Finite size of hadrons and Bose-Einstein correlations in pp collisions at 7 TeV
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Abstract

Space-time correlations between produced particles, induced by the composite nature of hadrons, imply specific changes
in the properties of the correlation functions for identical particles. The expected magnitude of these effects is evaluated
using the recently published blast-wave model analysis of the data for pp collisions at /s = 7 TeV.
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5 1. It has been recently pointed out [1] that since hadrons the two-particle source function is the simple product

produced in high-energy collisions are not point-like ob-
jects, they cannot be uncorrelated. Indeed, being com-
posite, hadrons cannot occupy too close space-time points
(because at small distance the constituents of hadrons mix
and there are no separate hadrons to interfere). Conse-
7 quently, since the HBT experiment measures the quantum
O _interference between wave functions of hadrons, it cannot
@ see hadrons which are too close to each other. Therefore
the distribution function of the pair of hadrons must van-
ish at small distances between them.
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QN This implies of course a correlation in space-time. As
IE this correlation is the necessary consequence of the com-
(O posite structure of hadrons (and thus it is a general prop-
00 erty of the system) it is interesting to investigate to what
O\ extent it modifies the accepted ideas about the quantum
’ interference which are, usually, derived under the assump-
(Y) tion that such correlations can be neglected [2].
It was already shown in [1] that such space-time cor-
relations may be responsible for the observation that the
= = two-pion Bose-Einstein correlation function takes values
.~ below unity [3-5], at variance with the well-known theo-
rem valid when the correlations are ignored [2].
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a In the present paper the investigation of this phe-
nomenon is continued, using the recently published [6]
analysis of the data on HBT radii, measured by the ALICE
collaboration [7]. This allows to estimate quantitatively
the magnitude of the effect and to give predictions for its
size in all three directions long, side and out, commonly
used in discussion of the quantum interference [2].

In the next section the consequences of the space-time
correlations for the HBT correlation functions are ex-
plained. In Sections 3 and 4 the blast-wave model used for
the quantitative estimate of the effect is presented. The
results are presented and summarized in the last two sec-
tions.

2. In absence of correlations between produced hadrons,
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w(p1, p2; v122) = w(p1, T1)w (P2, T2) (1)

where w(p, x) is the single-particle source function (Wigner

function). Consequently, the Bose-Einstein correlation
function between the momenta of two identical particles
N(p1,p2)
C(plaPQ) = v (2)
N(p1)N(p2)

is given by [2]
W(Pro; Q)w(Pr2; —Q)

Corm) = T Gute)
[@(Pr2, Q)|
Y w7 )
Here
w(Pi2; Q) = /daceiQ””w(Pu;av)7

g
=
[

dz w(p; x), (4)
/

where Pio = (p1 +p2)/2 and Q = p1 — pa.

The data from the L3 collaboration [3] and from the
CMS colllaboration [5] show that the correlation function
C(p1,p2) takes values below unity, contrary to Eq. (3).
Thus the particles must be correlated and we propose that
this effect is due to the composite nature of hadrons.

To implement these space-time correlations, we replace
formula (1) for the two-particle source function by

W(p1,p2; 21, 22) =
w(pr; z1)w(pa; w2)[l = D@1 — 22)], (5)
where D(z1 — x2) is the cut-off function that satisfies the
constraint D(x; — 22 = 0) = 1 and tends to 0 at larger

distances (above, let us say, 1 fm). Then, the HBT corre-
lation function becomes

C(P127 Q) = Cnoncorr(P127 Q) - Ccorr(plaPZ)a (6)
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where the uncorrelated part Choncorr(Pi2, @) is given by
(3), while the correction due to space-time correlations
reads

CCOI‘I‘ = C(ggl)‘r + CC((%‘)T (7)
where
o _ Jdwvidzow(py; z1)w(pa; z2)D(a1 — 22)
C’corr = s (8)
w(p1)w(p2)
o) -
fda:ldxgei(xlfxz)Qw(Pm;xl)w(Plg;zg)D(:zrl — I9)
w(p1)w(p2) '

(9)

One sees that the contribution from the correlation part
is negative. Moreover, since it obtains contributions from
a small region of space-time, its dependence on @ is much
less steep than that of the uncorrelated part. Conse-
quently, at @ large enough C(Pj2, Q) may easily fall below
one.

