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Abstract

We analyse the structure of Yukawa couplings in local SU(5) F-theory models with

E8 enhancement. In this setting the E8 symmetry is broken down to SU(5) by a

7-brane configuration described by T-branes, all the Yukawa couplings are generated

in the vicinity of a point and only one family of quarks and leptons is massive at

tree-level. The other two families obtain their masses when non-perturbative effects

are taken into account, being hierarchically lighter than the third family. However,

and contrary to previous results, we find that this hierarchy of fermion masses is not

always appropriate to reproduce measured data. We find instead that different T-

brane configurations breaking E8 to SU(5) give rise to distinct hierarchical patterns

for the holomorphic Yukawa couplings. Only some of these patterns allow to fit

the observed fermion masses with reasonable local model parameter values, adding

further constraints to the construction of F-theory GUTs. We consider an E8 model

where such appropriate hierarchy is realised and compute its physical Yukawas,

showing that realistic charged fermions masses can indeed be obtained in this case.
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1 Introduction

The proposal made in [1–4] to build realistic 4d vacua by means of GUT constructions

in F-theory has undoubtedly generated a wealth of activity in the past few years. While

from all the classes of models considered in the string phenomenology literature [5–7]

none is a priori preferred to achieve a fully realistic model of Particle Physics, F-theory

vacua present a number of conceptual and technical advantages that has allowed to make

substantial recent progress on this front.

For instance, type IIB/F-theory flux compactifications contain the class of vacua where

at present moduli stabilisation is best understood [8–10], and where most of the statistical

analysis of string vacua has been applied [11]. In addition, the construction of F-theory

compactifications relies on complex geometry, and so allows to implement powerful results

in algebraic geometry. In practice, this translates into very useful techniques that can

be used to construct explicit examples of F-theory models, as well as to gain a global

perspective of the set of vacua as a whole.

But perhaps the key ingredient that highlights F-theory GUTs as a promising avenue to

construct realistic vacua is the localisation properties of 7-branes and their consequences.

Indeed, the fact that 7-branes localise gauge and chiral degrees of freedom lets us formulate

the construction of F-theory GUTs in a bottom-up fashion [12]. This in turn permits to

express the basic features that the gauge sector of realistic model should contain in terms

of a small internal region where the GUT fields are localised, and to compute many

quantities of physical interest in terms of such local data.

A good example of the latter is the computation of Yukawa couplings in F-theory

GUTs. Through a series of works [13–26] it has been realised that to extract the flavour

structure of an F-theory model one may implement an ultra-local approach and compute

its Yukawas by analysing small regions of the four-cycle SGUT where the GUT degrees of

freedom are localised. More precisely one finds that, if gauge fields are localised in SGUT

and chiral fields at complex matter curves Σi inside SGUT, then holomorphic Yukawas

can be computed by looking at the points of intersection of such matter curves. Physical
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Yukawas, on the other hand, can be computed ultra-locally if the internal wavefunctions

for the chiral fields are sufficiently localised in a region near such point of intersection.1

An important outcome of the analysis of Yukawas in F-theory is that one may easily

engineer GUT models where the Yukawa matrices are of rank one, by simply imposing

a topological condition on the matter curves [22]. This will automatically give a mass

hierarchy between one family and the rest. The masses of the two lightest families can

then be generated when taking into account the effect of an Euclidean D3-brane instanton

on a different four-cycle, along the lines of [20].2 Notice that rank one Yukawas are not

exclusive of F-theory models (see e.g. [43,44] for type II examples). However, the F-theory

framework does allow to compute them systematically for a wide class of models by means

of the ultra-local approach. Quite remarkably, this remains true even after we include the

non-perturbative corrections of [20].

In this spirit, the computation of Yukawa couplings in the presence of non-perturbative

effects has been carried out in [24–26]. In particular, refs. [25] and [26] respectively

analysed the fermion mass hierarchy developed for down-type 10× 5̄× 5̄ and up-type

10× 10× 5 couplings in SU(5) models, which become MSSM Yukawas once that hyper-

charge flux effects breaking SU(5) → SU(3) × SU(2) × U(1)Y are taken into account.

In both cases it was found that a family hierarchy of the form (1, ε, ε2) is generated for

fermion masses, with ε a small parameter measuring the strength of the non-perturbative

effect. Such hierarchy is already present at the level of the holomorphic Yukawas, and

allows to fit empirical data upon taking ε ∼ 10−4 and including the dependence of physical

Yukawas on the worldvolume fluxes threading SGUT.

The computations carried out in [25] and [26] are independent from each other because,

in principe, down-type and up-type Yukawas can be generated at very different points of

the GUT four-cycle SGUT. However, as pointed out in [45] experimentally the CKM matrix

describes non-trivial correlations between U and D-quark Yukawas, and this strongly

suggests that in a realistic model these two points should be in the same neighbourhood

of SGUT, so that they experience the same local geometry and worldvolume flux densities.

1For a more precise statement in terms of the notion of local chirality see [27]. For other applications

of seven-brane wavefunctions see [28–33].
2For different approaches to the generation of Yukawa hierarchies in F-theory GUTs see e.g. [21,34–42].
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A model in which the two Yukawa points are very close to each other or even coincide

is very attractive from the bottom-up perspective, as one is then able to compute the

whole set of Yukawas with the mere knowledge of the local patch of SGUT. In this sense,

even more appealing is the case where further matter curves intersect at a single point

pE8 ∈ SGUT, such that the singularity of the F-theory elliptic fibre enhances to E8 at that

point. One would then be able to compute ultra-locally the whole set of couplings which

are most relevant for the GUT gauge theory by analysing a local patch around pE8 , which

is usually dubbed the point of E8 in F-theory [45].

Roughly speaking, the aim of this work is to apply the scenario of [20] to F-theory

models of SU(5) unification with a point of E8 where all Yukawa couplings are generated.

More precisely, we consider F-theory models that can be locally described in terms of an

E8 symmetry higgsed down to SU(5) by the 7-brane position background. This region

of E8 symmetry contains both Yukawa points pup and pdown, which may be coincident or

not, and the matter curves intersecting at them are chosen in such a way that we obtain

rank one Yukawas at tree level. The question we address is then if, by taking into account

non-perturbative effects, a realistic hierarchical pattern of Yukawa couplings is generated

such that it allows to fit experimental data, in the same spirit of [24–26].

As mentioned, the hierarchy that has so far allowed to fit empirical data is of the

form (1, ε, ε2), at least for reasonable values of ε and local model parameters like flux

densities. Therefore we take this hierarchical pattern as the guiding principle to achieve

a realistic fermion mass spectrum in the context at hand. Remarkably, this hierarchical

structure can already be seen at the level of holomorphic Yukawas, which depend on very

few parameters of the local model. As a result, the above criterion is very robust and can

be applied even without specifying the oftentimes complicated 7-brane flux background.

As we will see, while one may construct several E8 models with rank one Yukawas at

tree level, the addition of non-perturbative effects does not always yield a hierarchy of the

form (1, ε, ε2). In fact, from all the models that we have analysed only one choice generates

the desired hierarchy for both types of Yukawas and at the same time contains interesting

mechanisms for realistic µ-term and neutrino masses. Of course having this hierarchy

at the holomorphic level does not guarantee that one can reproduce the whole set of

empirical data related to Yukawa couplings. Hence, once selected the most promising
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E8 model we proceed to describe it in full detail and to compute its physical Yukawa

couplings. We find that, similarly to the results in [24–26], within the MSSM scheme

fermion masses at the GUT scale can be fit for ε ∼ 10−4 and large values of tan β. This

result is valid for the families of quark and leptons over which we have good control given

the approximations taken in our analysis, namely the two heaviest families. This not only

applies to the fermion mass spectrum but also to the quark mixing angles. We determine

the latter in terms of the separation of the two Yukawa points pup and pdown, providing

precise formulas that illustrate previous statements in the literature.

The paper is organised as follows. In section 2 we review the construction of local

F-theory GUTs and how hierarchies of Yukawa couplings arise via non-perturbative ef-

fects. In section 3 we analyse several local E8 models and compute their Yukawas at

the holomorphic level, selecting one model based on the criterion described above. In

section 4 we describe this particular model in detail and in section 5 we solve for its chiral

zero modes wavefunctions and compute the normalisation factors that render their kinetic

terms canonical. Such normalisations are the missing ingredient to compute the physical

Yukawas, whose hierarchies are analysed in section 6. We conclude in section 7.

Several technical details have been relegated to the appendices. Appendix A contains

the details and notation regarding the E8 Lie algebra used throughout the rest of the

paper. Appendix B contains the details of the computation of holomorphic Yukawas for

the models of section 3. Appendix C discusses the notion of local chirality applied to the

E8 model of section 4, while appendix D spells out the computation of its holomorphic

Yukawas, and appendix E its zero mode wavefunctions in a real gauge.

2 Yukawa hierarchies in F-theory GUTs

The standard description of F-theory GUT models [1–4] (see [7] for reviews) is done in

terms of a Calabi-Yau fourfold which is elliptically fibered over a three-fold base B. The

fibration is such that the fibre degenerates over a 4-cycle SGUT, with a fibre singularity

whose Dynkin diagram corresponds to GGUT. At certain 2-cycles Σ within SGUT the

fibre may display a higher singularity type, signalling the presence of chiral multiplets

charged under GGUT and localised at such matter curve. The precise 4d chiral matter
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content of the model depends on the four-form flux G4 threading SGUT which, if chosen

appropriately, can break GGUT to the subgroup SU(3) × SU(2) × U(1)Y . Finally, the

couplings among different chiral multiplets will depend on the intersection pattern of the

corresponding matter curves. Hence just by knowing the local geometry around SGUT one

may see which Yukawa couplings may be generated in the effective 4d GUT theory.

While such a picture is rather compelling it is not the appropriate one for the actual

computation of Yukawa couplings. Instead, it proves more useful to work with an alter-

native description of the degrees of freedom localised at SGUT. Namely, one can use a

8d action related to the 7-branes wrapping SGUT and those intersecting them. Such an

action is defined on a 4-cycle S and in terms of a non-Abelian symmetry group G ⊃ GGUT,

and is such that the 4d gauge theory described above can be obtained upon dimensional

reduction. In particular, Yukawa couplings can be obtained from the following superpo-

tential

W = m4
∗

∫
S

Tr (F ∧ Φ) (2.1)

where m∗ is the F-theory characteristic scale, F = dA− iA∧A is the field strength of the

7-branes gauge boson A, and Φ is the so-called Higgs field: a (2,0)-form on the 4-cycle S

describing the 7-branes transverse geometrical deformations. Both A and Φ transform in

the adjoint of the initial gauge group G, which is nevertheless broken to a subgroup due

to their non-trivial profile. In particular, the profile 〈Φ〉 is such that it only commutes

with the generators of GGUT in the bulk of SGUT, while on top of the matter curves of

SGUT it also commutes with further roots of G. The background profiles 〈Φ〉 and 〈A〉

cannot be arbitrary, but they must solve for the equations of motion that arise from (2.1)

and the D-term

D =

∫
S

ω ∧ F +
1

2
[Φ,Φ†] (2.2)

where ω stands for the fundamental form of S. Given the background profiles for Φ and

A one can use (2.1) and (2.2) to solve for the internal wavefunction of their zero mode

fluctuations representing the 4d matter fields. Finally, these wavefunctions can be plugged

back into (2.1) to compute the precise value of the Yukawa couplings of the model.

In this setting, two important results that apply to the holomorphic part of the Yukawa

couplings are i) they do not depend on the profile of the worldvolume flux F and ii) they
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only depend on the local geometry around the point p where the involved matter curves

intersect [17]. Thanks to this, in order to compute holomorphic Yukawa couplings it

suffices to describe the profile 〈Φ〉 around a neighbourhood Up ⊂ SGUT of the intersection

point p, and take G = Gp to be a symmetry group just large enough to contain GGUT

and describe the matter curves intersecting at p. This ultra-local approach is also valid

to compute physical Yukawa couplings if one assumes that the wavefunction profile for

the corresponding 4d chiral fields is peaked within Up, something usually achievable due

to the localisation properties of matter curves and of the worldvolume flux F threading

them.

This approach to compute Yukawa couplings has been mostly developed in the case

where GGUT = SU(5). There we have that the up-type Yukawa couplings 10× 10× 5

can be described by taking Gp = E6 or larger, while the down-type couplings 10× 5̄× 5̄

require at least of Gp = SO(12). While in principle one may consider several intersection

points of each kind, it was proposed in [13] a scenario where all up-type Yukawas are

generated from a single Yukawa point pup, and all down-type Yukawas from pdown, on

the grounds that it is then natural to obtain that one fermion family much heavier than

the other two. In fact, what one finds for the down-type couplings is that the Yukawa

matrix has rank one, and hence only one family of quarks and leptons becomes massive

[17]. This one-rank result is rather robust in the sense that it only depends on the

topological intersection pattern of matter curves, and so deforming the divisor SGUT or its

worldvolume flux F will not change it. Nevertheless, non-perturbative effects associated

to other 4-cycles Snp ⊂ B will affect the result and increase the Yukawa rank from one to

three [20].

Indeed following the discussion in [20], if Snp hosts a 7-brane with a gaugino condensate

or a 3-brane instanton with the appropriate number of zero modes then the SGUT 7-brane

superpotential (2.1) will be modified, obtaining

W = m4
∗

∫
S

Tr (F ∧ Φ) + ε
θ0

2
Tr (F ∧ F ) (2.3)

where ε measures the strength of the non-perturbative effect, and θ0 is a function that

depends on the embedding of the 4-cycle Snp (we have that θ0 = (4π2m∗)
−1[log h/h0]z=0,

with h the divisor function such that Snp = {h = 0} and h0 =
∫
S
h). Further corrections
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that depend on the derivatives of h normal to S do also appear, as well as corrections

at higher powers of ε, see [20, 24, 25] for explicit expressions. Nevertheless, for realistic

models the increase of the Yukawa rank and the generation of hierarchies can already be

seen from the leading correction shown in (2.3), with which we will work in the following,

while the remaining contributions are rather suppressed.

The analysis of down-type Yukawa couplings for GGUT = SU(5), Gp = SO(12) and

with the superpotential (2.3) was carried out in ref. [25]. It was obtained a fermion

mass hierarchy of the form (O(1),O(ε),O(ε2)) that is already present at the level of

the holomorphic Yukawas. Such robust hierarchy allows to fit the experimental values of

quark and lepton mass ratios once run to the unification scale. For this one needs ε ∼ 10−4

and to take into account the worldvolume flux dependence of the physical Yukawas. In

particular, their dependence on the hypercharge flux FY allows to obtain a realistic ratio

for the τ and b-quark Yukawas and for the different mass quotients between the second

and third families of D-quarks and leptons. Being allowed to fit all these data is a clear

improvement with respect to classical 4d field theory models of SU(5) unification.

In principle one can implement the same strategy to obtain a realistic spectrum of

up-type Yukawa couplings. However, because the coupling 10× 10× 5 involves two

fields with the same quantum numbers one cannot achieve a tree-level rank-one result for

these Yukawas with the simple intersection of three matter curves. Instead, one needs to

consider more involved matter curve geometries which, in terms of the 7-brane position

field Φ can be described by a non-Abelian background profile for 〈Φ〉, usually dubbed

T-brane [19,22] (see also [46–48]).

The presence of T-branes does complicate the 7-brane wavefunction equations but, as

shown in [26], one can still analyse the case of up-type Yukawas by taking GGUT = SU(5),

Gp = E6 and the superpotential (2.3). It was found in this reference that the inclusion of

non-perturbative effects also modifies the tree-level rank result to a hierarchical structure

of the form (O(1),O(ε),O(ε2)) for the holomorphic Yukawa eigenvalues. Finally, realistic

values for the top-quark and for the quotients of U -quarks can also be achieved by again

taking ε ∼ 10−4 and values for the worldvolume flux densities very similar to those needed

around pdown to fit the down-type Yukawa data.

These previous results suggest that one may naturally obtain a realistic mass spectrum
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by considering pup and pdown in the same neighbourhood of SGUT, as this would explain

why local parameters like flux densities are similar around both points. In practice, this

amounts to consider a symmetry group large enough to describe the whole set of matter

curves containing the MSSM chiral content, which selects either Gp = E7 or Gp = E8.

In fact, it was proposed in [45] that considering pup and pdown to coincide in a point of

E8 enhancement would account for all the flavour hierarchies observable in the Standard

Model. In this paper we would like to investigate if that is indeed possible in the scheme

discussed above, namely where the hierarchies are obtained from perturbing a tree-level

rank-one result via non-perturbative effects, as encoded by the corrected superpotential

(2.3).3

The set of E8 models that can accommodate the matter spectrum of the MSSM is

rather rich, and it is usually classified in terms of the matter curves present in SGUT.

