of triplet and anti-triplet gives a
sum of all nine singlets. In the following it will be necessary to know how the singlets 1i0 and
10j are built from the product of triplet and anti-triplet. 100 is the trivial singlet transforming
trivially under all generators and is formed from the SU(3) contraction:

(AB̄)00 ≡ (a1b̄1 + a2b̄2 + a3b̄3)00 . (31)

The 1i0 singlets are built as

(AB̄)10 ≡ (a1b̄1 + ω2a2b̄2 + ωa3b̄3)10 , (32)

(AB̄)20 ≡ (a1b̄1 + ωa2b̄2 + ω2a3b̄3)20 , (33)

as acting with c on A and B̄ leads to multiplication by ω, ω2 respectively:

(AB̄)10 → (a2b̄2 + ω2a3b̄3 + ωa1b̄1)10 , (34)

(AB̄)20 → (a2b̄2 + ωa3b̄3 + ω2a1b̄1)20 . (35)

In turn, the 10j are built as

(AB̄)01 ≡ (a2b̄1 + a3b̄2 + a1b̄3)01 , (36)

(AB̄)02 ≡ (a1b̄2 + a2b̄3 + a3b̄1)02 , (37)

as acting with d on A and B̄ leads to multiplication by ω, ω2 respectively:

(AB̄)01 → (ωa2b̄1 + ω2a3ω
2b̄2 + a1ωb̄3)01 , (38)

(AB̄)02 → (a1ω
2b̄2 + ωa2ωb̄3 + ω2a3b̄1)02 . (39)

2.2.2. Adding CP I consider now a specific ∆(27) invariant Lagrangian and study its CP
properties. The field content is triplet A, anti-triplet B̄, and singlets C, D (transforming
respectively as 301, 302, 110, 101). The ∆(27) invariant Lagrangian for this field content contains
one 3-field invariant between triplet, anti-triplet and each singlet:

LCD = yc(AB̄)20C10 + yd(AB̄)02D01 + h.c. . (40)

An additional ZN or U(1) symmetry can be added to guarantee the absence of additional terms
coupling C, D to AA∗ or B̄∗B̄. Focusing on the CP properties of LCD, I start by adding a
specific CP transformation. A simple option is the trivial CP transformation CP1, defined by
the action on A, B̄, C and D:

CP1A = A∗ = (a∗1, a
∗
2, a
∗
3)02 , (41)

CP1B̄ = B̄∗ = (b̄∗1, b̄
∗
2, b̄
∗
3)01 , (42)

CP1C10 = C∗20 , (43)

CP1D01 = D∗02 , (44)



where A∗, B̄∗, C∗, D∗ transform respectively as 302, 301, 120, 102 (reflected by the subscripts).
If I impose invariance under CP1 on LCD, the yc term which transforms to:

→ yc(a
∗
1b̄
∗
1 + ωa∗2b̄

∗
2 + ω2a∗3b̄

∗
3)20C

∗
20 , (45)

should become the h.c., which features y∗c :

y∗c (a
∗
1b̄
∗
1 + ω2a∗2b̄

∗
2 + ωa∗3b̄

∗
3)10C

∗
20 . (46)

In addition to the conjugated coefficient, the expressions inside the parentheses are different, as
denounced by their subscripts. In turn, under CP1 the yd term transforms into:

→ yd(a
∗
1b̄
∗
2 + a∗2b̄

∗
3 + a∗3b̄

∗
1)01D

∗
02 , (47)

and comparing to its h.c. with y∗d

y∗d(a
∗
1b̄
∗
2 + a∗2b̄

∗
3 + a∗3b̄

∗
1)01D

∗
02 , (48)

shows that apart from swapping yd to y∗d the expressions are the same.
A closer look at eq(45) shows that the transformed quantity is no longer invariant under

∆(27) (the subscripts do not add up to make a trivial singlet). One might state that, for this
field content, ∆(27) is inconsistent with CP1. A more precise statement is that for LCD to be
invariant under both ∆(27) and CP1 requires yc = 0 (and yd to be real) or alternatively, that
insisting that yc 6= 0 explicitly violates either ∆(27) or CP1. That yc is forced to vanish by
adding a specific CP symmetry may appear drastic, but this is rather an usual consequence of
adding symmetries to a Lagrangian. For example, one could also force yc = 0 in LCD simply by
having only the field C transform non-trivially under an additional Z2 symmetry.