To describe the actual measurements one has to take
into account that particles produced very far from the cen-
ter (e.g. those arising from long-lived resonances) form a
"halo” and do not contribute to the HBT correlations [8].
Thus we have

éobs(PIQ» Q) =1 _p2 +p2C(P127 Q) (10)

where p? is the probability that both particles originate
from the ”core”.

In the ALICE experiment [7] Cops was, in addition, nor-
malized to 1 at some )y where the influence of quantum
interference is expected to be negligible. Thus we finally
have to consider the function

_ 1 —p? +p*C(P12,Q)
1—p?+p2C(P12,Qo)

Introducing the (measured) intercept parameter A\ by the
condition

CObS (P127 Q)

(11)

1—|—)\ECObS(P12,Q:0) (12)
one obtains
9 A
= C(P12,Q =0) — C(P12,Q0) + A[1 — C(P12, Qo)
(13)

This allows to evaluate the measured correlation function
in terms of the measured intercept parameter A and the
evaluated correlation function C'(Pi2, Q).

Note that in absence of space-time correlations we have
C(P12,Q =0) =2, C(P12,Qo) = 1, and thus p? = \, as is
usually assumed.

3. To have an idea on the magnitude of the effect we
discuss, we have used the blast-wave model described in

detail in [6, 9]. In this model, at freeze-out, hadrons are
created at a fixed (longitudinal) proper time

T=Vt2—22 =1y, (14)

The single-particle source function (in the longitudinal
c.m.s. system) becomes

w(p, ) = ko coshne™V oStV eosd ¢yrdrdpdny  (15)

where kg = /m?2 + kf_, whereas 7, ¢ and r are space-time
rapidity, azimuthal angle and transverse distance from the
symmetry axis . We have also introduced the notation

U = Bkgcoshf; V = Bk, sinhf, (16)

with T' = 1/ being the freeze-out temperature. Finally,
0 describes the transverse flow by the relation

sinh 6 = wr, (17)

with w being a parameter. The function f(r) describes the
transverse profile of the source.

It was shown in [6] that the model is flexible enough to
describe the HBT radii measured by the ALICE collabo-
ration [7]. The function f(r) was taken in the form

fr) ~ e R/ (18)

corresponding to a ”shell” of the width v/2 6 and radius R.

Thus the model contains 5 free parameters: T', w, 7¢, R
and §, which may depend on the multiplicity of the event.
Their values, giving a good description of the HBT radii
measured in [7], are given in [6].

4. Since we treat particles as extended objects produced
on the hyperbola (14), the longitudinal distance between
the two hadrons located at the space-time rapidities ny, 72
should be calculated along this curve, which yields

dy = /nz Vdz? —dt* = 74(n2 — ). (19)

m

In the frame where 1, + 72 = 0 we also have t; = t5 and
thus the total distance between particles is

&= (1 =22 + (1 — )’ +df =d3 +df.  (20)

Since this expression is invariant under boost in the longi-
tudinal direction, it is also valid in the LCMS system, and
thus we finally have

d*(x1,20) = 13 + 73 — 2r1ry cos(py — ¢o) + 7'?(771 —m2)?.
(21)

The correlation functions were studied using a gaussian
cut-off function

D(xy,25) = e~ Umw2)*/A% (22)

where A is a constant fixing the scale of the cut-off region.

LAll irrelevant constants are cancelled in the definition of w(p, z).
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Figure 1: (Color online) Correlation function Cypg for the long di-
rection in the interval 0.2 GeV < @ < 0.8 GeV (normalized to 1 at
Q= 1GeV). The dashed lines describe the results for k; = 163 MeV
and the two multiplicity classes: N. = 12-16 and N, = 52—151. The
solid lines describe the results for k; = 547 MeV and the same two
multiplicity classes.
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Figure 2: The same as Fig. 1 but for the side direction.

5. Using (22), (21) and the source function of the model
described in Sec. 3, with the parameters taken from [6]
2. we have evaluated corrections to the HBT correlation
functions (6) for all intervals of the particle multiplicity
and transverse momentum (as measured in [7]), and for all
three directions of the vector Q The cut-off distance A =~
2ry (where ry is the radius of the ”excluded volume” [10]
occupied by one pion) was taken to be 1 fm, within the
range of values given by the earlier analyses [11]. Some of
the results, obtained using the gaussian D(z; — x2), are
shown in Figs. 1-3.