This classification is particularly powerful whenever the matter curves content admits

a spectral cover description, which in particular means that there is an underlying E8

structure globally defined over SGUT [49–53] or even through the whole threefold base [54].

In our ultra-local approach such spectral cover description is not necessary, in the sense

that the Yukawa couplings will depend on the profiles of Φ and F near the Yukawa point

p = pup = pdown. In particular, the holomorphic Yukawas will only depend on the profile

of Φ around p. As the hierarchy of couplings is already captured at the holomorphic level,

we will proceed to classify our E8 models based on their local profile 〈Φ〉. Finally, just

as in the E6 case we need the presence of T-branes in order to have a tree-level rank-one

up-type Yukawa matrix, so the models to consider will be T-brane profiles for the field Φ

around the Yukawa point p of E8 enhancement.4

3To be precise, our scheme only assumes that the hierarchies present in the up-type and down-type

Yukawa matrices are all due to a rank-one tree-level superpotential corrected by non-perturbative effects,

while the hierarchies in the neutrino sector could be due to a different mechanism. In this sense it is

equally interesting to explore the presence of hierarchies in points of E7 enhancement, which will be

discussed in a separate publication.
4Strictly speaking due to the T-brane profile 〈Φ〉 does not vanish and so the symmetry is not enhanced

to E8 at any point of the local model. In particular at the point p where all matter curves meet and all

Yukawas are generated we will get a fibre singularity enhancement but we do not expect to recover a full

E8 singularity. For the sake of simplicity, we will abuse of language and still refer to this p as a point of
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To summarise, the findings of [25,26] suggest one can describe the flavour hierarchies

of the Standard Model via an F-theory SU(5) local model with a E8 point where all the

Yukawas originate from. The geometry near such point should be described by an E8 T-

brane profile for Φ, and non-perturbative effects should be taken into account to increase

the rank of the Yukawa matrix from one to three. Since the holomorphic Yukawas already

detect the fermion mass hierarchies, one can already see at this level whether a specific

T-brane model is promising for reproducing empirical data. In the following section we

will consider different classes of T-brane backgrounds and analyse if they give rise to the

appropriate flavour hierarchy of fermion masses.

3 SU(5) models with E8 enhancement

In this section we will present a set of local SU(5) F-theory models that can be described as

an E8 theory higgsed by a T-brane background. Each of these models has the appropriate

structure of matter curves so that they can embed the full content of the MSSM chiral

spectrum, with only one massive family at tree-level. The remaining families of quark and

leptons will become massive due to non-perturbative corrections, but then we find that

one may get a hierarchy of masses either of the form (1, ε, ε2) or of the form (1, ε2, ε2).

Since ε is a very small number that measures the strength of a non-perturbative effect, the

latter hierarchical pattern is very unlikely to reproduce empirical data, while the former

has already been shown to be adequate in simpler local F-theory models [25,26].

As discussed in the previous section, to discover the hierarchical pattern that non-

perturbative effects give rise to it suffices to compute the holomorphic piece of the Yukawa

couplings. This will greatly simplify the analysis of this section, as these couplings can be

computed via a residue formula [17,22,25,26]. Finally, for the sake of clarity we will only

display the basic features of each model, their structure of matter curves and the final

result for the holomorphic Yukawas, leaving the computational details to appendix B.

E8 in the model.
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3.1 T-branes and matter curves

One crucial feature of an F-theory local model with respect to the computation of Yukawa

couplings is the profile for the 7-brane Higgs field Φ in the vicinity of the Yukawa point.

As mentioned above, obtaining a third family much heavier than the other two naturally

selects a T-brane profile for Φ, which then specifies an appropriate local structure of matter

curves. In the following we will briefly discuss the relation between T-brane profiles and

matter curves, as they will be used when discussing each model. For a more thorough

discussion on this subject we refer the reader to [22,26].

A T-brane background is specified by a particular configuration for the Higgs back-

ground 〈Φ〉 that does not commute with its adjoint, namely [〈Φ〉, 〈Φ〉†] 6= 0. In this class

of backgrounds the identification of the matter curves can be subtle because, unlike in the

case of commuting Higgs field, there will not be an enhancement of the symmetry group

in a complex curve within S. Nevertheless, it is still true that some additional roots of

the algebra of Gp will commute at specific complex codimension one loci, and this allows

us to identify the matter curves as these particular loci.

In order to detect the structure of matter curves it proves useful to work with matrix

representations of the Higgs field in the algebra g⊥ defined such that gGUT ⊕ g⊥ is a

maximal subalgebra of gp = Lie(Gp). Let us consider the case of interest in this paper,

namely gp = e8 and gGUT = su5. Then we have the well-known maximal decomposition

e8 ⊃ suGUT
5 ⊗ su⊥5 (3.1)

248 → (24,1)⊕ (1,24)⊕ ((10,5)⊕ c.c.)⊕ ((5,10)⊕ c.c.)

Since the Higgs profile 〈Φ〉 belongs to the adjoint of e8 and by construction commutes

with suGUT
5 , it will only act non-trivially on the each of the representations R of g⊥ = su⊥5

that appear in (3.1). This action can be expressed in terms of a matrix ΦR such that

[〈Φ〉,R] = ΦRR (see e.g. [26], section 3) so whenever the determinant of ΦR vanishes an

element of R will be commuting with 〈Φ〉. Finally, given that (RGUT,R) ⊂ 248, this will

indicate that we have a zero mode transforming as RGUT in the locus where det ΦR = 0,

and so the corresponding matter curve.

Interestingly, these facts allow to express the structure of matter curves in terms of
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the spectral surface of the Higgs field, which is defined as5

PΦR(x, y, z) = det(ΦR − zI) = 0 (3.2)

for each of the matrices ΦR associated to 〈Φ〉. Following [22], we say that ΦR is recon-

structible if its spectral surface is a non singular algebraic variety, and that it is block

reconstructible if it has the structure of a block diagonal matrix such that every block is

reconstructible. As the property of reconstructibility is independent of the representation

R we then say that the Higgs field is block reconstructible, and in this case the whole

information of 〈Φ〉 is carried by its spectral surfaces.6

Now it is easy to see how the pattern of matter curves can be encoded in the spectral

surface (3.2): when the Higgs field is block reconstructible its spectral surfaces will be the

product of polynomials whose zero locus is a non-singular algebraic variety, and there will

be a one to one correspondence between these varieties and the matter curves in a specific

representation. Hence, the presence of several matter curves will induce a splitting of

the spectral surface into irreducible polynomials, the number of factors of this splitting

matching with the number of matter curves.

In the following we will present a number of local E8 models whose local spectrum

of matter curves can be detected by means of the above considerations. For the sake

of simplicity, we will focus on models in which the Higgs field background 〈Φ〉 is block

reconstructible, since then we can classify our models by the number of matter curves

near the Yukawa point. It would however be interesting to extend our set of examples to

more general, non-reconstructible backgrounds.

3.2 Catalogue of models

We now proceed to describe several kinds of local E8 models with only one massive family

at tree level. Such models are candidates to yield a realistic hierarchical fermion mass

pattern after non-perturbative effects have been taken into account although, as already

advertised, this will not always be the case. To find out we will compute the holomorphic

Yukawa couplings, which depend on the profile for Φ in the holomorphic gauge [17]. For

5The following expression for the spectral surface holds if Φ takes values in a un subalgebra of gp.
6As shown in [22], SU(k) reconstructible T-branes correspond to spectral covers with monodromy Zk.

12



this purpose we only need to specify 〈Φ〉 as a linear combination of holomorphic functions

multiplying the E8 roots, following the notation of appendix A. As explained above we

may also describe this background as a matrix Φ5 acting on the representation 5 of su⊥5 ,

which allows to find the local set of 10 matter curves via eq.(3.2). Since we are considering

reconstructible backgrounds, the 5× 5 matrix Φ5 will be automatically block diagonal, so

we can classify our local models by the different dimension of each of these blocks.

For simplicity we will only provide the basic data for each of the models that we

have studied, leaving the details for appendix B. That is, we will describe the local set of

matter curves that arise from the profile for Φ and the different possible assignments of

the MSSM fields within them. Recall that in the absence of hypercharge flux the matter

spectrum is organised in SU(5) multiplets, so for the purpose of computing holomorphic

Yukawas we can consider that SU(5) is unbroken. Then to achieve rank one Yukawas at

tree-level we need to have three copies of the matter representation 10M within the same

10-curve and three copies of 5̄M in the same 5-curve. Finally the Higgs multiplets 5U

and 5̄D should be in 5-curves different from the one of 5̄M and such that the couplings

10M × 10M × 5U and 10M × 5̄M × 5̄D are allowed.

For each assignment we will present the structure of holomorphic Yukawa couplings

that arise from the superpotential (2.3) with

θ0 = i(xθx + yθy) (3.3)

and (x, y) parametrising the complex coordinates of the 4-cycle S. We will then discuss

whether such structure accommodates favourable hierarchies to fit empirical data. In the

next section we will provide a more detailed description of one of the models with such

favourable structure, providing all the details that allow to compute its physical Yukawas.

4+1 models

Let us first consider a holomorphic background for Φ = Φxydx ∧ dy of the form

〈Φxy〉 = λ(Ĥ1 + 2Ĥ2 + 3Ĥ3 + 4Ĥ4) +m(E+
1 + E+

2 + E+
5 +mxE−3 ) (3.4)

where the notation and definitions that are used for the E8 roots are given in appendix A.

Here λ = µ2(bx−y) is a holomorphic linear function of (x, y) vanishing at the origin, which
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is where the Yukawa point p will be located. By acting on the fundamental representation

of su⊥5 we obtain the matrix representation

Φ5 =



λ m 0 0 0

0 λ m 0 0

0 0 λ m 0

m2x 0 0 λ 0

0 0 0 0 −4λ


, (3.5)

which displays a 4 + 1 block structure. The various matter representations and their

matter curves are then the following ones

- 10 sector

10a : λ4 = m5x , 10b : λ = 0 ,

- 5 sector

5a : (3λ)4 = m5x , 5b : λ2(m5x+ 4λ4) = 0 ,

and it is easy to see that all the curves meet at the origin.

This local model has already been considered in [23], where it was found a rank one

structure for the holomorphic Yukawas by using the tree-level superpotential (2.1). In

the following we would like to extend this result by considering the superpotential (2.3)

corrected by non-perturbative effects and providing the resulting holomorphic Yukawas

up to order O(ε2).

As pointed out in [23] (see also appendix B) in order to generate an up-type Yukawa

coupling 10M × 10M × 5U it is necessary to assign the representation 10M to the 10a

curve and 5U to the curve 5b. Because there are only two 5-curves, we will also consider

that 5̄D is also localised in 5b while the three copies of the 5̄M are in 5a.

With this setup one can compute the Yukawa matrices via a residue calculation.

Schematically we find that

YU =


0 0 ε y13

0 ε y22 0

ε y31 0 y33

+O(ε2) , (3.6)
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YD/L =


0 0 ε y13

0 ε y22 0

ε y31 0 y33

+O(ε2) , (3.7)

where yij are order one numbers (detailed expressions for yij are found in appendix B).

We then reproduce the results of [23] in the limit ε → 0, while we see that for ε 6= 0 the

rank of both matrices is increased to three. Finally, both matrices will have a hierarchy

of eigenvalues of the form (O(1),O(ε),O(ε2)) so this model has a Yukawa structure which

is favourable to reproduce the empirical data.

Despite this favourable hierarchy, this model has the less attractive feature of having

both up and down Higgses 5U , 5̄D in the same curve. Hence some particular mechanism

should be invoked to prevent a large µ-term to be generated. Because of this potential

drawback we will not consider this model in the following.

3+2 models

We next consider a Higgs background of the form

〈Φxy〉 = −λ
(

2

3
Ĥ1 +

4

3
Ĥ2 + 2Ĥ3 + Ĥ4

)
+m̃(E+

1 +E+
5 +m̃yE−8 )+m(E+

10+mxE−10) . (3.8)

where again λ = µ2(bx− y). Its action on the fundamental of su⊥5 is given by

Φ5 =



−2
3
λ m̃ 0 0 0

0 −2
3
λ m̃ 0 0

m̃2y 0 −2
3
λ 0 0

0 0 0 λ m

0 0 0 m2x λ


, (3.9)

showing a 3 + 2 block structure. The various matter representations and curves are now

- 10 sector

10a : − 8

27
λ3 + m̃4y = 0 , 10b : λ2 −m3x = 0 ,

- 5 sector

5a : m̃4y +
64

27
λ3 = 0 , 5b : m9x3 =

λ2m6x2

3
+m3x

(
2λm̃4y − λ4

27

)
+

1

729

(
λ3 + 27m̃4y

)2
,

5c : λ = 0 .
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In this class of models we can assign the three copies of 10M to either the 10a or the 10b

sector. If we assign the 10M to the 10a sector then we need to assign 5U to the 5a sector

in order to have 10M×10M×5U Yukawas which are singlets under SU(5)⊥. Nevertheless,

an explicit computation shows that the holomorphic up-type Yukawa couplings vanish for

this arrangement. This vanishing result is analogous to the one found in [23] for the E7

model studied in there, with the matter curves involved in the up-type Yukawas having

a similar structure. We therefore see that this assignment of chiral matter to curves does

not yield realistic Yukawas.

The other possibility in this model is to assign 10M to the 10b sector, which requires

that 5U corresponds to the 5c sector. In addition one has to choose how to assign the

representations 5̄M and 5̄D to the sectors 5a and 5b, having two possibilities. The final

structure of the Yukawa matrices does however not depend on this choice. In both cases

we find that

YU =


0 0 ε y13

0 ε y22 ε y23

ε y31 ε y32 y33

+O(ε2) , (3.10)

YD/L =


0 0 0

0 0 ε y23

0 ε y32 y33

+O(ε2) , (3.11)

where again yij are order one numbers whose explicit expression is given in appendix B.

We see therefore that for this class of models the down-type Yukawa matrix does not have

a favourable hierarchical structure.

2+2+1 models

We finally consider a Higgs background of the form

〈Φxy〉 = λ1(Ĥ1 + 2Ĥ2−2Ĥ4)−λ2(Ĥ3 + 2Ĥ4) +m(E+
1 +mxE−1 ) + m̃(E+

2 + m̃yE−2 ) (3.12)
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whose action on the fundamental of su⊥5 is

Φ5 =



λ1 m 0 0 0

m2x λ1 0 0 0

0 0 −2λ1 − λ2 m̃ 0

0 0 m̃2y −2λ1 − λ2 0

0 0 0 0 2(λ1 + λ2)


, (3.13)

and where now λ1 and λ2 are two different polynomials of x, y which we shall take as

λ1 = µ2
1(bx− y) and λ2 = µ2

2(bx− y). As we will see in the next section, taking λ1 6= λ2

with a slightly more general Ansatz will allow us to separate the two Yukawa points pup

and pdown from each other, introducing an interesting source of family mixing.

The matter representations and matter curves are in this case

- 10 sector

10a : λ2
1 −m3x = 0 , 10b : (2λ1 + λ2)2 − m̃3y = 0 , 10c : λ1 + λ2 = 0 ,

- 5 sector

5a : λ1 = 0 , 5b : 2λ1 + λ2 = 0 , 5c : (3λ1 + 2λ2)2 −m3x = 0 ,

5d : λ2
2 − m̃3y = 0 , 5e : (λ1 + λ2)4 − 2(λ1 + λ2)2(m3x+ m̃3y) + (m3x− m̃3y)2 = 0 .

so the amount of matter curves increases considerably with respect to previous models.

In this case we can assign the representation 10M to either the 10a or the 10b sectors.

Since both choices end up leading to the same results we will choose the first option,

which fixes the 5U representation within the 5a sector. The up-type Yukawas then have

the following structure

YU =


0 0 ε y13

0 ε y22 0

ε y31 0 y33

+O(ε2) . (3.14)

We then find an eigenvalue hierarchy of the form (O(1), O(ε),O(ε2)) and therefore a

suitable hierarchical structure to fit empirical data.

There are some possibilities now on how to associate the representations 5̄M and 5̄D

to the remaining matter curves, and this choice affects the down-type Yukawa matrix.

We list here the possible choices and the resulting Yukawa matrices:
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- Either 5̄M is associated to 5d and 5̄D is associated to 5e or the other way round. In

the first case we find that the down-type Yukawa matrix has the form

YD/L =


0 0 0

0 0 ε y23

0 ε y32 y33

+O(ε2) (3.15)

whose eigenvalues are (O(1), O(ε2),O(ε2)). Therefore this assignment for the mat-

ter fields does not lead to a good hierarchical structure for the down-type Yukawas.