One important point is that although imposing a specific CP transformation can force
coefficients to vanish this needs not mean that CP violation occurs if those coefficients do not
vanish. Indeed, LCD with arbitrary yc and yd is CP conserving. I prefer to see this using the
IA, and rewrite:

LCD = AiY
ij

10B̄jC +AiY
ij

01B̄jD + h.c. , (49)

with

Y10 = yc

1 0 0
0 ω 0
0 0 ω2

 ; Y01 = yd

0 1 0
0 0 1
1 0 0

 . (50)

Then I take the most general transformations

A→ U∗A∗; B̄ → V B̄∗; C → eip10C∗; D → eip01D∗ , (51)

and obtain the conditions for CP conservation

U †Y01V e
ip01 = Y ∗01 , (52)

U †Y10V e
ip10 = Y ∗10 . (53)

By building CPIs I conclude they are of the form

Im Tr [(Y †01Y01)n1(Y †10Y10)n2(Y †01Y01)n3(...)] , (54)

Im Tr [(Y01Y
†

01)n1(Y10Y
†

10)n2(Y01Y
†

01)n3(...)] , (55)



where ni are positive integers. These CPIs automatically vanish due to ∆(27), as (Y †01Y01),

(Y †10Y10), (Y01Y
†

01) and (Y10Y
†

10) are proportional to the identity matrix2 with either |yc|2 or
|yd|2. The conclusion is that CP is conserved for any yc, yd. Therefore, there must be at least
one CP symmetry that leaves LCD invariant regardless of arbitrary couplings (even though CP1

does not). One explicit example is:

U =

1 0 0
0 ω2 0
0 0 1

 ; V =

1 0 0
0 1 0
0 0 ω2

 ; p10 = −2Arg(yc); p01 = −2Arg(yd) . (56)

This example is within the possibilities listed in [4] for CP transformations consistent with ∆(27)
triplets. While eq(56) applies to singlets 101 and 110, the reasoning based on the IA can be easily
applied to any choice of two ∆(27) singlets.

2.3. Additional singlets
In the context of ∆(27) models with spontaneous geometrical CP violation, meaning CP that is
spontaneously broken with calculable phases [5], adding ∆(27) singlets coupling to triplet and
anti-triplet was originally explored in [6]. The goal was to obtain additional Yukawa couplings
for SM fermions and the most promising choices considered the SM quark doublets as different
singlets of ∆(27).3

Geometrical CP violation is a very interesting topic that continued to be explored after [6].
Non-renormalisable terms in the scalar potential were considered in [7], with focus on their effects
on the calculable phases. The first viable model with SM quark doublets transforming as non-
trivial ∆(27) singlets was realised in [8], featuring geometrical CP violation. Subsequently it was
shown in [9] how an additional symmetry can prevent the additional singlets from endangering
the calculable phases and simultaneously explain the quark mass hierarchies. In [10] an extension
of this type of model with the complete SM fermion sector was realised (see also [11] for a different
proposal for the leptons).

Geometrical CP violation was further explored in the context of multi-Higgs models with
symmetries other than ∆(27) in [12, 13] (see also [14]). The ∆(27) scalar potential for one triplet
(invariant under ∆(54) [6]) was also analysed extensively with different approaches [15, 16, 17].

In [6, 7, 8, 9, 10] CP is broken spontaneously, therefore the Lagrangian should conserve CP.
As pointed out in [8], one must take care in adding extra singlets that couple to the triplet and
anti-triplet as that may be incompatible with CP conservation.