One sees that for the long direction the correlation func-
tion falls below 1 at all multiplicities and transverse mo-
menta of the pair. The depth of the minimum in the long
direction varies from ~ 0.02 to ~ 0.01 (below 1) when the

2 The intercept parameter A\ was taken as A = 0.59 — 0.26 k|
(where k is in GeV) which approximates the data of [7].

-———  k,=163 MeV, N, = 12-16 -
—— k, =547 MeV, N, = 12-16
-——— k, =163 MeV, N, = 52-151

, =547 MeV, N, = 52-151

Cobs, out

~——
-

—-_—
—_——

-~ -~

~~~—_- ~--~

———mme e

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Q[GeV]

Figure 3: The same as Fig. 1 but for the out direction.

HBT radius Riong increases from ~ 0.8 to ~ 2 fm.

In the side and out directions the results are strongly
dependent on the value of the transverse momentum of
the pair. At k; < 300 MeV for the side and k; < 400
MeV for the out direction the correlation functions are
always larger than 1 in the investigated region. In the side
direction the correlation function shows a clear structure:
a minimum followed by a maximum (particularly at low
multiplicities). At larger k; the minimum below 1 shows
up in both cases.

In the side direction the minimum at k£, > 300 MeV is
similar to that found in the long direction. It is about
twice deeper in the out direction (above 400 MeV). In
both cases the minimum is deeper when the multiplicity
increases. Also in this case the change is controlled by the
corresponding HBT radii.

To see the sensitivity of these results to the shape of
the cut-off function D(z; — x2) we have also considered a
sharp cut-off which is drastically different from the Gaus-
sian. We have found that the qualitative features are un-
changed, except that the effects of the cut extend to larger
values of ). This, however, happens in the region where
these effects are already small and rather hard to measure.
Actually, in most cases the results are almost identical 3,
provided that the cut-off parameter is ~ 0.75 fm. The only
exception is the side direction at small multiplicity where
the difference exceeds slightly 0.02 at Q@ > 700 MeV.

We thus conclude that although the shape of the cut-off
function can influence the details of our results, the general
qualitative features remain unchanged.

6. In summary, we have estimated to what extent the
space-time correlations implied by the excluded volume
effect modify the HBT correlation functions.

Our conclusions can be formulated as follows:

(i) The space-time correlations induced by the finite size

31In the relevant region @ > 300 MeV they differ by less than 0.01,
which is consistent with the expected accuracy of our calculations
and also with the present experimental accuracy.



of hadrons lead to a rich structure of the HBT correlation
functions, depending on (i) the measurement direction, (ii)
multiplicity and (iii) the transverse momentum of the pair.

(ii) The difference between the long and the two other
directions at small &k, is particularly striking.

(iii) At large k, the minimum below 1 shows up in every
direction. It is about twice deeper for out than for the long
and side directions.

Some comments are in order.

(i) We have found that the modification of the HBT
correlation functions are only marginally sensitive to the
change of shape of the cut-off function D(x; — z3). This
means that the effect we discuss is, in practice, described
by a single parameter A.

(ii) We have been considering the space-time correla-
tions in the source function of two pions, which are a nec-
essary consequence of their composite nature. Naturally,
there might be also other mechanisms contributing to these
correlations (e.g. the final state interaction). In this case
the parameter A should be considered as an effective cut-
off distance which summarizes all contributions. Since our
calculations show that the measurable effects on the HBT
correlation functions depend mostly on A (and not on the
shape of the function D) it seems hopeless to try to sepa-
rate the various contributions.

(iii) In our approach the cut-off function is taken in-
dependent of particle density. This approximation seems
reasonable because, as shown in [6], particle density at
freeze-out changes only by 10% in the range of multiplic-
ities we consider. Moreover, the dominant effect of the
changing particle density is expected to be a modification
of the single-particle source functions of the two pions con-
tributing to interference rather than of their space-time
correlation described by D(z; — x2). It follows that the
observable effect of the modification of the cut-off func-
tion due to change of particle density is expected to be
very small, if any.

(iv) Tt is interesting to speculate about the size of the
effects we discuss in case of heavy ion collisions. Taking
the source functions in the transverse direction in form of
Gaussians (which is a reasonable approximation for heavy
ion collisions) one can easily see that the corrections due
to finite size of hadrons fall as (A/R)? where R is the
radius of the system. For PbPb collisions this gives fac-
tor ~ 1/30 compared to the results shown in this paper,
implying that the expected effects are negligible. Similar
mechanism should be at work in the longitudinal direction.
For smaller systems, as those created in p — Pb collisions,
the effects are also expected to be smaller than in pp. Pre-
cise estimate would, however, require determination of the
source functions (see [6]).
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