On the other hand, if we identify the 5̄M with 5e, then it is not clear how to perform

the analysis due to the fact that the matter curve is singular at the Yukawa point.

- Either 5̄M is associated to 5b and 5̄D to 5c or the other way round. In both cases

we find that the down-type Yukawa matrix has the structure

YD/L =


0 0 ε y13

0 ε y22 0

ε y31 0 y33

+O(ε2) . (3.16)

that has the favourable eigenvalue hierarchy (O(1), O(ε),O(ε2)).

We then see that in the present 2 + 2 + 1 model there are two particular assignments

of matter fields that yield a promising hierarchical structure for both up and down-type

Yukawas. However, as we discuss next, one of the two has a more attractive structure for

the µ-term and neutrino masses, namely the choice of assigning 5̄M to 5b and 5̄D to 5c.

3.3 Comments on µ-term and neutrino masses

One of the most attractive features of the E8 models is that it is possible to describe the

masses of the neutrinos and the µ-term for the MSSM Higgs sector at the same time as

the Yukawa couplings [45]. Although in the following sections will not deal with them,

let us briefly analyse here the structure of neutrino masses and µ-term in the case of the

two 2 + 2 + 1 models with good hierarchical structures for the Yukawa matrices, in order

to select one of them.

In the case in which we assign the 5̄M to 5c and the 5̄D to 5b we find that there is

a singlet under SU(5)GUT that can give a coupling of the form 1 × 5U × 5̄M and, after
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breaking SU(5)GUT down to the standard model gauge group this will imply the presence

of the following coupling in the superpotential

W ⊃ λHuLS , (3.17)

where we called the singlet S and L the lepton doublet superfield. This coupling, as

analysed in [57], corresponds to a Dirac mass for the neutrinos if we identify the singlet S

with the right handed neutrino NR. With this assignment of matter curves however it is

not possible to have a renormalisable µ-term for the Higgs fields. It is possible to generate

a non-renormalisable µ-term nonetheless if we consider the interactions of the Higgs fields

with modes coming from other matter curves. In particular when the fields in the 5e come

in vector-like pairs the following couplings will be allowed in the superpotential

W ⊃ λ1HuS̃φ+ λ2HdS̃φ
c + Λφφc , (3.18)

where we called φ any field in the 5e sector and φc its conjugate, Λ is a mass term for φ

and S̃ is a singlet. After integrating out φ and φc using their F-term equations we find in

the superpotential the following term

W ⊃ λ1λ2

Λ
S̃2HuHd , (3.19)

which becomes an effective µ-term for the Higgs fields if the singlet S̃ gets a non-vanishing

vev. Note that this kind of non-renormalisable effective µ-term has already been consid-

ered in [58] and can provide a solution to the µ-problem in the MSSM.

In the second case, namely in the case we assign the 5̄M to 5b and the 5̄D to 5c, we

find that it is possible to have the following coupling in the superpotential

W ⊃ SHuHd (3.20)

which becomes an effective µ-term if the singlet S gets a non-vanishing vev. This class of

effective µ-term is particularly interesting because it can provide a mechanism for solving

the µ-term problem in the MSSM [59]. However for this assignment of matter curves we

find the feature that no masses for the neutrinos are possible if they are localised at the

intersection of two 7-branes. Since one of the major motivations for studying Yukawa

couplings at the point of E8 is the generations of all couplings in the MSSM, including

µ-term and masses for neutrinos, we will henceforth focus our attention on the first model

discussed in this subsection and start analysing it in detail in the next section.
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Summary

To sum up, from all the models discussed in this section, we have found that the 2 + 2 + 1

model specified by (3.12) is the most interesting phenomenologically, in the sense that it

yields a hierarchical structure of Yukawa couplings of the form (O(1),O(ε),O(ε2)) for a

specific assignment of SU(5) representations to matter curves. Such assignment is

10M → 10a 5̄M → 5c 5U → 5a 5̄D → 5b (3.21)

which also exhibits interesting mechanisms to generate realistic neutrino masses and µ-

term. In the next sections we will analyse this model in detail, specifying a background

that includes the appropriate worldvolume fluxes on each of the above matter curves

(section 4). We will then compute the wavefunctions (section 5) and the physical Yukawas

(section 6) for this local E8 model, showing how empirical fermion masses and mixings

can be fit upon an appropriate choice of parameters.

4 An E8 model with hierarchical Yukawas

Let us now consider in some detail the most promising of the E8 local models discussed

above. In particular we will describe the 7-brane background for the last 2+2+1 model

and show that it indeed incorporates a realistic hierarchy of Yukawa couplings.

Describing the background of a 7-brane local model with E8 symmetry group entails

specifying a Higgs field Φ and gauge connection A, both valued in the algebra su⊥5 . If we

want to preserve supersymmetry at the GUT scale, they must obey the F-term equations

∂̄AΦ = 0 (4.1a)

F (0,2) = 0 (4.1b)

that arise from minimising the superpotential (2.1). Also, the D-term (2.2) should vanish

ω ∧ F +
1

2
[Φ,Φ†] = 0. (4.2)

In order to find a solution to the above, one usually exploits the fact that the F-terms

are invariant under the complexified gauge group, as opposed to the D-term which is
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only invariant under the real group. More explicitly, any holomorphic Higgs together

with A(0,1) = 0 automatically satisfies the F-terms. This is referred to as a solution in

holomorphic gauge [16, 17] which is not physical since it does not obey the full set of

equations of motion and the gauge field is not real. However, one can still extract useful

information at the holomorphic level, such as the structure of matter curves and rank

of the Yukawa couplings by solving a relatively simple algebraic problem. Finally, by

performing a complex gauge transformation, we can bring the fields in a real gauge that

satisfy the D-term. This last step is the most challenging as it requires solving a set of

partial differential equations that become particularly complicated in models including

T-branes. However, it is unavoidable if we want to obtain the kinetic terms and hence

the magnitude of the Yukawa couplings.

Following the above approach, we will first introduce the background for the Higgs field

in holomorphic gauge and discuss the structure of matter curves and their intersections.

We will then consider the background in a real gauge by imposing the D-term equation,

which forces the introduction of non-primitive fluxes. We will complete the description of

the background by introducing additional fluxes to achieve chirality for the MSSM fields as

well as GUT symmetry breaking. This choice of background will yield an MSSM spectrum

whose holomorphic Yukawa couplings are of the form (3.14) and (3.16), as we show by

giving explicit expressions computed by means of a residue formula. The computation of

physical Yukawa couplings and mixing angles is left for sections 5 and 6.

4.1 Higgs background

Holomorphic gauge

The first ingredient necessary to define our local model model is the background Higgs

field 〈Φ〉 = 〈Φxy〉 dx ∧ dy that triggers the breaking of E8 to SU(5)GUT . In holomorphic

gauge we choose

〈Φxy〉 = λQ1 + d(λ+ κ)Q2 +m(E+
1 +mxE−1 ) + m̃(E+

2 + m̃yE−2 ), (4.3)

where Qi, E
±
i are E8 generators whose definition and all other details involving the E8

Lie algebra are given in appendix A. Here λ = µ2(bx − y), m, m̃, µ and κ are constants
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with dimensions of mass and b, d are dimensionless constants. Notice that in terms of the

background (3.12) we have chosen λ1 = λ and λ2 = −(d + 2)λ − dκ, with κ being the

distance between the two zeroes of these polynomials. As we will see, κ will control the

distance between the two Yukawa points pup and pdown of this model.

As discussed in appendix B this background breaks SU(5)⊥ to S(U(2)×U(2)×U(1))⊥,

the representations of SU(5)⊥ decomposing as

SU(5)⊥ −→ S(U(2)× U(2)× U(1))⊥ (4.4)

5 −→ (2,1) 3
5
,− 2

5
⊕ (1,2)− 2

5
, 3
5
⊕ (1,1)− 2

5
,− 2

5

10 −→ (1,1) 6
5
,− 4

5
⊕ (1,1)− 4

5
, 6
5
⊕ (2,1) 1

5
,− 4

5
⊕ (1,2)− 4

5
, 1
5
⊕ (2,2) 1

5
, 1
5

where the subscripts denote the charges under the traces of the two U(2) factors. Each of

these subsectors corresponds to a different 5 or 10 matter curve, and some of them will

be associated to the SU(5)GUT fields {10M , 5̄M , 5U , 5̄D}.

In order to describe the different assignments of fields to matter curves and represen-

tations of S(U(2)×U(2)×U(1))⊥ it proves useful to introduce a basis of the fundamental

representation of su⊥5 , that we denote by e1, . . . , e5. The action of the background Higgs

field on this basis reads

Φ5 =



λ m 0 0 0

m2x λ 0 0 0

0 0 d(λ+ κ) m̃ 0

0 0 m̃2y d(λ+ κ) 0

0 0 0 0 −2(1 + d)λ− 2dκ


, (4.5)

in agreement with (3.13). A similar matrix Φ10 can be built for the antisymmetric rep-

resentation of su⊥5 , with elements of the form ei ∧ ej with i 6= j. From Φ5 and Φ10 and

using eq.(3.2) one can detect the 10 and 5 matter curves, respectively. For this model

one then finds three 10-curves and five 5-curves, each of them corresponding to a factor

in the above decomposition of the 5 and 10 of SU(5)⊥, respectively.

Assigning matter fields to matter curves as in the previous section is then equivalent

to specifying their G⊥ = S(U(2)× U(2)× U(1))⊥ quantum numbers. One finds that for
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the model with a satisfactory hierarchy of Yukawa couplings the assignment is

10M :

 e1

e2

 ∼ (2,1) 3
5
,− 2

5
, 5̄M :

 e1 ∧ e5

e2 ∧ e5

 ∼ (2,1) 1
5
,− 4

5
,

5U : (e∗1 ∧ e∗2) ∼ (1,1)− 6
5
, 4
5
, 5̄D : (e3 ∧ e4) ∼ (1,1)− 4

5
, 6
5
,

(4.6)

where we have also expressed these quantum numbers in terms of the basis e1, . . . , e5, see

appendix B for further details.

To cross-check this assignment let us read off each matter curve from the action of

〈Φ〉 on the G⊥ quantum numbers of each matter field. More precisely, we define Φ|RGUT

as the action of 〈Φxy〉 on the g⊥ part of (RGUT,R) ⊂ 248. We have that

Φ|10M =

 λ m

m2x λ

 , Φ|5̄M =

 −(1 + 2d)λ− 2dκ m

m2x −(1 + 2d)λ− 2dκ


Φ|5U = −2λ, Φ|5̄D = 2d(λ+ κ).

(4.7)

The matter curves are then given by the vanishing of det Φ|RGUT
, namely

Σ10M : λ2 −m3x = 0, Σ5̄M : ((1 + 2d)λ+ 2dκ))2 −m3x = 0

Σ5U : λ = 0, Σ5̄D : d(λ+ κ) = 0,
(4.8)

in agreement with the discussion of the previous section and that of appendix B.

The two types of Yukawa couplings are generated when these curves meet. In partic-

ular, the up-type Yukawa 10M ×10M ×5U is developed at the intersection between Σ10M

and Σ5U . On the other hand, the down-type coupling 10M × 10M × 5U appears at the

point where Σ10M , Σ5̄M and Σ5̄D coincide.7 These points are

YU : Σ10M ∩ Σ5U = {x = y = 0} = pup (4.9)

YD/L : Σ10M ∩ Σ5̄M ∩ Σ5̄D = {x = x0, y = y0} = pdown,

with

x0 =
κ2

m3
, y0 =

κ

µ2

(
1 +

κbµ2

m3

)
. (4.10)

We see that for each type of Yukawa there is a single intersection point and that, in general,

these are not the same. It is the parameter κ that controls the separation between them.

7We are demanding that three curves in a surface meet, which does not look generic. However, due

to gauge invariance, one of these equations is a linear combination of the others and the coupling is in

fact generic.
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For κ = 0 both couplings are developed at the origin, whereas the two Yukawa points

separate as |κ| increases.

Real gauge

The previous background fields are in holomorphic gauge and we would now like to find

a physical solution, namely one that satisfies the D-term equation. As explained earlier,

this is achieved by performing an arbitrary complex gauge transformation and imposing

(4.2), which translates into a set of differential equations for such transformation.

More explicitly, consider the following transformation

Φ→ gΦ g−1 , A0,1 → A0,1 + ig ∂̄ g−1, (4.11)

where g is an element of SU(5)⊥C . We propose the following Ansatz

g = e
1
2

(fP1+f̃P2) (4.12)

where PK = [E+
K , E

−
K ] and f, f̃ are real functions of (x, y). After the transformation, the

Higgs and gauge fields are

Φ =λQ1 + d(λ+ κ)Q2 +m(efE+
1 +mxe−fE−1 ) + m̃(ef̃E+

2 + m̃ye−f̃E−2 ) (4.13a)

A0,1 = − i

2
(∂̄fP1 + ∂̄f̃P2). (4.13b)

We can now plug these fields into the D-term (4.2) which yields equations for f and f̃ .

Taking the Kähler form as

ω =
i

2
(dx ∧ dx̄+ dy ∧ dȳ), (4.14)

these become

(∂x∂̄x̄ + ∂y∂̄ȳ)f =m2(e2f −m2|x|2e−2f ) (4.15a)

(∂x∂̄x̄ + ∂y∂̄ȳ)f̃ = m̃2(e2f̃ − m̃2|y|2e−2f̃ ). (4.15b)

Following [22, 26], we take f to depend only on rx, the radial coordinate in the (x, x̄)

plane. Then, eq.(4.15a) reduces to(
d2

ds2
+

1

s

d

ds

)
h =

1

2
sinh(2h) (4.16)
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where s = 8
3
(mrx)

3
2 , and the function h is defined as

e2f = mrxe
2h (4.17)

This is a particular case of the Painlevé III equation whose solution over the whole complex

plane C can be found in [55]. However, since we are working in a patch of SGUT that

contains the origin, we just need an approximate solution,8 which is [26]

f(rx) = log c+ c2m2r2
x +m4r4

x

(
c4

2
− 1

4c2

)
+ . . . (4.18)

and similarly for f̃ , replacing x→ y. In the previous equation the constant c needs to be

fixed to the values

c = 31/3 Γ
[

2
3

]
Γ
[

1
3

] ∼ 0.73 , (4.19)

if we ask for a regular solution for all values of rx. However, as mentioned above, we will

not restrict to this particular choice since the actual value will be fixed only when all the

global details of the background are specified.

4.2 Primitive fluxes

The fields (4.13) define a consistent background that solves both the F and D-term equa-

tions. We can still find a more general background by turning on additional gauge fluxes,

however, these cannot be generic since that would require modifying Φ. The most general

flux that respects the Higgs field in (4.13) has to commute with it and be primitive on

SGUT. If it also keeps the gauge group SU(5)GUT unbroken such flux is of the form

FQ = i(dx∧ dx̄− dy ∧ dȳ)(M1Q1 +M2Q2) + i(dx∧ dȳ+ dy ∧ dx̄)(N1Q1 +N2Q2) . (4.20)

As usual, the presence of such worldvolume flux is necessary to induce 4d chirality in the

matter curves. The modes of opposite chirality 5, 5̄ and 10, 10 feel the background (4.13)

in a similar way, and so whenever there is a zero mode solution for one chirality there will

also be a solution for the opposite chirality. This is no longer true for the background

flux (4.20), that will locally select modes of one chirality or the other depending on the

8Far away from the origin the equations themselves receive corrections so it does not make sense to

insist on solving the Painlevé equation for the whole of C.
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signs of Mi, Ni, i = 1, 2. This chirality selection can be characterised in terms of a local

chirality index [27], as discussed in more detail in appendix C.

Finally, following the standard strategy in F-theory GUTs, we break SU(5)GUT down

to the SM gauge group by turning on a flux along the hypercharge generator. Keeping

the associated gauge boson massless amounts to imposing a global condition, which is

invisible at the local level of our discussion. We then parametrise such flux as

FY = i
[
ÑY (dy ∧ dȳ − dx ∧ dx̄) +NY (dx ∧ dȳ + dy ∧ dx̄)

]
QY , (4.21)

where the hypercharge generator is defined as follows

QY =
1

3

(
H̃1 + 2H̃2 + 3H̃3

)
+

1

2
H̃4 . (4.22)

The total primitive flux is then

Fp = iQR(dy ∧ dȳ − dx ∧ dx̄) + iQS(dx ∧ dȳ + dy ∧ dx̄) (4.23)

with

QR = ÑYQY −M1Q1 −M2Q2, QS = NYQY +N1Q1 +N2Q2. (4.24)

These fluxes will enter into the Dirac equation for the zero modes of our model. As a result,

each of the MSSM chiral zero modes will feel a different flux depending on their quantum

numbers (and in particular its hypercharge) and will then develop a different wavefunction

profile. As mentioned before, these flux differences will not affect the Yukawas at the

holomorphic level, but they will enter into the final expression for the physical Yukawas.