One way to approach the constraints arising from adding singlets is by studying the outer
automorphisms of the group, as discussed in [15] and also [3]. Alternatively, the reason why
coupling more singlets to triplets may lead to CP violation becomes very clear in the IA:
additional couplings enable more CPIs to be built. Eventually, adding an extra coupled singlet
leads to a CPI that does not automatically vanish due to ∆(27), meaning one of 3 possibilities:
∆(27) is explicitly violated; CP is explicitly violated; or specific relations on the couplings are
imposed. The last possibility is relevant in the context of [6, 7, 8, 9, 10], where one wants the
symmetries to be broken spontaneously. In analogy to CP1 forcing yc = 0, one option that
allows preserving both symmetries would be to have the couplings involving the triplets and
some of the singlets vanish, and this is also understood clearly through the IA: the additional
CPIs that do not vanish automatically can vanish due to the couplings.

Indeed, if one considers a set of singlets including two or three 10j singlets as in [8], the
possible CP transformations on the triplets are already so constrained that one can not couple

2 For the same reason, CPIs like Im Tr[(Y †
01Y01)n1Y †

10Y01(Y †
10Y10)n2Y †

01Y10] give the same result as those in eq(54).
3 In [6] it was pointed out that one triplet of ∆(54) has the same scalar potential as one triplet of ∆(27), and
options with irreducible representations of ∆(54) were also considered therein.



the triplets to even a single additional singlet 1ij with i 6= 0 and preserve CP. Partly, this is why
only 10j singlets were considered therein.

Strictly, the statement in [8] that singlets 1ij with i 6= 0 generate no coupling due to CP
conservation is not mathematically rigorous. This statement is valid e.g. when CP1 is imposed
but not in general, as was pointed out recently in [17]. Nonetheless, for 3-field couplings between
∆(27) triplets and singlets (as in LCD), the physics of CP conserving situations - with at most 3
independent couplings - is contained in the choices considered in [8], which effectively corresponds
to working in a basis where CP conservation is reflected on the Clebsch-Gordan (CG) coefficients
being real. An analysis of this issue also clarifies why the presence of any 2 singlets coupling in
the manner of LCD leads automatically to CP conservation.

2.3.1. Changing basis Starting with just 1 singlet Sij and term yij(AB̄)(−i)(−j)Sij , I can

always change the basis of A such that the (AB̄)(−i)(−j) contraction looks like the corresponding

contraction (AB̄)(0)(−j) in the original basis, which has real CG coefficients. An explicit example

is yc(AB̄)20C10, where the change of basis (a1, a2, a3)→ (a1, ω
2a2, ωa3) does precisely this:

(a1b̄1 + ωa2b̄2 + ω2a3b̄3)20 → (a1b̄1 + a2b̄2 + a3b̄3) . (57)

As far as the yij(AB̄)(−i)(−j)Sij coupling is concerned it is equivalent to take a singlet in the
set 10j . Note that other couplings can distinguish the singlets, e.g. if j = 0, terms 100 and
12

00 are ∆(27) invariants whereas the same does not apply for 10j . But restricting ourselves to
Lagrangian terms of the form of those in LCD implies there are other symmetries that forbid
such terms (such as the SM gauge group, in [8]).

With 2 singlets, changing only the basis for A may simply move the complex CG coefficients
from one contraction into the other. LCD is an explicit example of this as (a1, a2, a3) →
(a1, ω

2a2, ωa3) takes

(a1b̄1 + ωa2b̄2 + ω2a3b̄3)20 → (a1b̄1 + a2b̄2 + a3b̄3) , (58)

(a1b̄2 + a2b̄3 + a3b̄1)02 → (a1b̄2 + ω2a2b̄3 + ωa3b̄1) . (59)

But if one uses the change of basis:

(a1, a2, a3) → (a1, ω
2a2, a3) , (60)

(b̄1, b̄2, b̄3) → (b̄1, b̄2, ωb̄3) , (61)

then both singlets couple to triplets in LCD with real CG coefficients:

(a1b̄1 + ωa2b̄2 + ω2a3b̄3)20 → (a1b̄1 + a2b̄2 + a3b̄3) , (62)

(a1b̄2 + a2b̄3 + a3b̄1)02 → (a1b̄2 + a2b̄3 + a3b̄1) . (63)

