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Here we show that the Weak Basis Transformation is an appropriate mathematical tool that can
be used to find texture zeros in the quark mass matrix sector of the Standard Model. So, starting
with the most general quark mass matrices and taking physical data into consideration, is possible
to obtain more than three texture zeros by any weak basis transformation. Where the most general
quark mass matrices considered in the model, were obtained through a special weak basis wherein
the mass matrix Mu (or Md) has been taken to be diagonal and only the matrix Md (or Mu) is
considered to be most general.

I. INTRODUCTION

In the Standard Model (SM), the masses of all quarks
arise from the Yukawa Lagrangian

−LM = ūRMuuL + d̄RMddL + h.c.,

where the flavour structure of Yukawa couplings is not
constrained by gauge symmetry and, as a result, the up
and down quark mass matrices, Mu and Md, are arbi-
trary 3 × 3 complex matrices, thus containing a total of
36 free parameters. A first simplification, without los-
ing generality, the quark mass matrices can be consid-
ered Hermitian because of the unitary matrix component,
coming from the polar decomposition, can be absorbed in
the right-handed quark fields. This immediately brings
down the number of free parameters to 18 . This num-
ber is to be compared to the ten physical parameters
corresponding to the six quark masses and four physical
parameters of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix. The above redundancy is closely related to the
fact that one has the freedom to make weak-basis (WB)
transformations under which the quark mass matrices
change but the gauge currents remain diagonal and real.
For Hermitian quark mass matrices, one can further

perform a common unitary transformation on both left-
and right-handed quark fields, which keeps the mass ma-
trices to be Hermitian and has no physical effect, namely,
the physical observables are unchanged under the WB
transformation [1, 2]

Mu −→ M ′
u
= U †Mu U, (1.1a)

Md −→ M ′
d = U †Md U, (1.1b)

where U is an arbitrary unitary matrix. It implies that
the number of quark mass matrices representing the same
model is infinity.
Two sets of quark mass matrices related by a WB

transformation obviously have the same physical con-
tent [1]. Conversely, two sets of quark mass matrices
having the same physical content are related by a WB
transformation [3]. That is, two sets of quark mass ma-
trices have the same physical content if and only if they
are related by a WB transformation.

On the other hand, in the absence of any viable theory
for flavor physics, one usually resorts to phenomenologi-
cal models such as texture specific mass matrices. Tex-
ture specific mass matrices were introduced explicitly by
Fritzsch [4–7]. In particular, Fritzsch-like texture specific
mass matrices seem to be very helpful in understanding
the pattern of quark mixings and CP violation. For de-
tails we refer the readers to [1–15].
This short paper is organized as follows: in Sect. II, we

show the completeness of WB transformation by showing
its hability to obtain different quark mass matrix repre-
sentations and discuss its physical implications. Then we
present in Sect. III a kind of general quark mass matri-
ces can be used as the starting point in the analysis, and
finally our conclusions are presented in Sect. IV.

II. COMPLETENESS OF WB

TRANSFORMATIONS

Let us show that the WB transformation method is
complete in the sense that it generates all possible quark
mass matrix representations. Let us consider first the
Hermitian quark mass matrices indicated by (Mu,Md),
and diagonalize them as follows

U
†
uMuUu = Du and U

†
d
MdUd = Dd, (2.1)

where CKM mixing matrix is given by

V = U †
uUd. (2.2)

On the other hand, any other mass matrices (M ′
u,M

′
d)

representing the same physical phenomenon give

U
′†
u M

′
uU

′
u = Du and U

′†
d
M

′
dU

′
d = Dd, (2.3)

and

V = U ′†
u
U ′
d
. (2.4)

Equating the expressions in (2.2) and (2.4) yields

U
†
uUd = U

′†
u U

′
d ⇒ U

′
uU

†
u = U

′
dU

†
d
. (2.5)

And equating expressions (2.1) and (2.3), gives respec-
tively

U
′†
u M

′
uU

′
u = U

†
uMuUu and U

′†
d
M

′
dU

′
d = U

†
d
MdUd, (2.6)
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where we find that the mass matrices Mu and Md can
be expressed in terms of the mass matrices M ′

u
and M ′

d

as follows

Mu = UuU
′†
u M

′
uU

′
uU

†
u, (2.7)

Md = UdU
′†
d
M

′
dU

′
dU

†
d
. (2.8)

Using (2.5) into (2.8), we have

Md = UuU
′†
u M

′
dU

′
uU

†
u. (2.9)

that together with (2.7) and given that U = UuU
′†
u

is an
unitary matrix allows us to state:
“Two sets of quark mass matrices having the same phys-

ical content are related by a WB transformation.”