We have then gathered the flux felt by the different MSSM sectors of the present E8 model

in table 1, and in particular the effective combination of fluxes qR and qS that will be

crucial for the computations of section 5.

4.3 Residue formula for Yukawa couplings

The computation of the holomorphic Yukawa couplings can be performed via dimensional

reduction of the 7-brane superpotential

W = m4
∗

∫
S

Tr (Φ ∧ F ) +
ε

2
θ0Tr (F ∧ F ) . (4.25)
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MSSM Sector S(U(2)× U(2)× U(1))⊥ GMSSM qR qS

Q 10M (2,1) 3
5
,− 2

5
(3,2)− 1

6
−1

6
ÑY −M1 −1

6
NY +N1

U 10M (2,1) 3
5
,− 2

5
(3̄,1) 2

3

2
3
ÑY −M1

2
3
NY +N1

E 10M (2,1) 3
5
,− 2

5
(1,1)−1 −ÑY −M1 −NY +N1

D 5̄M (2,1) 1
5
,− 4

5
(3̄,1)− 1

3
−1

3
ÑY +M1 + 2M2 −1

3
NY +N1 − 2N2

L 5̄M (2,1) 1
5
,− 4

5
(1,2) 1

2

1
2
ÑY +M1 + 2M2

1
2
NY +N1 − 2N2

HU 5U (1,1)− 6
5
, 4
5

(1,2)− 1
2

−1
2
ÑY + 2M1 −1

2
NY − 2N1

HD 5̄D (1,1)− 4
5
, 6
5

(1,2) 1
2

1
2
ÑY − 2M2

1
2
NY + 2N2

Table 1: Different sectors and charges for the E8 model of this section. Here qR and qS

are the E8 operators (4.24) evaluated at each different sector. All the multiplets in the

table have the same chirality.

As discussed in section 2, the second term in (4.25) is due to the presence of non-

perturbative effects in the compactification. In particular we have that θ0 is a holomorphic

section on S and ε is a parameter that measures the strength of the non-perturbative ef-

fect. We note that the presence of this additional term will eventually change the BPS

equations for the background that we previously solved, and so the background profiles

for Φ and F will have O(ε) corrections. One can however show that these corrections do

not affect the computation of holomorphic Yukawas [25], and so they can be ignored in

what follows.9

The zero mode equations can be derived by expanding the 7-brane fields into back-

ground and fluctuations

Φ = 〈Φ〉+ ϕ , A = 〈A〉+ a , (4.26)

and linearising in fluctuations the F-term equations derived from (4.25). We obtain

∂̄〈A〉a = 0 ,

∂̄〈A〉ϕ = i[a, 〈Φ〉]− ε∂θ0 ∧ (∂〈A〉a+ ∂̄〈A〉a
†) .

(4.27)

9The full superpotential expression involves terms of the form θkSTr(Φk
xyF

2), k ≥ 2, but suppressed

by higher powers in m∗ [20, 24,25]. Hence their contributions will be less relevant than those from θ0.
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A similar procedure can be applied to the D-term equation, but since we are simply

looking at the holomorphic part of the Yukawa couplings in this section we will postpone

that discussion to the following section. It is possible to solve explicitly for the system

(4.27), the solution being

a = ∂̄〈A〉ξ ,

ϕ = h− i[〈Φ〉, ξ] + ε∂θ0 ∧ (a† − ∂〈A〉ξ) ,
(4.28)

where ξ is a section of Ω(0,0)(S) ⊗ ad(E8) and h is a holomorphic section of Ω(2,0)(S) ⊗

ad(E8). We stress that while the solution (4.28) contains dependence on a† which may

in principle introduce some non-holomorphic terms in the 4d superpotential, these terms

will appear only in total derivatives and so they will not eventually appear in the resulting

4d superpotential [25]. Using this solution it is possible to prove [17, 22, 25, 26] that the

Yukawa couplings are

Y = −im
4
∗

3

∫
S

Tr(h ∧ ∂̄〈A〉ξ ∧ ∂̄〈A〉ξ) . (4.29)

It is also possible to write the Yukawa couplings as a residue evaluated at the Yukawa

point. We simply quote here the result referring to [25,26] for the general proof:

Y = m4
∗π

2fabc Resp
[
ηaηbhxy

]
= m4

∗π
2fabc

∫
C
ηaηbhxydx ∧ dy , (4.30)

where C can be continuously contracted to a product of unit circles surrounding the

Yukawa point p without encountering singularities in the integrand and we defined the

function η as

η = −iΦ−1
[
hxy + iε∂xθ0∂y

(
Φ−1hxy

)
− iε∂yθ0∂x

(
Φ−1hxy

)]
. (4.31)

4.4 Holomorphic Yukawa couplings for the E8 model

Let us finally discuss the structure of the Yukawa couplings that arise in the present local

E8 model. We focus our attention on the sector involving only the MSSM fields so we will

have only two Yukawa matrices, namely the 10M × 10M × 5H and the 10M × 5̄M × 5̄H .

The functions hxy for the different fields are

h10M = γ10,im
3−i
∗ (bx− y)3−i h5̄M = γ5,im

3−i
∗ (b(x− x0)− (y − y0))3−i

h5H = γU h5̄H = γD,
(4.32)
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where (x0, y0) corresponds to the coordinates (4.10) of the down-type Yukawa point pdown,

the constants γ10,i, γ5,i, γU , γD are normalisation factors to be fixed in the next section and

i = 1, 2, 3 is a family index. Using these we can compute the functions η in (4.31) which

in turn are needed to compute the holomorphic couplings via the residue formula (4.30).

Such η’s are computed in appendix D, where the following Yukawa couplings are found:

YU =
π2 γU γ

2
10,3

2ρmρµ


0 0 ε̃ γ10,1

2ρµγ10,3

0 ε̃
γ210,2

2ρµγ210,3
0

ε̃ γ10,1
2ρµγ10,3

0 1



YD/L =− π2 γD γ10,3 γ5,3

2d ρmρµ


−ε̃κ̃2 γ10,1γ5,1

2dρ3µγ10,3 γ5,3
ε̃κ̃ γ10,1γ5,2

dρ2µγ10,3γ5,3

(
2κ̃2

ρµ
− ε̃

d

)
γ10,1

2ρµγ10,3

ε̃κ̃ γ10,2γ5,1
2dρ2µγ10,3γ5,3

−ε̃ γ10,2γ5,2
2dρµγ10,3γ5,3

−κ̃ γ10,2
ρµγ10,3

−ε̃ γ5,1
2dρµγ5,3

0 1


(4.33)

with
ε̃ = ε(θx + bθy), κ̃ =

κ

m∗
, ρm =

m2

m2
∗
, ρµ =

µ2

m2
∗

(4.34)

and where we have kept terms linear in ε. Notice that YU is of the form (3.14) and YD/L

reduces to (3.16) in the limit κ→ 0. A non-vanishing κ distorts the form of YD/L, but it

does not spoil its hierarchical structure of eigenvalues. In fact, as we will see in section 6,

κ will only enter in the CKM matrix describing quark mixing angles.

5 Zero mode wavefunctions

So far our discussion of the Yukawa couplings has been restricted to the holomorphic level,

namely we have been discussing the cubic couplings that appear in the four dimensional

superpotential. The missing ingredient in the computation of the physical couplings

involves the normalisation of the wavefunctions as well as their kinetic mixing. Indeed,

recall that the Yukawa couplings that are measured experimentally can be compared

to those that appear in the Lagrangian once the kinetic terms for the chiral fields are

canonical. In order to compute such kinetic terms, we necessarily need to solve the

equations of motion for the zero modes in a real gauge, which introduces the dependence

on the worldvolume flux densities.

In this section we will solve for such zero mode wavefunctions of the E8 model of

section 4, and compute the kinetic terms for them. Solving analytically for real gauge
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wavefunctions is a much more complicated problem than doing it at the holomorphic level,

especially for T-brane models like ours, and the problem becomes particularly involved

when non-perturbative corrections are taken into account. However, similarly to [26] these

zero mode equations can be solved for a certain region of parameters of the local model,

allowing to see how such wavefunctions depend on flux densities. Our approach will be

to first consider the perturbative case and compute the kinetic terms, where no kinetic

mixing arises for the choice of wavefunction for each family that we make. Second, we

include the non-perturbative corrections and argue that they do not change the result.

Many computational details will be relegated to appendix E (see also [24–26]).

That is, in this section we will see that i) there is no kinetic mixing between families

and ii) non-perturbative corrections do not affect their kinetic terms, at least at the level

of approximation that we are working. As a result, to compute physical Yukawas one may

combine the residue computation of the non-perturbative holomorphic couplings with the

computation of the normalisation factors γ10, γ5 at tree-level that we do in the following,

and which should be inserted in eq.(4.33) to obtain the physical Yukawas.10

5.1 Wavefunctions in the perturbative limit

Before including non-perturbative corrections, the equations for the zero modes are ob-

tained from (4.1) and (4.2) by expanding to linear order around a given background as in

(4.26) which yields

∂̄〈A〉a = 0 , (5.1a)

∂̄〈A〉ϕ = i[a, 〈Φ〉] , (5.1b)

ω ∧ ∂〈A〉a =
1

2
[〈Φ̄〉, ϕ] . (5.1c)

where 〈Φ〉 and 〈A〉 correspond to the background in real gauge. These can be solved for

every particular sector using the techniques in [24–26] and in the following we just quote

the result for the relevant sectors, namely those that appear in table 1. The details of the

computation can be found in appendix E.

10Alternatively, one may directly compute the physical Yukawas by performing the triple overlap of

real gauge zero modes. Similarly to [25,26] one can show that both approaches give the same result.
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We use the following notation for the zero modes,

−→ϕ ρ =


asx̄

asȳ

ϕsxy

Eρ,s (5.2)

where Eρ,s denotes the particular set of roots, labeled by s, for each sector ρ. In the case

of the up and down-type Higgses, s only takes one value since these are only charged

under an Abelian subgroup of S(U(2) × U(2) × U(1)). On the other hand, the matter

sectors transform as doublets of the first U(2) factor so s takes two different values in

that case.

Higgs wavefunctions

The solution for the 5U sector is

−→ϕ U = γU


−i ζU

2µ2

−i ζU−λU
2µ2

1

χU EU (5.3)

where

χU(x, y) = e
qR
2

(|x|2−|y|2)−qS(xȳ+yx̄)+(x−y)(ζU x̄−(λU−ζU )ȳ) (5.4)

and λU is a function of the flux densities and intersection parameters given as the lowest

solution to the cubic equation (E.6). Also, ζU = λU (λU−qR−qS)
2(λU−qS)

.

Similarly, the solution for the 5̄D is

−→ϕ D = γD


i ζD

2dµ2

i ζD−λD
2dµ2

1

 e−iψχD(x− x0, y − y0)ED (5.5)

with

χD(x, y) = e
qR
2

(|x|2−|y|2)−qS(xȳ+yx̄)+(x−y)(ζDx̄−(λD−ζD)ȳ). (5.6)

and where ψ is defined in (E.10). Finally, λD is the lowest solution to (E.13) and ζD =

λD(λD−qR−qS)
2(λD−qS)

.
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Matter wavefunctions

These sectors are a bit more involved because the fields are charged under the T-brane

background. Given our choice of background, both the 10M and 5̄M transform as doublets

of the first SU(2) factor in the decomposition of SU(5)⊥. Thus, we write the solution as

−→ϕ =


a+
x̄

a+
ȳ

ϕ+
xy

E+
1 +


a−x̄

a−ȳ

ϕ−xy

E−1 = −→ϕ +E
+
1 +−→ϕ −E−1 , (5.7)

where we use a + to denote the upper component of the U(2)1 doublet and − to denote

the lower one. The zero mode equations in these two sectors turn out to be rather

complicated to solve in general, but it is still possible to find approximate solutions in the

limit µ, κ� m. The real wavefunction for the 10M is

−→ϕ i
10 = γi10


iλ10
m2

−iλ10ζ10
m2

0

 ef/2χi10E
+
1 + γi10


0

0

1

 e−f/2χi10E
−
1 (5.8)

where λ10 is the negative solution to the cubic (E.25) and ζ10 = −qS/(λ10 − qR). Finally

the wavefunctions χi10 are

χi10 = e
qR
2

(|x|2−|y|2)−qS(xȳ+yx̄)+λ10x(x̄−ζ10ȳ)gi10(y + ζ10x) , (5.9)

where gi10 are holomorphic functions of y + ζ10x and i = 1, 2, 3 is a generation index. As

in [25,26] we choose these holomorphic functions in the following way

gi10(y + ζ10x) = m3−i
∗ (y + ζ10x)3−i . (5.10)

The solution to the 5̄M is very similar and reads

−→ϕ i
5 = γi5


iλ5
m2

−iλ5ζ5
m2

0

 eiψ̃+f/2χi5(x, y−ν/a)E+
1 +γi5


0

0

1

 eiψ̃−f/2χi5(x, y−ν/a)E−1 (5.11)

with ψ̃ defined in (E.29). Also, λ5 is a function of the fluxes and intersection parameters

defined as the lowest solution to (E.31) and ζ5 = −qS/(λ5−qR). Finally the wavefunctions

χi5 are

χi5(x, y) = e
qR
2

(|x|2−|y|2)−qS(xȳ+yx̄)+λ5x(x̄−ζ5ȳ)gi5(y + ζ5x) , (5.12)
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where gi5 are holomorphic functions of y + ζ5x and i = 1, 2, 3 is a generation index.

Analogously, the family functions are

gi5(y + ζ5x) = m3−i
∗ (y + ζ5x)3−i . (5.13)

5.2 Normalisation factors

Once we have the perturbative wavefunctions we can compute the normalisation factors

and kinetic mixing. The appropriate scalar product is given by

Kij
ρ = 〈−→ϕ i

ρ|−→ϕ
j
ρ〉 = m4

∗

∫
S

Tr (−→ϕ i
ρ
† · −→ϕ j

ρ) dvolS (5.14)

as can be seen by performing the dimensional reduction.

Given the choice of family functions (5.10) and (5.13) we find that the kinetic terms

(5.14) are diagonal, so we only need to compute the corresponding normalisation factors.

We find

|γU |2 = − 4

π2

(
µ

m∗

)4
(2ζU + qR)(qR + 2ζU − 2λU) + (qS + λU)2

4µ4 + ζ2
U + (ζU − λU)2

(5.15a)

|γD|2 = − 4d2

π2

(
µ

m∗

)4
(2ζD + qR)(qR + 2ζD − 2λD) + (qS + λD)2

4d2µ4 + ζ2
D + (ζD − λD)2

(5.15b)

|γ10,j|2 = − c

m2
∗π

2(3− j)!
1

1
2λ10+qR(1+ζ210)−m2c2

+
c2λ210
m4

1
2λ10+qR(1+ζ210)+m2c2

(
qR
m2
∗

)4−j

(5.15c)

|γ5,j|2 = − c

m2
∗π

2(3− j)!
1

1
2λ5+qR(1+ζ25 )−m2c2

+
c2λ25
m4

1
2λ5+qR(1+ζ25 )+m2c2

(
qR
m2
∗

)4−j

(5.15d)

Recall that the parameters λρ and ζρ for a given sector ρ, depend on the flux densities felt

by such a sector and, in particular, depend on the hypercharge flux. Thus, each MSSM

multiplet in a given GUT multiplet will have different normalisation factors.

5.3 Non-perturbative corrections to the wavefunctions

The computation of the kinetic terms performed above allows to obtain the physical

Yukawa couplings at tree level. However, since we are interested in the leading corrections

induced by the non-perturbative effects, we need to compute the normalisation factors

and mixings at O(ε). To do so, we will solve for the zero mode equations in real gauge
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including all O(ε) corrections. As we will see, it turns out that no mixing is generated and

the normalisation factors are not corrected at this order, so we may use the ones obtained

earlier.

Following section 4.3, the F-term equations for the zero modes at O(ε) read

∂̄〈A〉a = 0 ,

∂̄〈A〉ϕ = i[a, 〈Φ〉]− ε∂θ0 ∧ (∂〈A〉a+ ∂̄〈A〉a
†) .

(5.16)

which have to be solved together with the D-term equation (5.1c) that remains unchanged

[25]. As in the tree-level case, we quote the relevant results for each sector and relegate

the computations to appendix E. We start with the Higgs sectors that are not charged

under the T-brane and then consider the more involved case of the matter sectors.