This change of basis takes U and V in eq(56) to the identity matrices of CP1.
In a situation with 3 singlets coupling in the manner of LCD, the possibility of explicit CP

violation depends on whether the freedom to change the basis of A and B̄ is enough to eliminate
complex CG coefficients or not. Most choices of singlets can explicitly violate CP, but for 12 sets
(out of 84 combinations) this is not possible. For these 12 sets there is at least one non-trivial
element of ∆(27) which does not distinguish the 3 singlets. The special 12 sets can be identified
in the notation I use here by summing the two generator indices over the 3 singlets - if both
sums add up to 0 (modulo 3), an appropriate change of basis makes the CG coefficients real. I
demonstrate with the set 100, 110 and 120:

(AB̄)00 ≡ (a1b̄1 + a2b̄2 + a3b̄3)00 , (64)

(AB̄)10 ≡ (a1b̄1 + ω2a2b̄2 + ωa3b̄3)10 , (65)

(AB̄)20 ≡ (a1b̄1 + ωa2b̄2 + ω2a3b̄3)20 , (66)



The required basis change is not readily seen from the expressions, but noting the 3 singlets in
the set are distinguished only by generator c, the basis change to eigenstates of c30j :

(a1, a2, a3) → (a1 + a2 + a3, a1 + ωa2 + ω2a3, a1 + ω2a2 + ωa3)/
√

3 , (67)

(b̄1, b̄2, b̄3) → (b̄1 + b̄2 + b̄3, b̄1 + ω2b̄2 + ωb̄3, b̄1 + ωb̄2 + ω2b̄3)/
√

3 , (68)

takes the expressions to those of (AB̄)0j , with real CG coefficients:

(a1b̄1 + a2b̄2 + a3b̄3)00 → (a1b̄1 + a2b̄2 + a3b̄3) , (69)

(a1b̄1 + ω2a2b̄2 + ωa3b̄3)10 → (a2b̄1 + a3b̄2 + a1b̄3) , (70)

(a1b̄1 + ωa2b̄2 + ω2a3b̄3)20 → (a1b̄2 + a2b̄3 + a3b̄1) . (71)

The generalisation of the change of basis for sets of 3 singlets sharing a non-zero index is relatively
straightforward for sets 1ij sharing a fixed i 6= 0 (distinct only under generator d), where one has
a diagonal change of basis (in analogy with eq(60), eq(61)). An explicit example is for singlets
with a fixed i = 1, with triplets contracting as:

(AB̄)20 ≡ (a1b̄1 + ωa2b̄2 + ω2a3b̄3)20 , (72)

(AB̄)21 ≡ (a2b̄1 + ωa3b̄2 + ω2a1b̄3)21 , (73)

(AB̄)22 ≡ (a3b̄1 + ωa1b̄2 + ω2a2b̄3)22 , (74)

where a change to a basis with real CG is (b̄1, b̄2, b̄3)→ (b̄1, ω
2b̄2, ωb̄3). For sets 1ij sharing a fixed

j 6= 0 (distinct only under generator c), the generalisation of the change of basis involves a mix
of eq(67), eq(68) and the diagonal type similar to eq(60), eq(61), or equivalently, reordering the
eigenstates of c30j in eq(67), eq(68). For sets not sharing an index, but for which the sum over
indices both sum up to 0 (modulo 3) the change of basis is possible but requires an additional
redefinition of one of the 3 singlets (in addition to the triplet representations). Fortunately, the
IA produces results that are basis independent, so for a given Lagrangian one can avoid checking
whether basis changes that lead to real CG exist or not.

Either using basis changes or the IA, the conclusion for Lagrangians with singlets coupling
to triplet and anti-triplet in the manner of LCD is the same. There are 12 sets of 3 singlets that
conserve CP, starting from 100, 101, 102 and ending with 120, 121, 122. The sets can be identified
whenever the sum of both indices over the 3 singlets adds up to 0 (modulo 3), meaning that
there is one non-trivial element of ∆(27) that does not distinguish the 3 singlets and it is then
possible to choose that element to be the generator c in another basis. As far as the 3-field
couplings are concerned these 12 sets are equivalent through a change of basis to the choice with
i = 0, which is why this was the only set considered in [8]. For the other 72 choices of 3 singlets,
or for 4 or more singlets, the complex CG coefficients can only be moved around by the change
of basis, but not eliminated. In such situations, the coupling of the additional singlets to triplets
is not allowed due to CP invariance of the Lagrangian, cf. [8].