So, starting from particular quark mass matrices, the
WB transformation is able to find any other viable quark
mass matrix configurations, i.e., if there exists a set of
viable quarks mass matrices, it is certain that there is a
unitary matrix leading to them. Although, the difficulty
resides in finding an appropriated unitary matrix [3].
Because some texture zeros must lie along the diago-

nal elements of both up and down Hermitian quark mass
matrices, it implies that at least one, and at most two,
of their eigenvalues must be negative [1]. So, following
the reasoning in the paragraph above, this means that
the relative sign of the quark mass parameters should
be considered. Which implies a total of 36 independent
initial quark mass matrices, depending what quark mass
eigenvalues are negative. But, in the case of finding tex-
ture zeros, two negative eigenvalues can be reduced to
only one by factoring a minus sign which can be absorbed
into the quark mass matrices, so that, for this case only 9
independent initial quark mass matrices are considered,
say each one with only a negative eigenvalue [3].
Hence, we are now able to explicitly construct texture

zeros in quark mass matrices through WB transforma-
tions. If these texture zeros exist, the WB transforma-
tion is able to find them. Through WB transformations,
Branco et al. [1] show that is always possible to find, at
most, three zeros in quark mass matrices with no physi-
cal meanings. But, this does not restrict the number of
zeros can be found by applying the WB transformation
to mass matrices, the case is that the model should be
put into a physical context. Therefore, we have found
additional zeros [3] (four and even five texture zeros) by
using the recent quark mass and mixing data. These ad-
ditional zeros now have physical meanings because they
were obtained from specific experimental data.
With all this in mind, the question is, what quark mass

matrices are to be used initially in order to find texture
zeros through WB transformations. The answer is below.

III. THE INITIAL QUARK MASS MATRICES

It is quite comfortable to use as initial quark mass
matrices the following structure

Mu = Du =





λ1u 0 0
0 λ2u 0
0 0 λ3u



 , Md = V DdV
†, (3.1)

where the up and down diagonal matrices Du and Dd

contain the respective quark mass eigenvalues, and V is
the usual quark CKM mixing matrix. The calculus of
texture zeros is facilitated by using these initial quark
mass matrices, because we have simultaneously available
the quark masses and the CKM matrix elements. The
starting matrices (3.1), used in papers like [1, 3, 16], are
as general as any other one. The reason is that starting
from arbitrary Hermitian matricesMu andMd, and using
their respective diagonalizing matrices Uu and Ud, and
performing a WB transformation (1.1) using for this case
the unitary matrix U = Uu, we have

Mu −→ M
′
u = U

†
u Mu Uu = Du,

Md = Ud Dd U
†
d
−→ M

′
d = U

†
u (Ud Dd U

†
d
)Uu,

= (U†
u Ud)Dd (U

†
d
Uu),

= V Dd V
†
,

where the CKM mixing matrix V = U †
u Ud was consid-

ered. Additionally, note also that the three no physical
texture zeroes mentioned above appear also in (3.1).
The other possibility that also works well is derived as

follows

Md −→ M
′
d = U

†
d
Md Ud = Dd,

Mu = Uu Du U
†
u −→ M

′
u = U

†
d
(Uu Du U

†
u)Ud,

= (U†
d
Uu)Du (U†

u Ud),

= V
†
Dd V,

such that we obtain a similar quark mass matrix struc-
ture

Mu = V †DuV, Md = Dd =





λ1d 0 0
0 λ2d 0
0 0 λ3d



 , (3.2)

which is as general as the previous one.

IV. CONCLUSIONS

To begin with, the WB transformation is complete, so
we can find all possible quark mass matrices representing
the model by starting from specific quark mass matrix
configurations. It is important to mention that, in the
SM, is always possible to find a maximum of three no
physical vanishing elements in the quark mass matrices
by performing a WB transformation. In the process does
not matter the value of physical quantities. But if we
want to find additional texture zeros is necessary to take
into account physical considerations.
Another important result, emphasized by other au-

thors, is that the quark mass matrix structure given
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in (3.1) (or (3.2)), which was called in my paper [3] as the
u-diagonal representation (or the d-diagonal representa-

tion), is so general as any other one. These matrices are
deduced from a WB transformation and have the advan-
tage of having available the quark masses and the CKM
matrix elements.

Taking into account the two paragraphs above, we have
a solid way to find texture zeros in the quark mass matrix
sector of the SM: it consists, initially, by choosing the
general quark mass matrix structure (3.1) (or (3.2)) and

applying them appropriated WB transformations, which
implies that four and five texture zeros, if they exist, is
going appear [3].
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