Higgs sectors

The solution to the non-perturbative zero mode equations for the sector 5U is

−→ϕ U = γU


i ζU

2µ2

i (ζU−λU )
2µ2

1

 χnp
U , χnp

U = e
qR
2

(|x|2−|y|2)−qS(xȳ+yx̄)+(x−y)(ζU x̄−(λU−ζU )ȳ))(1+εΥU).

(5.17)

The O(ε) non-perturbative correction is

ΥU = − 1

4µ2
(ζU x̄−(λU−ζU)ȳ)2(θx+θy)+

δ1

2
(x−y)2 +

δ2

ζU
(x−y)(ζUy+(λU−ζU)x) (5.18)

with the constants δ1, δ2 given by (E.42) and (E.43) respectively. The solution to the 5D

is essentially the same and can be obtained by performing the replacements explained in

appendix E so we do not write it explicitly.

Now one can see that this particular correction to the wavefunction will not generate

a correction to the normalisation factor at order ε. The reason is that the extra terms

that appear in the integrand of (5.14) will be those in (5.18) and its complex conjugate

which are not invariant under the rotation (x, y)→ eiα(x, y).
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Matter sector

As shown in the appendix, the structure of the solution for the 10M sector is

−→ϕ 10+ =


•

•

0

+ ε


0

0

•

+O(ε2) −→ϕ 10− =


0

0

•

+ ε


•

•

0

+O(ε2). (5.19)

and similarly for the 5̄M . This structure already shows that the O(ε) corrections to

the kinetic terms of the matter sectors vanish, even without specifying their explicit form.

Indeed, from (5.14) such corrections will be proportional to the scalar products−→ϕ (0)

10+
·−→ϕ (1)

10−

and −→ϕ (0)

10− ·
−→ϕ (1)

10+
, where the superscript (0) denotes the tree-level term and (1) the O(ε)

correction. Given the solution (5.19), we see that those products are trivially zero.

6 Physical Yukawas and hierarchies

Combining the results of the last two sections one finds the following physical Yukawas

for quarks and charged leptons in our local E8 model

YU =
π2 γU γ

Q
10,3γ

U
10,3

2ρmρµ


0 0 ε̃

γQ10,1

2ρµγ
Q
10,3

0 ε̃
γQ10,2γ

U
10,2

2ρµγ
Q
10,3γ

U
10,3

0

ε̃
γU10,1

2ρµγU10,3
0 1

+O(ε̃2) (6.1a)

YD = −
π2 γD γ

Q
10,3 γ

D
5,3

2d ρmρµ


0 ε̃κ̃

γQ10,1γ
D
5,2

dρ2µγ
Q
10,3γ

D
5,3

(
2κ̃2

ρµ
− ε̃

d

)
γQ10,1

2ρµγ
Q
10,3

ε̃κ̃
γQ10,2γ

D
5,1

2dρ2µγ
Q
10,3γ

D
5,3

−ε̃ γQ10,2γ
D
5,2

2dρµγ
Q
10,3γ

D
5,3

−κ̃ γQ10,2

ρµγ
Q
10,3

−ε̃ γD5,1
2dρµγD5,3

0 1

+O(ε̃2)

(6.1b)

YL = −
π2 γD γ

E
10,3 γ

L
5,3

2d ρmρµ


0 ε̃κ̃

γE10,1γ
L
5,2

dρ2µγ
E
10,3γ

L
5,3

(
2κ̃2

ρµ
− ε̃

d

)
γE10,1

2ρµγE10,3

ε̃κ̃
γE10,2γ

L
5,1

2dρ2µγ
E
10,3γ

L
5,3
−ε̃ γE10,2γ

L
5,2

2dρµγE10,3γ
L
5,3

−κ̃ γE10,2
ρµγE10,3

−ε̃ γL5,1
2dρµγL5,3

0 1

+O(ε̃2)

(6.1c)

with the dimensionless complex parameters defined by

ε̃ = ε(θx + bθy), κ̃ =
κ

m∗
, ρm =

m2

m2
∗
, ρµ =

µ2

m2
∗

(6.2)

35



and the normalisation factors γα10,j, γ
α
5,j given by (5.15). The superscript α denotes the

particular MSSM chiral multiplet within 10M or 5M , namely the first column in table 1.

We would like to see if this structure can reproduce empirical data for charged fermion

masses. Since our results apply at the GUT scale, presumably at around 1016 GeV, ex-

perimental values at weak scale need to be run using the renormalisation group equations.

Table 2 shows the extrapolation to the unification scale of such observed quantities taken

from [56] in the context of the MSSM. These depend on the parameter tan β that con-

trols the relative magnitude of the vevs of HU and HD. In particular, we have that

mτ,b = Yτ,bV cos β and mt = YtV sin β with V =
√
V 2
u + V 2

d ≈ 174 GeV. In the following

we will discuss the comparison between the experimental results with the predictions from

our local E8 model.

tanβ 10 38 50

mu/mc 2.7± 0.6× 10−3 2.7± 0.6× 10−3 2.7± 0.6× 10−3

mc/mt 2.5± 0.2× 10−3 2.4± 0.2× 10−3 2.3± 0.2× 10−3

md/ms 5.1± 0.7× 10−2 5.1± 0.7× 10−2 5.1± 0.7× 10−2

ms/mb 1.9± 0.2× 10−2 1.7± 0.2× 10−2 1.6± 0.2× 10−2

me/mµ 4.8± 0.2× 10−3 4.8± 0.2× 10−3 4.8± 0.2× 10−3

mµ/mτ 5.9± 0.2× 10−2 5.4± 0.2× 10−2 5.0± 0.2× 10−2

Yτ 0.070± 0.003 0.32± 0.02 0.51± 0.04

Yb 0.051± 0.002 0.23± 0.01 0.37± 0.02

Yt 0.48± 0.02 0.49± 0.02 0.51± 0.04

Table 2: Running mass ratios of leptons and quarks at the unification scale from ref. [56].
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6.1 Fermion masses

The masses for quarks and charged leptons will directly depend on the eigenvalues of the

physical Yukawa matrices. From (6.1) we see that such eigenvalues are

Yt =
π2 γU γ

Q
10,3γ

U
10,3

2ρmρµ
, Yc = ε̃

π2 γU γ
Q
10,2γ

U
10,2

4ρmρ2µ
, Yu = O(ε̃2)

Yb =
π2 γD γ

Q
10,3γ

D
5,3

2dρmρµ
, Ys = ε̃

π2 γD γ
Q
10,2γ

D
5,2

4d2ρmρ2µ
, Yd = O(ε̃2)

Yτ =
π2 γD γ

E
10,3γ

L
5,3

2dρmρµ
, Yµ = ε̃

π2 γD γ
E
10,2γ

L
5,2

4d2ρmρ2µ
, Ye = O(ε̃2),

(6.3)

which makes manifest the mass hierarchy (O(1),O(ε̃),O(ε̃2)) between families. However,

it still remains to see if the data of table 2 can be reproduced via these expressions,

and if affirmative for which range of values for tan β. This question is non-trivial in the

sense that the normalisation factors γ10, γ5 are complicated functions of the multiple flux

densities present in the model, which makes it hard to proceed analytically.11

Mass ratios

While the Yukawa eigenvalues are complicated functions of the local flux densities, fermion

mass ratios have a much simpler dependence on them, as already noticed in [25]. In

particular, let us consider those mass ratios between the second and third generation that

are independent of tan β. These are

mc

mt

=

∣∣∣∣ ε̃2ρµ

∣∣∣∣√qQR q
U
R =

∣∣∣∣∣ ε̃ ÑY

2ρµ

∣∣∣∣∣
√(

x− 1

6

)(
x+

2

3

)
(6.4a)

ms

mb

=

∣∣∣∣ ε̃

2dρµ

∣∣∣∣√qQR q
D
R =

∣∣∣∣∣ ε̃ ÑY

2dρµ

∣∣∣∣∣
√(

x− 1

6

)(
y − 1

3

)
(6.4b)

mµ

mτ

=

∣∣∣∣ ε̃

2dρµ

∣∣∣∣√qER q
L
R =

∣∣∣∣∣ ε̃ ÑY

2dρµ

∣∣∣∣∣
√

(x− 1)

(
y +

1

2

)
(6.4c)

where qQR , qUR are the linear combinations of flux densities that appear in table 1, and we

have defined the quotients

x = −M1

ÑY

y =
M1 + 2M2

ÑY

(6.5)

11Notice that when embedded into a global model, this large number of flux densities should depend

on a few Kähler moduli of the compactification, and in this sense many of the free parameters that are

present in the local approach become constrained.
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We see that for these mass quotients the dependence on the normalisation factors for the

Higgses drops and we obtain fairly simple formulae in terms of a few flux densities. More

precisely, besides x and y these three ratios depend on two more parameters, namely

|d| and |ε̃ÑY /2ρµ|. Furthermore, by considering quotients of ratios we can eliminate the

dependence on the last parameter, since

mc/mt

ms/mb

= |d|
(
x+ 2

3

y − 1
3

)1/2

(6.6a)

mµ/mτ

ms/mb

= 3

(
(x− 1)

(
y + 1

2

)(
3x− 1

2

)
(3y − 1)

)1/2

. (6.6b)

So one may proceed to constrain these three parameters of the local model in terms of

two empirical quantities, which from the data of table 2 read

mc/mt

ms/mb

∣∣∣∣
exp.

= 0.13± 0.03 (6.7a)

mµ/mτ

ms/mb

∣∣∣∣
exp.

= 3.3± 1. (6.7b)

Finally, recall that the values of x, y are constrained from the results of appendix C. For

ÑY < 0 we have that x < −2/3, y < −1/2, while for ÑY > 0 we have that x > 1, y > 1/3.

We find that it is easier to fit the above empirical values for the latter case and by taking

a small value for |d|, as illustrated in figures 1 and 2. For instance, taking d ∼ 0.02 we

can use (6.6) together with (6.7) to estimate x, y defined above, namely

x = 5± 3

y = 0.45± 0.05.
(6.8)

Then, using these approximate values for the fluxes we can find the order of magnitude

of |ε̃ÑY /ρµ| by fitting one of the mass ratios in (6.4), which yields (see figure 3)∣∣∣∣∣ ε̃ÑY

ρµ

∣∣∣∣∣ = (1.3± 0.7) · 10−3. (6.9)

Notice that, up to now, we did not specify the value of any flux density but only quotients

of fluxes. In the following we discuss the absolute value of Yukawa couplings for which

we actually need the flux density values.
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Figure 1: Ratio of ratios (6.6a) where the horizontal axis is x = −M1/ÑY and the vertical

is y = (M1 + 2M2)/ÑY . The right figure displays the value for |d| = 0.1 and the left one for

|d| = 0.02. In the latter, the red dot corresponds to the values chosen in (6.12).

Yukawas for the third generation

So far we have discussed ratios of Yukawa couplings for which we have simple expressions.

However, for the Yukawa couplings themselves, we do not have such simple results and

it is much harder to understand how these depend on the parameters of the model. In

particular, these depend on flux densities and not just on quotients so let us estimate

their order of magnitude.

The fluxes that are not along the hypercharge generator, i.e. M1,M2, N1, N2, deter-

mine the number of chiral multiplets for the matter sectors. On the other hand, the

hypercharge fluxes NY and ÑY are also subject to quantisation conditions since they are

responsible for the doublet-triplet splitting. Thus, all of the flux densities satisfy that

|
∫

Σ
F | ' 2π, where Σ is a matter curve and if we take F to be approximately constant we

find that |F | ' 2π/VΣ, with VΣ the volume of Σ. Furthermore, we know that the volume

of the GUT divisor, VGUT , is related to the coupling constant αGUT as (see e.g. [5])

αGUT '
2π2gs

m4
stVGUT

, (6.10)

where the string scale mst is related to m∗ by m4
st = (2π)3gsm

4
∗. From unification of the
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Figure 2: Ratio (6.6b) with x = −M1/ÑY , y = (M1 +2M2)/ÑY . The red dot represents (6.12).
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Figure 3: Ratio ms/mb that fixes the order of magnitude of |ε̃ÑY /2ρµ|.

gauge couplings, we expect αGUT ' 1/24, so assuming VΣ ' V
1/2
GUT , we find that

|F |
m2
st

'
(

2αGUT
gs

)1/2

' 0.3

g
1/2
s

, (6.11)

which tells us the order of magnitude for the the flux densities. Notice that our approach

relies on having diluted fluxes (as well as intersection slopes) so the coupling constant

should not be arbitrarily small.

Now one can perform a scan for flux densities in the ballpark of (6.11) and see whether
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there is a region that allows to fit the Yukawa couplings for the third generation of U and

D-type quarks as well as charged leptons. We find that this is indeed possible and, for

instance, taking the following flux densities (in units of m2
st)

(M1,M2, N1, N2, ÑY , NY ) = (−0.16, 0.09,−0.501, 0.501, 0.03,−1.0) , (6.12)

together with intersection angles

(ρm, ρµ, c, d) = (0.09, 0.004, 0.53, 0.025) , (6.13)

we find

Yt = 0.46 Yb = 0.08 Yτ = 0.15, (6.14)

consistent with the experimental values in table 2 for tan β ' 10− 20. Also, using these

parameters we get from (6.9) that

ε̃ = 1.3 · 10−4 (6.15)

which is small enough to be consistent with its non-perturbative nature.
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Figure 4: Ratio of τ and b mass. The red dot corresponds to the values chosen in (6.12).

As we can see, our model allows to accommodate a large top Yukawa coupling, which

is usually troublesome in perturbative type II GUTs.12 Also, the hypercharge flux may

12Notice that the expression for the top Yukawa in our model is exactly like in the E6 model of [26].
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induce the correct difference between Yb and Yτ . Recall that these come from the same

Yukawa in the SU(5) GUT but, due to the hypercharge breaking, they are different even

at MGUT . From (6.3) we have that

Yτ
Yb

=
γE10,3γ

L
5,3

γQ10,3γ
D
5,3

, (6.16)

which, for vanishing hypercharge fluxes, is exactly one. However, for our particular choice

of parameters we find that
Yτ
Yb

= 1.81, (6.17)

consistent with the observed ratio.

6.2 Quark mixing angles

Let us now analyse the quark mixing angles for this model. Recall that the CKM matrix

is defined in terms of the unitary matrices VU and VD such that they diagonalise the

Hermitian product of quark Yukawa matrices Y Y †. More precisely we have that

MU =VUYUY
†
UV
†
U (6.18a)

MD =VDYDY
†
DV

†
D (6.18b)

with MU and MD diagonal. We then define the CKM matrix as

VCKM = VUV
†
D. (6.19)

Directly applying these definitions to (6.1a) and (6.1b) and not taking into account

their O(ε2) corrections, one finds that the following matrices satisfy (6.18)

V̂U =


1 0 − ε̃γQ10,1

2ρµγ
Q
10,3

0 1 0
ε̃∗γQ10,1

2ρ∗µγ
Q
10,3

0 1

 (6.20a)

V̂D =


1

iε̃Im(κ̃ρµ)γQ10,1γ
Q
10,2

dρµ|ρµ|2(γQ10,3)2

(
ε̃
d
− 2κ̃2

ρµ

)
γQ10,1

2ρµγ
Q
10,3

−ε̃∗κ̃∗ γQ10,1γ
L
10,2

2d∗ρ∗2µ (γQ10,3)2
1− |κ̃|2(γQ10,2)2

2|ρµ|2(γQ10,3)2

κ̃γQ10,2

ρµγ
Q
10,3

−
(
ε̃∗

d∗
− 2κ̃∗2

ρ∗µ

)
γQ10,1

2ρ∗µγ
L
10,3

− κ̃∗γQ10,2

ρ∗µγ
Q
10,3

1− |κ̃|2(γQ10,2)2

2|ρµ|2(γQ10,3)2

 (6.20b)
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Taking into account O(ε2) corrections would modify these expressions, in particular those

related to the rotation angles for the first family. In particular, one expects that the final

rotation matrices are to a good approximation of the form

VU = RU V̂U , VD = RDV̂D (6.21)

with

RU,D '


1 αU,D ε̃

2 0

−αU,D ε̃2 1 0

0 0 1

 (6.22)

and where αU , αD are O(1) unknown rotation angles. These extra rotations will modify

the value of several CKM matrices elements, but leave untouched the mixing between the

top and bottom quarks. To the degree of approximation that we are working, we find

that such entry reads

|Vtb| ' 1−
|κ̃|2(γQ10,2)2

2|ρµ|2(γQ10,3)2
= 1− κ̃2qR,Q

2ρ2
µ

. (6.23)

Since the experimental value for this quantity is

|Vtb|exp. = 0.9991 (6.24)

we find a typical value |κ̃| ∼ 10−2 − 10−3. In particular using the values (6.12) we find

|κ̃| = 2.7 · 10−3. (6.25)

That justifies the approximation κ̃ � m made in appendix E. Interestingly, this result

has a direct geometrical interpretation. We have that the mixing between the second and

third family is roughly given by√
1− |Vtb| '

∣∣∣∣ κ̃√qR,Qρµ
√

2

∣∣∣∣ ∝ m∗|bx0 − y0| (6.26)

where (x0, y0) are the coordinates of separation of the Yukawa point pdown with respect

to pup, see (4.10). Hence we find that the mixing between the second and third family is

proportional to the separation of the two Yukawa points along the particular direction bx−

y. This combination of x and y is nothing but the complex variable that the holomorphic

piece of the matter wavefunctions depend on, c.f. (4.32). Hence, this mixing effect can

43



be understood as a change of wavefunction basis when moving from one Yukawa point to

the other, in agreement with the results of [15]. Notice that the experimental value (6.24)

then translates into a separation between Yukawa points which is roughly 10−2V
1/4
GUT , so

pup and pdown need to be relatively close to each other, as anticipated in [13].