A similar conclusion, based on an analysis of the automorphisms of ∆(27), was presented
later in [3]: that adding more than two non-trivial singlets (to a setting with just triplet
representations) no longer allows a consistent CP transformation to be defined.4

4 Strictly, how the singlets couple to triplet representations is very relevant, as discussed above cf. cases like the
8 sets of 3 non-trivial singlets that conserve CP automatically. Furthermore, this type of statement assumes all
singlets have non-vanishing couplings to the triplets. This is not a spurious assumption as CP can be conserved
even in settings with triplets and more than three non-trivial singlets, where triplet-decoupled singlets are still
relevant due to coupling to other singlets. This can be a natural outcome if the vanishing couplings are enforced
by a symmetry, which can be a specific CP symmetry as illustrated by CP1 leading to yc = 0 for LCD.



2.3.2. ∆(27) and L4 In [3] a ∆(27) toy model with the trivial singlet and two non-trivial
singlets was considered. This is actually the model illustrated here in figure 1, which was the
starting point for the scalar field Lagrangian L4 I used to exemplify the IA in section 2.1.
The authors of [3] employed a U(1) symmetry to restrict the allowed couplings and used the
structures imposed by ∆(27) on the coupling matrices F , G, HΨ and HΣ to compute the bottom
row in figure 2.

The field S is associated with coupling matrix F proportional to the identity so in their
notation the 10 singlet corresponds to the trivial singlet 100 here. The fields X, Y are associated

toG proportional to Y01 andHΨ, HΣ proportional to Y20 = Y †10 (Y01 and Y10 are shown in eq(50)),
based on these couplings I identify that the singlets 11 and 13 in their notation correspond to
singlets 101 and 120 here. With these coupling matrices and the couplings f , g, hΨ and hΣ

defined in their Lagrangian as shown in figure 1, calculating the CPIs in eq(27), eq(28) leads to:

Im Tr
[
F †HΨFH

†
Σ

]
= Im

(
|f |2hΨh

∗
Σ

)
, (75)

Im Tr
[
G†HΨGH

†
Σ

]
= Im

(
ω|g|2hΨh

∗
Σ

)
, (76)

cf. figure 2. Both CPIs depend on the phase Arg(hΨh
∗
Σ) (the relative phase between two

arbitrary Lagrangian parameters). It is clear that no value of this phase can make both CPIs
vanish so the conclusion is again that ∆(27) is explicitly violated, or CP is explicitly violated,
or at least one coupling vanishes. If I impose f = 0 (or g = 0) due to CP conservation, then
S (or X) decouples from the triplets Ψ, Σ and CP can be conserved for specific values of the
phase Arg(hΨh

∗
Σ). Note that the respective CP transformations for f = 0 will differ from those

for g = 0. The triplet-decoupled singlet in either CP conserving case is still coupled to the
other singlet scalars through quartic couplings that are unconstrained by the U(1) symmetry,
SS†XX†, SS†Y Y †, XX†Y Y †.

2.4. Explicit geometrical CP violation
I propose now a toy model similar to LCD but where the field content is reduced to contain only
triplet A and singlets C10, D01, and there are no U(1) or ZN symmetries forbidding singlets
from coupling to (AA∗). Then the Lagrangian has terms:

LA = yc(AA
∗)20C10 + yd(AA

∗)02D01 + h.c. , (77)

In contrast with LCD which has the same singlets, there is no B̄. The situation is to some
extent similar to adding to LCD the trivial singlet, in the sense that with couplings to a triplet
in the manner of LA, the only pairs of singlets that automatically conserve CP are the 8 pairs
including 100, and the four pairs with 2 non-trivial singlets 101, 102; 110, 120; 111, 122; 112, 121

(where the sum over the 2 singlets of both indices adds up to 0 modulo 3).
Instead of dwelling further on basis changes I use the IA to study the CP properties of LA.