The other two mixing angles are more difficult to estimate, as this would involve ob-

taining explicit expressions for RU and RD. In any case, it is unlikely that a rotation

of this order in ε̃ will generate the large experimental value for the Cabibbo angle. At

this point one should however recall that in our analysis we have made certain approxi-

mations related to the fact that we are describing our system in a small neighbourhood

of the Yukawa points. These approximations include taking a flat metric (c.f. (4.14)),

the limit µ � m that neglects the curvature of the matter curves, taking λ1 and λ2 in

(3.12) as simple functions, and taking the holomorphic piece of the matter wavefunctions

as monomials (c.f. (4.32)). These approximations are justified for analysing the physical

couplings that involve the two heaviest families, as their real wavefunctions are by con-

struction localised near the Yukawa points. But this need not be so for the first family,

which in specific constructions may not even be described as a local chiral mode in the

sense of [27]. Hence, we expect that the mixing angles involving the first family will be

particularly sensitive to curvature corrections of the matter curves and SGUT. Finally,

following the arguments in [13], one may estimate that corrections effects of the order

V
1/4
GUTm∗ are precisely those necessary to generate a realistic Cabibbo angle.

7 Conclusions

In this paper we have considered the structure of both up and down-type Yukawa couplings

in local F-theory SU(5) GUTs that are generated at a region of E8 enhancement. In

particular, we have analysed several ultra-local models that realise the breaking to SU(5)

via reconstructible T-branes and have rank one Yukawa matrices. We have then included

the effect of non-perturbative dynamics (Euclidean D3-branes or gaugino condensates

on 7-branes) and studied its impact on the flavour structure of our local models. In

particular, we have seen that all families of quarks and charged leptons become massive

once that these non-perturbative corrections are taken into account.
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The hierarchical structure that results from combining tree-level and non-perturbative

effects is already manifest at the level of the holomorphic Yukawas, in terms of the strength

of the non-perturbative effect ε which we use as an expansion parameter in our computa-

tions. This allows to classify the whole set of E8 models under study by the eigenvalue hier-

archy present in the up and down-type holomorphic Yukawa couplings. We have identified

as promising models those whose eigenvalue hierarchy is of the form (O(1),O(ε),O(ε2))

for both types of holomorphic Yukawas, as this structure has proven to be successful in

reproducing empirical fermion masses for reasonable values of ε in previous work [25,26].

We have carried such classification of models in section 3, dubbing each of the models

in terms of the block-diagonal structure of the T-brane profile for the 7-brane field Φ. We

have seen that the 4+1 model has the appropriate hierarchy of Yukawa couplings, but has

the less attractive feature of having both Higgses in the same matter curve so one would

quite likely find a large µ-term in a global completion. This problem can be easily solved

in any of the four 3+2 models analysed subsequently, as they contain several 5-matter

curves. However, we find that two of these models have vanishing up-type Yukawas at tree

level, in a similar fashion to the vanishing result of [23]. It would be interesting to acquire

a better understanding of these vanishing results. The two remaining 3+2 models have

rank-one tree-level Yukawas but fail to generate an appropriate hierarchy when including

the non-perturbative effects. Finally, we have analysed four different 2+2+1 and found

that two of them show the desired pattern of fermion masses, and one in particular exhibits

interesting mechanisms to generate realistic neutrino masses and µ-term.

Consequently, we have performed a more detailed analysis this last 2+2+1 model in

order to compute its physical Yukawas. We have specified the whole set of worldvolume

fluxes that account for chirality, SU(5) breaking and doublet-triplet splitting. We have

also included the non-primitive fluxes that solve for the T-brane background equations

of motion. Finally, we have computed the wavefunctions for the matter and Higgs sec-

tors in real gauge at leading order in the non-perturbative parameter and extracted the

normalisation factors for the 4d matter fields.

In section 6 we have combined the holomorphic Yukawas with the matter field nor-

malisation factors, obtaining the physical Yukawa couplings. While the former does not

depend on the fluxes, the latter does introduce a dependence on the fluxes which has
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drastic phenomenological implications. Indeed, as we have seen these are crucial to fit the

observed fermion masses and in particular to generate a difference between the D-type

quarks and leptons mass ratios. Typical values of flux densities allow to obtain a large

top quark Yukawa, with ε ∼ 10−4 and tan β ∼ 10 − 20. Finally, we have considered the

possibility in which both Yukawas are realised at different points within the region of E8

enhancement. We have seen how this separation translates into the CKM matrix and

checked explicitly that the distance between the points generates quark kinetic mixing.

Thus, as expected, the fact that the CKM is mostly diagonal in encoded in the fact that

the two Yukawa points are very close to each other.

The above results are very promising for the F-theory GUT programme, and it would

be interesting to extend the present analysis in several directions. One obvious direction is

to perform our analysis beyond the leading order in perturbation theory in ε. This would

allow to gain some control over the lightest family of chiral matter, and in particular

to analyse in more detail the CKM matrix. Nevertheless, as argued in the last section

full control over the lightest family cannot be achieved until we extend the description

of our model to a region containing the matter curves that host the SU(5) multiplets

5M and 10M , and include curvature corrections to our computations of the wavefunction

normalisation factors. In general, it would be extremely interesting to promote our ultra-

local model to a local one where SGUT is a compact four-cycle. This would allow to

understand the plethora of flux densities that enter as free parameters in our model

in terms of a few Kähler moduli, and see if the flux relations that we have obtained

are compatible with the geometry of SGUT. From a broader perspective, it would be

important to embed our model within a class of fully-fledged F-theory compactifications,

and interpret each of the local parameters in terms of complex and Kähler moduli of

the compactification. One may then see whether the region of parameter values that are

needed to reproduce the flavour structure observed experimentally can indeed be reached

when scanning through the F-theory landscape.

46



Acknowledgments
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A E8 machinery

The Lie algebra of E8 consists of 248 generatorsQα. We will work in the Cartan-Weyl basis

{Hi, Eρ} of e8 and where the generators Hi with i = 1, . . . , 8 form a basis of the Cartan

subalgebra and the remaining 240 roots are chosen to satisfy the following commutation

relations

[Hi, Eρ] = ρiEρ . (A.1)

This allows to represent the roots with a vector of charges under the Cartan subalgebra

and for the case of e8 the roots are

(±1,±1, 0, 0, 0, 0, 0, 0) ,

(
±1

2
,±1

2
,±1

2
,±1

2
,±1

2
,±1

2
,±1

2
,±1

2

)
with even + . (A.2)

For our purposes we need to decompose the E8 Lie algebra as E8 → SU(5)GUT ×SU(5)⊥.

In particular the branching rule for the adjoint representation of E8 is the following

248→ (24,1)⊕ (1,24)⊕ ((10,5)⊕ c.c.)⊕ ((5,10)⊕ c.c.) . (A.3)

We identify the roots in the adjoint representation of SU(5)GUT as

(0, 0, 0, 1,−1, 0, 0, 0) , (A.4)
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which together with the Cartan generators:

H̃1 = H4 −H5 , H̃2 = H5 −H6 , H̃3 = H6 −H7 , H̃4 = H7 −H8 . (A.5)

give the adjoint representation of SU(5)GUT . The adjoint of SU(5)⊥ is consists of the

following roots

(±1,±1, 0, 0, 0, 0, 0, 0) +

(
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2

)
+

(
1

2
,−1

2
,−1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2

)
+

(
−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2

)
+

(
1

2
,
1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2

)
,

(A.6)

and Cartan generators

Ĥ1 = H2−H3 , Ĥ2 =
1

2
(H1−H2+H3−H⊥) , Ĥ3 =

1

2
(H1−H2−H3+H⊥) , Ĥ4 = H2+H3 ,

(A.7)

where H⊥ =
∑8

i=4Hi. We will label the roots of the adjoint of SU(5)⊥ as follows

E±1 = ±(0,−1, 1, 0, 0, 0, 0, 0) ,

E±2 = ±
(
−1

2
,
1

2
,
1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2

)
,

E±3 = ±(−1, 0, 1, 0, 0, 0, 0, 0) ,

E±4 = ±(−1,−1, 0, 0, 0, 0, 0, 0) ,

E±5 = ±
(
−1

2
,
1

2
,−1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2

)
,

E±6 = ±(−1, 1, 0, 0, 0, 0, 0, 0) ,

E±7 = ±(−1, 0,−1, 0, 0, 0, 0, 0) ,

E±8 = ±
(
−1

2
,−1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2

)
,

E±9 = ±
(
−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2

)
,

E±10 = ±(0,−1,−1, 0, 0, 0, 0, 0) .

(A.8)

In the main text we will need two particular linear combinations of these generators

Q1 = Ĥ1 + 2Ĥ2 + 2Ĥ3 + 2Ĥ4 , Q2 = Ĥ3 + 2Ĥ4 . (A.9)

The other representations can also be identified. The roots in the representation (10,5)
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are the following ones

µ5 =

(
1

2
,
1

2
,−1

2
,
1

2
,
1

2
,−1

2
,−1

2
,−1

2

)
, (A.10a)

µ5 − α1 =

(
1

2
,−1

2
,
1

2
,
1

2
,
1

2
,−1

2
,−1

2
,−1

2

)
, (A.10b)

µ5 − α1 − α2 = (0, 0, 0, 1, 1, 0, 0, 0) , (A.10c)

µ5 − α1 − α2 − α3 =

(
−1

2
,
1

2
,
1

2
,
1

2
,
1

2
,−1

2
,−1

2
,−1

2

)
, (A.10d)

µ5 − α1 − α2 − α3 − α4 =

(
−1

2
,−1

2
,−1

2
,
1

2
,
1

2
,−1

2
,−1

2
,−1

2

)
, (A.10e)

where we identified the five 10 representations of SU(5)GUT with their weight under

SU(5)⊥. We called the highest weight of SU(5)⊥ in the fundamental representation µ5

and the simple roots αi of SU(5)⊥. We can apply the same procedure to the representation

(5̄,10) and the result is

µ10 = (1, 0, 0,−1, 0, 0, 0, 0) , (A.11a)

µ10 − α2 =

(
1

2
,
1

2
,−1

2
,−1

2
,
1

2
,
1

2
,
1

2
,
1

2

)
, (A.11b)

µ10 − α1 − α2 =

(
1

2
,−1

2
,
1

2
,−1

2
,
1

2
,
1

2
,
1

2
,
1

2

)
, (A.11c)

µ10 − α2 − α3 = (0, 1, 0,−1, 0, 0, 0, 0) , (A.11d)

µ10 − α1 − α2 − α3 = (0, 0, 1,−1, 0, 0, 0, 0) , (A.11e)

µ10 − α2 − α3 − α4 = (0, 0,−1,−1, 0, 0, 0, 0) , (A.11f)

µ10 − α1 − 2α2 − α3 =

(
−1

2
,
1

2
,
1

2
,−1

2
,
1

2
,
1

2
,
1

2
,
1

2

)
, (A.11g)

µ10 − α1 − α2 − α3 − α4 = (0,−1, 0,−1, 0, 0, 0, 0) , (A.11h)

µ10 − α1 − 2α2 − α3 − α4 =

(
−1

2
,−1

2
,−1

2
,−1

2
,
1

2
,
1

2
,
1

2
,
1

2

)
, (A.11i)

µ10 − α1 − 2α2 − 2α3 − α4 = (−1, 0, 0,−1, 0, 0, 0, 0) , (A.11j)

where we called µ10 the highest weight of the antisymmetric representation of SU(5)⊥.
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B Details on E8 models

In this appendix we gather some additional details regarding the models analysed in

section 3. We start by discussing how invariance under E8 transformations constrains

the possible couplings. We recall that the adjoint representation of E8 has the following

branching rule when decomposing E8 under the maximal subgroup SU(5)GUT × SU(5)⊥

248→ (24,1)⊕ (1,24)⊕ ((10,5)⊕ c.c.)⊕ ((5,10)⊕ c.c.) . (B.1)

It is convenient to introduce a basis of vectors e1, . . . , e5 for the fundamental representation

of SU(5)⊥ and this implies that a basis for the 10 representation of SU(5)⊥ is given by

ei ∧ ej with i 6= j.13 Since the 10 and the 5̄ representations of SU(5)GUT sit in the 5 and

10 of SU(5)⊥ respectively we will label them using the basis vectors we just introduced as

10i and the 5̄ij. Then invariance under E8 transformations boils down to invariance under

SU(5)GUT × SU(5)⊥ transformations and therefore the following couplings are possible

10i · 10j · 5ij , (B.2)

10i · 5̄jk · 5̄lm , εijklm 6= 0 , (B.3)

where we have raised indices with the δi̄. It is also important to analyse the possible

couplings between the fields charged under SU(5)GUT and the singlets that come from the

adjoint representation of SU(5)⊥. Using again the basis of vectors ei of the fundamental

representation of SU(5)⊥ the elements in the adjoint representation will be ei ⊗ ej and

labelling the fields in the (1,24) of SU(5) × SU(5)⊥ as 1ij the following renormalisable

couplings with the fields charged under SU(5)GUT are possible

10i · 10
j · 1ij , (B.4)

5ij · 5̄jk · 1ik . (B.5)

Now we will turn to a more detailed description of the Yukawa couplings present in the

models analysed in section 3.

13We will denote the dual basis for the antifundamental representation of SU(5)⊥ as e∗ı̄ and similarly

a basis for the 10 representation of SU(5)⊥ is e∗ı̄ ∧ e∗̄ with i 6= j.
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4+1 model

In this model the Higgs field Φ breaks SU(5)⊥ to S(U(4) × U(1)). This induces the

following breaking pattern for the fundamental and antisymmetric representations

SU(5)⊥ −→ S(U(4)× U(1)) (B.6)

5 −→ 4 1
5
⊕ 1− 4

5

10 −→ 6 2
5
⊕ 4− 3

5

where the subscript denotes the charge under the U(1) that comes from the trace of the

U(4) factor. Thus, given the unfolding (B.1), we have that the relevant sectors are those

that appear in table 3. A particular basis for these sectors is

SU(5)GUT S(U(4)× U(1))

10a 4 1
5

10b 1− 4
5

5̄a 6 2
5

5̄b 4− 3
5

Table 3: Different sectors for the 4+1 splitting. We do not show the conjugate represen-

tations.

- 10 sector

10a :



e1

e2

e3

e4


, 10b :

{
e5

}
, (B.7)

- 5̄ sector

5̄a :



e1 ∧ e2

e1 ∧ e3

e1 ∧ e4

e2 ∧ e3

e2 ∧ e4

e3 ∧ e4


, 5̄b :



e1 ∧ e5

e2 ∧ e5

e3 ∧ e5

e4 ∧ e5


. (B.8)
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It is immediate to see from the charge assignments that in order to have a SU(5)⊥

invariant up-type Yukawa coupling we need to take the 10M to be the 10a and the 5U as

the 5a. Furthermore, the 5̄D and 5̄M need to be the 5̄a and 5̄b, respectively. This comes

from imposing a non-vanishing down-type Yukawa coupling as well as the possibility of

having a correct chiral spectrum. Indeed, if we take the 5̄M and 5U to be in the same

curve, we cannot have three massless copies of 5̄M and achieve doublet-triplet splitting.

Note that using gauge invariance in the 5̄a sector we can set to zero all components of

the wavefunction except for two which can be chosen to be the e2 ∧ e3 and the e3 ∧ e4.

In the following we shall the wavefunctions for these sectors φ1 and φ2 respectively. The

Yukawa matrices for the model are the following ones

YU = − π2

4ρmρµ


0 0 εφ1

θx+bθy
2ρµ

0 εφ1
θx+bθy

2ρµ
0

εφ1
θx+bθy

2ρµ
0 φ1 + ε φ2

θx+bθy
2ρµ

 ,

YD/L = − π2φ1

4ρmρµ


0 0 ε θx+bθy

2ρµ

0 ε θx+bθy
2ρµ

0

ε θx+θy
2ρµ

0 1

 .

(B.9)

3+2 models

In this class of models the Higgs field Φ breaks SU(5)⊥ to S(U(3)× U(2)). In this case,

the branching of the relevant representations reads

SU(5)⊥ −→ S(U(3)× U(2)) (B.10)

5 −→ (3,1) 2
5
⊕ (3,1)− 3

5

10 −→ (3̄,1) 4
5
⊕ (3,2) 1

5
⊕ (1,1)− 6

5
,

where the subscript denotes the charge under the trace of U(3), which gives the fields in

table 4.

We pick the following basis
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SU(5)GUT S(U(3)× U(2))

10a (3,1) 2
5

10b (3,1)− 3
5

5̄a (3̄,1) 4
5

5̄b (3,2) 1
5

5̄c (1,1)− 6
5

Table 4: Different sectors for the 3+2 splitting. We do not show the conjugate represen-

tations.

- 10 sector

10a :


e1

e2

e3

 , 10b :

 e4

e5

 , (B.11)

- 5̄ sector

5̄a :


e1 ∧ e2

e2 ∧ e3

e1 ∧ e3

 , 5̄b :



e1 ∧ e4

e2 ∧ e4

e3 ∧ e4

e1 ∧ e5

e2 ∧ e5

e3 ∧ e5


, 5̄c : {e4 ∧ e5} . (B.12)

In this class of models there are two possible choices for the 10M , namely either 10a

or 10b. Once the 10M is chosen the 5U is uniquely fixed by demanding the possibility

of having an up-type Yukawa. Then, for each of them, we have the freedom to choose

between the 5̄M and 5̄D. The different possibilities are

• 10M = 10a, 5U = 5a, 5̄M = 5̄b, 5̄D = 5̄c.

• 10M = 10a, 5U = 5a, 5̄M = 5̄c, 5̄D = 5̄b.

• 10M = 10b, 5U = 5c, 5̄M = 5̄a, 5̄D = 5̄b.

• 10M = 10b, 5U = 5c, 5̄M = 5̄b, 5̄D = 5̄a.
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The Yukawa matrices for both cases in which we assign the 10M to the 10b are the

following ones

YU =
π2

2ρmρµ


0 0 ε θx+bθy

2ρµ

0 ε θx+bθy
2ρµ

0

ε θx+bθy
2ρµ

0 1

 ,

YD/L =
π2

ρmρm̃


0 0 0

0 0 ε [(2+b)θx+bθy ]ρµ

ρ
3/2
m

0 2ε (θx−bθy)ρµ

ρ
3/2
m

1 + ε
(

6b2θxρ3µ
ρ3m

− 16bθyρ2µ
3ρ2m̃

)
 .

(B.13)

For the cases in which we assign the 10M to the 10a the Yukawa matrix for the up quarks

vanishes at tree level like it was already noticed in [23], therefore we will not compute the

Yukawa matrices for these two models.

2+2+1 models

In this class of models the Higgs field Φ breaks SU(5)⊥ to S(U(2)×U(2)×U(1)). Again,

the representations of SU(5)⊥ decompose as

SU(5)⊥ −→ S(U(2)× U(2)× U(1))⊥ (B.14)

5 −→ (2,1) 3
5
,− 2

5
⊕ (1,2)− 2

5
, 3
5
⊕ (1,1)− 2

5
,− 2

5

10 −→ (1,1) 6
5
,− 4

5
⊕ (1,1)− 4

5
, 6
5
⊕ (2,1) 1

5
,− 4

5
⊕ (1,2)− 4

5
, 1
5
⊕ (2,2) 1

5
, 1
5

Here the subscripts denote the charges under the traces of the two U(2) factors. The

different sectors are displayed in table 5.

In terms of a particular basis we have the following

- 10 sector

10a :

 e1

e2

 , 10b :

 e3

e4

 , 10c : {e5} , (B.15)
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SU(5)GUT S(U(2)× U(2)× U(1))

10a (2,1) 3
5
,− 2

5

10b (1,2)− 2
5
, 3
5

10c (1,1)− 2
5
,− 2

5

5̄a (1,1) 6
5
,− 4

5

5̄b (1,1)− 4
5
, 6
5

5̄c (2,1) 1
5
,− 4

5

5̄d (1,2)− 4
5
, 1
5

5̄e (2,2) 1
5
, 1
5

Table 5: Different sectors for the 2+2+1 splitting. We do not show the conjugate repre-

sentations.

- 5̄ sector

5̄a : {e1 ∧ e2} , 5̄b : {e3 ∧ e4} , 5̄c :

 e1 ∧ e5

e2 ∧ e5

 ,

5̄d :

 e3 ∧ e5

e4 ∧ e5

 , 5̄e :



e1 ∧ e3

e2 ∧ e3

e1 ∧ e4

e2 ∧ e4


.

(B.16)

In order to obtain the different models we proceed as before, namely we pick a par-

ticular sector to be the 10M and check whether one can choose a 5U such that a SU(5)⊥

invariant coupling 10M10M5U exists. Then, we check the different assignments of 5̄M

and 5̄D that allow for a coupling 10M 5̄M 5̄D. The different possibilities are

• 10M = 10a, 5U = 5a, 5̄M = 5̄b, 5̄D = 5̄c.

• 10M = 10a, 5U = 5a, 5̄M = 5̄c, 5̄D = 5̄b.

• 10M = 10a, 5U = 5a, 5̄M = 5̄d, 5̄D = 5̄e.

• 10M = 10a, 5U = 5a, 5̄M = 5̄e, 5̄D = 5̄d.
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One can also consider the possibilities that arise from taking the ones above and permuting

the two U(2) factors. However, these models are physically equivalent. Note that again

in the 5̄e sector after using gauge invariance two components cannot be set to zero, and

we will choose them to coincide with the roots e1 ∧ e4 and e2 ∧ e4 calling them φ1 and φ2

respectively. For the first model we find the following Yukawa matrices

YU =
π2

2ρmρµ


0 0 ε θx+bθy

2ρµ

0 ε θx+bθy
2ρµ

0

ε θx+bθy
2ρµ

0 1

 ,

YD/L = − π2

ρm(2ρµ1 + ρµ2)


0 0 ε y13

0 ε y22 ε y23

ε y31 ε y32 1 + ε y33

 ,

(B.17)

where

y13 = −θy (2bρµ1 + cρµ2) + (2ρµ1 + ρµ2) θx
(2ρµ1 + ρµ2)

2
,

y22 =
θy
(
4 (b2 + 1) ρ2

µ1
+ 4(bc+ 1)ρµ2ρµ1 + (c2 + 1) ρ2

µ2

)
(2ρµ1 + ρµ2)

2
,

y23 = −
3(b− c)ρ2

µ1
ρµ2 (θy (2bρµ1 + cρµ2) + (2ρµ1 + ρµ2) θx)

(2ρµ1 + ρµ2)
3ρ

3/2
m

,

y31 = −
θy (2bρµ1 + cρµ2)

(
4 (b2 + 2) ρ2

µ1
+ 4(bc+ 2)ρµ2ρµ1 + (c2 + 2) ρ2

µ2

)
(2ρµ1 + ρµ2)

2
+

− θx (2bρµ1 + cρµ2)
2

2ρµ1 + ρµ2
,

y32 = −
ρ2
µ1
θx
(
4 (b2 + 1) ρ2

µ1
+ 4(bc+ 1)ρµ2ρµ1 + (c2 + 1) ρ2

µ2

)
(2ρµ1 + ρµ2)

2ρ
3/2
m

+

−
ρ2
µ1
θy ((3c− 2b)ρµ2 + 2bρµ1)

(
4 (b2 + 1) ρ2

µ1
+ 4(bc+ 1)ρµ2ρµ1 + (c2 + 1) ρ2

µ2

)
(2ρµ1 + ρµ2)

3ρ
3/2
m

,

y33 = −
6(b− c)2ρ4

µ1
ρ2
µ2

(θy (2bρµ1 + cρµ2) + (2ρµ1 + ρµ2) θx)

(2ρµ1 + ρµ2)
4ρ3
m

.

(B.18)

The result for the second model is presented in the main text in section 4. For the third
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model we find the following Yukawa matrices

YU =
π2

2ρmρµ


0 0 ε θx+bθy

2ρµ

0 ε θx+bθy
2ρµ

0

ε θx+bθy
2ρµ

0 1

 ,

YD/L = − π2

ρmρm̃


0 0 0

0 0 ε y23

0 ε y32 φ2 + ε y33

 ,

(B.19)

where

y23 = −(b− c)ρ3/2
m (φ1θxρm̃ + φ2ρµ2 (cθy − θx))− bφ2ρµρ

3/2
m̃ (bθy + 3θx)

ρ
3/2
m ρ

3/2
m̃

,

y32 = −(b− c)ρ3/2
m (φ2ρµ2 (3cθy + θx)− cφ1θyρm̃) + cφ2ρµρ

3/2
m̃ (bθy − θx)

ρ
3/2
m ρ

3/2
m̃

,

y33 = −φ1

(b− c)ρ3/2
m ρm̃

(
2bρ2

µθxρ
3/2
m̃ − ρ2

µ2
ρ

3/2
m (θx − 3cθy)

)
− cρµρµ2ρ

3/2
m ρ

5/2
m̃ (θx − bθy)

ρ3
mρ

3
m̃

+

− φ2

2cρµ2θy

(
b(c− b)ρ2

µρ
3/2
m̃ + (b+ c)ρµ2ρµρ

3/2
m̃ + 3(b− c)ρ2

µ2
ρ

3/2
m

)
ρ

3/2
m ρ3

m̃

+

− φ2

2ρµθx

(
3b2ρ2

µρ
3/2
m̃ + (b− c)(b+ c)ρµ2ρµρ

3/2
m − cρ2

µ2
ρ

3/2
m

)
ρ3
mρ

3/2
m̃

.

(B.20)

Finally in the fourth model we face the problem that the matter curve where the sector

5̄e is localised is actually a singular variety and therefore it is not clear how to correctly

identify the various families for the 5̄M sector. Since this constitutes a major issue in the

analysis of the model we will not discuss it further.

C Local chirality

One important consequence of the addition of fluxes as already remarked in the previous

section is the generation of chiral matter in 4d. In fact, while a non-zero vev for the Higgs

background Φ gives chiral matter localised in some matter curves Σ, this chiral matter

lives in the six dimensional space R1,3 × Σ and therefore the resulting four dimensional
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spectrum will be non-chiral after dimensional reduction. Non zero fluxes threading the

matter curves change the situation and if for a particular matter curve Σρ∫
Σρ

Tr〈F 〉 6= 0 (C.1)

one of the two chiralities for the matter living in Σρ will remain in the massless spectrum

in 4d. In our local analysis we cannot evaluate whether the condition (C.1) is met for a

particular sector of the theory for this would require knowledge of Σρ and the fluxes F

globally in SGUT. Nevertheless we will be able to analyse the chiral spectrum of our model

using the notion of local chirality. Local chirality was discussed in [25–27] and it amounts

to asking for localisation of the matter wavefunctions in a certain sector ρ around the

Yukawa point. To understand concretely whether matter in particular sector is localised

or not it is useful to look at the same problem in the T-dual setup of magnetised D9-

branes. As explained in [24] the gauge field in the z̄ direction is identified with Φ and

so Fxz̄ = DxΦ and Fyz̄ = DyΦ. In the case of T-branes we additionally have the flux

Fzz̄ = i[Φ,Φ†]. In this situation local chirality at the Yukawa point can be studied looking

at the Dirac index around this particular point. For a representation R the Dirac index

is

indexR /D =
1

48(2π)2

∫ (
TrR F ∧F ∧F −

1

8
TrR F ∧TrR∧R

)
(C.2)

and asking for local chirality at a particular point amounts to asking for a non vanishing

integrand at this particular point. Since we take zero curvature in our model the quantity

we need to evaluate is the following one

IR ≡
i

6
TrR (F ∧F ∧F )xx̄yȳzz̄ = iTrR

(
Fxx̄{Fyȳ, Fzz̄}+ Fxz̄{Fyx̄, Fzȳ}+ (C.3)

Fxȳ{Fyz̄, Fzx̄} − {Fxx̄, Fyz̄}Fzȳ − {Fxȳ, Fyx̄}Fzz̄ − {Fxz̄, Fyȳ}Fzx̄
)
.

As shown in [26], we find that the wavefunction in a representation R is localised when

IR < 0. This can be evaluated for the the different sectors that appear in the Yukawa

couplings which yields

I10M = − 2m4c4qR(10M) (C.4a)

I5̄M = − 2m4c4qR(5̄M) (C.4b)

I5U = − 8µ4qS(5U) (C.4c)

I5̄D = − 8d2µ4qS(5̄D), (C.4d)
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where we took b = 1 and µ � m, as in section 5. Using the charges in table 1 we find

that we need to restrict the fluxes to

M1 < 0, 4N1 < −NY , 4N2 > −NY (C.5)

together with either

3M1 < 2ÑY ≤ 0, 4M2 + ÑY + 2M1 > 0 (C.6)

or

0 < ÑY < −M1, 6M2 − ÑY + 3M1 > 0. (C.7)

D Holomorphic Yukawa couplings computation

In this appendix we present the explicit computation of the Yukawas via residues as

explained in subsection 4.3. Taking into account the non-perturbative corrections, the

holomorphic Yukawa coupling is

Y = m4
∗π

2fabc Resp
[
ηaηbhxy

]
, (D.1)

where

η = −iΦ−1
[
hxy + iε∂xθ0∂y

(
Φ−1hxy

)
− iε∂yθ0∂x

(
Φ−1hxy

)]
. (D.2)

Here η is a different function for every sector. In particular, Φ is the action of 〈Φ〉 on each

sector, as in eq.(4.7), and hxy are given in (4.32). Finally, θ0 is a holomorphic function on

SGUT which we take linear as it appears in (3.3). Given this information we can proceed

to compute the different η functions which read,
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10M

h10M = bx− y (D.3)

iηi10M
/γi10M

= −

[
m3−i
∗ h3−i

10M

detΦ10M

] m

µ2h10M

+O(ε2) (D.4)

+ ε
2µ2(θx + bθy)λ+m3θy

(detΦ10M )3
m3−i
∗ h3−i

10M

 2mλ

m3x+ λ2


+ ε

(θx + bθy)

(detΦ10M )2
m3−i
∗ h3−i

10M

 2mλ(6− i)

m3x(3− i) + (4− i)λ2


5̄M

h5̄M = b(x− x0)− (y − y0) (D.5)

iηi5̄M/γ
i
5̄M

=
m3−i
∗ h3−i

5̄M

((2a+ 1)λ+ 2κ)2 −m3x

 m

(2a+ 1)λ+ 2κ

 (D.6)

+ ε
mi
∗(bθy + θx)h

2−i
5̄M

(detΦ5̄M )2

 (2a+ 1)µ2m (h5̄M + 2(3− i)(bx+ y))

(2κ+ (2a+ 1)λ)(2a+ 1)µ2 [h5̄M + (3− i)(bx+ y)]


+ ε

mi
∗(bθy + θx)h

2−i
5̄M

(detΦ5̄M )2

 4iκm

(3− i)m3x+ [2κ+ (2a+ 1)λ](3− i)κ


+ ε

2m3−i
∗ h3−i

5̄M
(2a+ 1)µ2(bθy + θx) [(2a+ 1)λ+ 2κ]

(detΦ5̄M )3

 2m [(2a+ 1)λ+ 2κ]

(detΦ5̄M )


+ ε

2m3−i
∗ h3−i

5̄M

(detΦ5̄M )3

 −2m ((2a+ 1)λ+ 2κ)m3θy

−(detΦ5̄M )m3θx

+O(ε2) . (D.7)

5U

h5U/γ5U = 1 (D.8)

iη5U/γ5U = − 1

Φ5U

+ ε
2µ2(θx + bθy)

Φ3
5U

+O(ε2) (D.9)
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5̄D

h5̄D/γ5̄D = 1 (D.10)

iη5̄D/γ5̄D = − 1

Φ5̄D

− ε 2aµ2(θx + bθy)

Φ3
5̄D

+O(ε2). (D.11)

Once we have these we can simply apply (D.1) to find the Yukawas. The computation

of multivariate residues can be quite involved, however, in our case the matter curves

intersect transversely, which means that these can be calculated in a straightforward way.