The most general transformations are the same from eq(51) (ignoring B̄) and the CP invariance
conditions coming from LA are similar to eq(52), eq(53):

U †Y01Ue
ip01 = Y ∗01 , (78)

U †Y10Ue
ip10 = Y ∗10 . (79)

Rather than trying to find unitary matrices that may not exist, it is often better to skip directly
to building CPIs that do not depend on them. In this case a relevant CPI is:

I2 ≡ Im Tr(Y01Y
†

10Y
†

01Y10) , (80)



which has to vanish for CP conservation. Using Y01, Y10 from eq(50) I find:

I2 = Im(3ω2|yc|2|yd|2) (81)

This means that CP can be explicitly violated, in a minimal model with only 2 ∆(27) singlets.
But furthermore the IA also shows that in this model, CP is violated by a calculable phase that
is entirely determined by the symmetry of the Lagrangian (and not by arbitrary parameters of
the Lagrangian). The phases of the arbitrary LA parameters yc and yd do not contribute, as
shown very clearly in eq(81). This situation is directly comparable to the original definition of
calculable phases in [5], where special cases with spontaneous CP violation were referred to as
geometrical. In analogy with the original definition, it is reasonable to refer to cases like this as
explicit geometrical CP violation.

Explicit geometrical CP violation was first identified in [1]. The model presented therein was
not a scalar toy model but a physical multi-Higgs doublet model with scalars h00, h01 and h10.
It contains fermions L (SM lepton doublets) and νc (SM singlet neutrinos) transforming under
∆(27) as triplet and anti-triplet. The neutrino Lagrangian is

L3 = y00(Lνc)00h00 + y01(Lνc)02h01 + y10(Lνc)20h10 + h.c. . (82)

CP is explicitly violated due to the presence of the 3 coupled singlets and the relevant CPI is
naturally sensitive to all 3 couplings:

I3 ≡ Im Tr(Y00Y
†

01Y10Y
†

00Y01Y
†

10) , (83)

where ∆(27) imposes Y00 proportional to the identity and I rename in eq(50) yc = y10 and
yd = y01 to match the notation from [1] used in eq(82). Then:

I3 = Im(3ω2|y00|2|y01|2|y10|2) , (84)

showing CP is explicitly violated by a phase only originating from the group structure, and not
from arbitrary couplings - the arbitrary phases of y00, y01 and y10 do not affect I3.

3. Conclusions
The main conclusion to be drawn is that the invariant approach is a powerful method to study
the CP properties of specific Lagrangians, particularly in the presence of flavour symmetries.
The CP-odd invariants built from a Lagrangian do not require detailed knowledge of group
theory and require relations between the couplings for the Lagrangian to conserve CP. One can
then insert into the relevant CP-odd invariants the couplings that respect the flavour symmetry,
and obtain a basis independent answer if CP is violated by those couplings.

I have illustrated the use of the invariant approach with several examples, mostly based on the
∆(27) symmetry. For a given Lagrangian I commented on the consequences of adding a specific
CP symmetry. I also clarified what are the possible outcomes when adding more ∆(27) singlets
to different models, noting that it is relevant to distinguish how the singlets couple to triplets.
For 3 coupled singlets, a model with distinct triplet and anti-triplet (or two distinct triplets)
can explicitly violate CP for 72 choices of 3 singlets; the other 12 choices lead to automatic CP
conservation, which occurs when the 3 singlets are undistinguished by at least one non-trivial
element of ∆(27) (this case includes 8 choices where the 3 singlets are non-trivial). In contrast,
in a model with just one triplet the possibility for explicit CP violation exists already with 2
coupled non-trivial singlets. Finally, I used a simple toy model with a triplet and 2 coupled
non-trivial singlets as an example of explicit geometrical CP violation, followed by the more
realistic example with 3 singlets proposed in [1].
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