Let us illustrate how this works. Consider the following residue at a point p ∈ C2,

R = Resp

[
f(x, y)

σ1(x, y)σ2(x, y)

]
(D.12)

where f , σ1 and σ2 are holomorphic functions. If σ1 and σ2 meet transversely at p,

meaning that the determinant of the Jacobian at p,

J(σ1, σ2)|p =

∣∣∣∣∂(σ1, σ2)

∂(x, y)

∣∣∣∣
p

, (D.13)

is non-zero, we can perform the following change of variables (u, v) = (σ1(x, y), σ2(x, y)).

Then, the residue is

R = Resp

[
J(σ1, σ2)|−1 f̃(u, v)

uv

]
= J(σ1, σ2)|−1

p f̃(p), (D.14)

where f̃(u, v) = f(x, y). Using this expression in our case leads to the result (4.33) in the

main text.

E Zero mode wavefunctions in real gauge

In this appendix we discuss the computation of the real wavefunctions, both perturba-

tive and non-perturbative. Although the structure of the couplings can be computed at

the holomorphic level via residues, the normalisation factors and kinetic mixing neces-

sarily depend on solving the D-term equation. Thus, as explained in the main text, we

mainly use these solutions to compute the kinetic terms which is then combined with the

holomorphic computation to give the physical Yukawa couplings.

There are two different kinds of wavefunctions in our model, those that correspond to

sectors which are charged under an Abelian subgroup of S(U(2)×U(2)×U(1))⊥ and the
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ones that transform as doublets of the first U(2) factor. These correspond to the Higgses

and matter, respectively. The former have been computed in [24–26] and the latter in [26]

so we just sketch the computation and refer the reader to those for further details.

Perturbative zero modes

Higgs sectors

These sectors are not charged under the T-brane background as can be seen from table

1. Thus, we can compute their wavefunctions by applying the techniques in [24–26]. The

zero mode equations (5.1) can be recast into a Dirac-type equation, namely
0 Dx Dy Dz

−Dx 0 −Dz̄ Dȳ

−Dy Dz̄ 0 −Dx̄

−Dz −Dȳ Dx̄ 0




0

−→ϕ U

 = 0 (E.1)

with

Dx = ∂x +
1

2
(qRx̄− qS ȳ) Dy = ∂y −

1

2
(qRȳ + qSx̄) Dz = 2iµ2(x̄− ȳ) (E.2)

and Dm̄ their conjugates. Here we used the following particular gauge

A =
i

2
QR(ydȳ− ȳdy−xdx̄+ x̄dx) +

i

2
QS(xdȳ− ȳdx+ ydx̄− x̄dy)− i

2
m2c2P1(xdx̄− x̄dx).

(E.3)

which reproduces the total flux,

F = iQR(dy ∧ dȳ − dx ∧ dx̄) + iQS(dx ∧ dȳ + dy ∧ dx̄) + im2c2P1dx ∧ dx̄. (E.4)

The quantities qR and qS are the constant flux densities that are shown in table 1, and

for concreteness we have taken the case of the up-type Higgs. The down-type Higgs can

be obtained from this one by some simple replacements, see below.

Following [24,25] one can solve this system of equations which yields

−→ϕ U = γU


i ζU

2µ2

i (ζU−λU )
2µ2

1

 χU , χU = e
qR
2

(|x|2−|y|2)−qS(xȳ+yx̄)+(x−y)(ζU x̄−(λU−ζU )ȳ))

(E.5)
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with λU the lowest solution to

λ3
U − (8µ4 + (qR)2 + (qS)2)λU + 8µ4qS = 0 (E.6)

and ζU = λU (λU−qR−qS)
2(λU−qS)

. As shown in [26] we can multiply χU by an arbitrary holomorphic

function of a particular linear combination of x and y and still satisfy the equations of

motion. This function will only be determined once we impose boundary conditions that

arise when we embed this model in a compact setup. However, the dominant contribution

to the Yukawa couplings comes from the average value of such function around the Yukawa

point, so we may approximate it by a constant.

Now, looking at (4.7), we see that if we set κ to zero, we can find the solution for the

down-type Higgs by simply performing the following replacement on the solution above

µ2 → −dµ2. (E.7)

Furthermore, the effect of κ is simply a translation in the (x, y) plane which can be taken

into account by shifting the solution

x→ x− x0, y → y − y0. (E.8)

This yields the wavefunction for HD in a gauge in which the vector potential is shifted

with respect to the one used to solve the HU sector. Thus, we need to perform a change

of gauge for the background flux, namely,

A(x− x0, y − y0) = A(x, y) + dψ (E.9)

with

ψ =
i

2
QR(y0ȳ−ȳ0y−x0x̄+x0x)+

i

2
QS(x0ȳ−ȳ0x+y0x̄−x̄0y)− i

2
m2c2P1(x0x̄−x̄0x). (E.10)

Taking all this into account we find that,

−→ϕ D = γD


i ζD

2dµ2

i ζD−λD
2dµ2

1

 e−iψχD(x− x0, y − y0) (E.11)

with

χD(x, y) = e
qR
2

(|x|2−|y|2)−qS(xȳ+yx̄)+(x−y)(ζDx̄−(λD−ζD)ȳ). (E.12)
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Finally, λD is the lowest solution to

λ3
D − (8d2µ4 + q2

R + q2
S)λD + 8d2µ4qS = 0 (E.13)

and ζD = λD(λD−qR−qS)
2(λD−qS)

.

Matter sectors

Unlike the previous sectors, these are charged under the T-brane since they transform

as doublets of U(2). This makes the computation of the real wavefunction more compli-

cated. In particular, as shown in [26], it is not possible to find a simple solution in the

case in which µ is non-zero since that leads to a pair of coupled partial differential equa-

tions. However, in the limit µ � m these two equations decouple and can be effectively

reduced to ordinary differential equations. In the following we present some details on

the computation while a more detailed discussion can be found in appendix A of [26].

Similarly to what we did with the wavefunctions of the Higgses, we start by considering

the 10M sector and we will obtain the 5̄M by simple replacements. Furthermore, for

simplicity we set b = 1 in the Higgs background (4.3).

Since this sector is a doublet under the first U(2) factor, we need to have
ax̄

aȳ

ϕxy

 = −→ϕ 10+E
+
1 +−→ϕ 10−E

−
1 (E.14)

for which one can write an analogous equation to (E.1) where

a =

 a+

a−

 ϕ =

 ϕ+

ϕ−

 (E.15)

Then, following [25,26], we first solve the F-terms equations (5.1a) and (5.1b) to write a

in terms of ϕ, and then impose the D-term equation (5.1c) to find an equation for ϕ.

Let us start by considering the case in which the primitive fluxes 〈Fp〉 are zero. Then

solution to the F-terms reads

a = efP1/2∂̄ξ (E.16a)

ϕ = efP1/2 (h− iΨξ) (E.16b)
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where ξ and h are doublets with components ξ± and h± and

P1 =

 1 0

0 −1

 Ψ =

 −µ2(x− y) m

m2x −µ2(x− y)

 (E.17)

From (E.16b) we obtain

ξ = iΨ−1
(
e−fP/2ϕ− h

)
(E.18)

which can be used to write down the D-term equation for the fluctuations (5.1c)

∂x∂x̄ξ + ∂y∂ȳξ + ∂xfP∂x̄ξ − iΛ† (h− iΨξ) = 0 (E.19)

where we used that f does not depend on (y, ȳ) and we have defined

Λ = efPΨe−fP =

 −µ2(x− y) me2f

m2xe−2f −µ2(x− y)

 . (E.20)

Finally, we can make the following change of variables

U = e−fP/2ϕ ; ξ = iΨ−1 (U − h) (E.21)

and express (E.19) in terms of U

∂x∂x̄U + ∂y∂ȳU − (∂xΨ)Ψ−1∂x̄U + (∂yΨ)Ψ−1∂ȳU + ∂xfΨPΨ−1∂x̄U −ΨΛ†U = 0. (E.22)

As advanced earlier, this is system of coupled partial differential equations for U+ and U−

that have no simple solution. However, following [26], these decouple in the limit m� µ.

Furthermore, it is possible to show that there is no localised solution for U+, so we set it

to zero. Then, near the Yukawa point pup = {x = y = 0} if we approximate f = log c +

c2m2xx̄ we find U− = exp(λxx̄)h where λ the lowest solution to c2λ3+4c4m2λ2−m4λ = 0.

Taking this into account one finds

−→ϕ j
10+ = γj10


iλ
m2

0

0

 ef/2χj10
−→ϕ j

10− = γj10


0

0

1

 e−f/2χj10 (E.23)

where ef/2 =
√
c em

2c2xx̄/2 and χj10 = eλxx̄ gj(y), with gj holomorphic functions of y.
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Switching on the primitive gauge fluxes amounts to replacing ∂x,y → Dx,y in the D-

term, where Dx,y is defined in (E.2), and analogously for ∂̄ in the F-terms. Then, taking

µ� m one finds a localised solution for U− and the wavefunction reads

−→ϕ j
10+ = γj10


iλ10
m2

− iλζ10
m2

0

 ef/2χj10
−→ϕ j

10− = γj10


0

0

1

 e−f/2χj10 (E.24)

where λ10 is the lowest (negative) solution to

m4(λ10 − qR) + λc2
(
c2m2(qR − λ10)− λ2

10 + q2
R + q2

S

)
= 0 (E.25)

and ζ10 = −qS/(λ10 − qR). The scalar wavefunctions χ10 are

χj10 = e
qR
2

(|x|2−|y|2)−qS(xȳ+yx̄)+λ10x(x̄−ζ10ȳ) gj(y + ζ10x) (E.26)

where gj holomorphic functions of y + ζ10x, and j = 1, 2, 3 label the different zero mode

families. Similarly to [13] we choose such family functions as

gj = m3−j
∗ (y + ζ10x)3−j. (E.27)

Now that we have the solution to the 10M sector, we can obtain the corresponding

solution for the 5̄M by some replacements. Similarly to the case of the down-type Higgs,

we arrive at the solution by performing the shift (E.8) where now

x0 → 0, y0 →
ν

a
, (E.28)

since we need to take the limit µ� m as well as κ� m, keeping κ/µ2 = ν finite. Again,

we have to perform a change of gauge with parameter

ψ̃ =
i

2
QR(νȳ/a− ν̄y/ā) +

i

2
QS(νx̄/a− ν̄x/ā) (E.29)

which is the same as ψ but using the fact that, when taking µ, κ � m with κ/µ2 = ν

finite, we have x0 = 0 and y0 = ν/a. Then, the wavefunction for the matter 5̄M sector

reads

−→ϕ i
5 = γi5


iλ5
m2

−iλ5ζ5
m2

0

 eiψ̃+f/2χi5(x, y−ν/a)E+
1 +γi5


0

0

1

 eiψ̃−f/2χi5(x, y−ν/a)E−1 (E.30)
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where λ5 is the lowest solution to

m4(λ5 − qR) + λ5c
2(c2m2(qR − λ10)− λ2

5 + q2
R + q2

S) = 0 , (E.31)

and ζ5 = −qS/(λ5 − qR). Finally the wavefunctions χi5 are

χi5(x, y) = e
qR
2

(|x|2−|y|2)−qS(xȳ+yx̄)+λ5x(x̄−ζ5ȳ)gi5(y + ζ5x) , (E.32)

where gi5 are in y + ζ5x and i = 1, 2, 3 is a generation index. Analogously, the family

functions are

gi5(y + ζ5x) = m3−i
∗ (y + ζ5x)3−i . (E.33)

Non-perturbative zero modes

Here we discuss the correction to the real wavefunctions due to the non-perturbative

effects. We start by considering the Higgs sectors and then move on to the matter wave-

functions.

Higgs sectors

The analysis of the correction to these two sectors are identical to those that appeared in

section 5.1 of [25] and in appendix A of [26]. The zero mode equations read

∂̄〈A〉a = 0 (E.34)

∂̄〈A〉ϕ+ i[〈Φ〉, a] + ε ∂θ0 ∧ ∂〈A〉a = 0 (E.35)

ω ∧ ∂〈A〉a−
1

2
[〈Φ̄〉, ϕ] = 0 (E.36)

that reduce to the following in holomorphic gauge for the up-type Higgs

∂x̄aȳ − ∂ȳax̄ = 0 (E.37)

∂m̄ϕxy − i2µ2(x− y)am̄ = iε [θy∂xam̄ − θx∂yam̄] +O(ε2) (E.38)

regarding the F-terms while the D-term reads

{∂x + x̄qR − ȳqS} ax̄ + {∂y − ȳqR − x̄qS} aȳ + 2iµ2(x̄− ȳ)ϕxy (E.39)

= iεθ̄x {yqR + xqS}ϕxy − iεθ̄y {−qRx+ yqS}ϕxy.
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The first order correction to the wavefunction is then

ϕ
(1)
U = m∗γUe

(x−y)(ζU x̄−(λU−ζU )ȳ))ΥU (E.40)

with λU , ζU defined as in (E.5) and

ΥU =
1

4µ2
(ζU x̄− (λU−ζU)ȳ)2(θx+θy)+

δ1

2
(x−y)2 +

δ2

ζU
(x−y)(ζUy+(λU−ζU)x) (E.41)

where the constants δ1 and δ2 are

δ1 = −2µ2

λ2
U

{θ̄x(qR(ζU − λU) + qSζU) + θ̄y(qRζU − qS(ζU − λU))} (E.42)

δ2 = −2µ2ζU
λ2
U

{θ̄x(qR + qS) + θ̄y(qR − qS)}. (E.43)

Notice that the holomorphic terms in ΥU , those that depend on δ1 and δ2, are there to

satisfy the corrected D-term equation.

Similarly to the tree-level case, the corrected wavefunction for the down-type sector

can be obtained from this one by performing the replacements (E.7-E.8) and taking into

account the change of gauge (E.9) so we do not write the explicit result.

Matter sectors

Recall that the wavefunctions in the real gauge are used essentially to compute the nor-

malisation factors and kinetic mixing since the structure of the Yukawa couplings can

be computed via residues. For the matter sectors in our model, one can prove that the

mixing and normalisation factors remain unchanged when including the non-perturbative

effects just by analysing the structure of the equations. In the following we discuss this

point and obtain the structure of such correction for the matter sectors.

Just as in the perturbative case, let us start by turning off the primitive fluxes. Also,

we consider the 10M sector and obtain the 5̄M by performing replacements. First, we see

that the F-terms in the real gauge are solved by

a = g ∂̄ξ (E.44a)

ϕ = g (h− iΦξ − ε∂θ0 ∧ ∂ξ) = g U dx ∧ dy (E.44b)

with

g =

 ef/2 0

0 e−f/2

 (E.45)
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and Φ is given by Φ|10M in (4.7), where we dropped the subscript 10M for notational

convenience. The doublet U can be expanded in ε

U = U (0) + ε U (1) + O(ε2) (E.46)

where U (0) in the solution for ε = 0 that appeared in the last section, namely

U
(0)
− = eλ10xx̄h(y) U

(0)
+ = 0. (E.47)

Then, one may solve for ξ from (E.44b) as

ξ = ξ(0) + iεΦ−1
[
U (1) + ∂xθ0∂yξ

(0) − ∂yθ0∂xξ
(0)
]

+O(ε2)

ξ(0) = iΦ−1(U (0) − h)
(E.48)

and then solve for U (1) by plugging in this expression into the D-term for the fluctuations

(5.1c). This yields U
(1)
− = 0, in the limit µ� m. Thus, we find the following structure

ξ+ = ξ
(0)
+ + 0 +O(ε2) ξ− = 0 + ε ξ

(1)
− +O(ε2). (E.49)

Since ξ± determines both a and ϕ through (E.44), we find that this particular structure

implies that the solution (E.24) looks like

−→ϕ 10+ =


•

•

0

+ ε


0

0

•

+O(ε2) −→ϕ 10− =


0

0

•

+ ε


•

•

0

+O(ε2) (E.50)

Finally, it is possible to show that this structure still holds after including the non-

primitive fluxes.
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[6] R. Blumenhagen, M. Cvetič, P. Langacker, G. Shiu, “Toward realistic intersecting

D-brane models,” Ann. Rev. Nucl. Part. Sci. 55 (2005) 71-139. [hep-th/0502005];
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[31] L. E. Ibáñez, F. Marchesano, D. Regalado and I. Valenzuela, “The Intermediate

Scale MSSM, the Higgs Mass and F-theory Unification,” JHEP 1207 (2012) 195

[arXiv:1206.2655 [hep-ph]].
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