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Abstract

The semileptonic Bs(B) → K∗2 (a2, f2)ℓν, ℓ = τ, µ transitions are investigated in the frame work

of the three-point QCD sum rules. Considering the quark condensate contributions, the relevant

form factors of these transitions are estimated. The branching ratios of these channel modes are

also calculated at different values of the continuum thresholds of the tensor mesons and compared

with the obtained data for other approaches.
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I. INTRODUCTION

Investigation of the B meson decays into tensor mesons are useful in several aspects

such as CP asymmetries, isospin symmetries and the longitudinal and transverse polar-

ization fractions. A large isospin violation has already been experimentally detected in

B → ωK∗2(1430) mode [1]. Also, the decay mode B → φK∗2 (1430) is mainly dominated

by the longitudinal polarization [2, 3], in contrast with the B → φK∗ where the trans-

verse polarization is comparable with the longitudinal one [4]. Therefore, nonleptonic and

semileptonic decays of B meson can play an important role in the study of the particle

physics.

In the flavor SU(3) symmetry, the light p-wave tensor mesons with JP = 2+ contain-

ing iso-vector mesons a2(1320), iso-doublet states K∗2 (1430), and two iso-singlet mesons

f2(1270) and f ′2(1525), are building the ground state nonet which have been experimen-

tally established [5, 6]. The quark content qq̄ for the iso-vector and iso-doublet tensor

resonances are obvious. The iso-scalar tensor states, f2(1270) and f ′2(1525) have a mixing

wave functions where mixing angle should be small [7, 8]. Therefore, f2(1270) is primarily

a (uū+ dd̄)/
√
2 state, while f ′2(1525) is dominantly ss̄ [9].

As a nonperturbative method, the QCD sum rules is a well established technique in the

hadron physics since it is based on the fundamental QCD Lagrangian. The semileptonic

decays of B to the light mesons involving π, K(K∗, K∗0 ), and a1 have been studied via the

three-point QCD sum rules (3PSR), for instance B → πℓν [10], B → Kℓ+ℓ−, B → K∗ℓ+ℓ−

[11, 12], Bs → K∗0ℓν [13], Bs → (K∗0 , f0)ℓ
+ℓ− [14] and B → a1ℓ

+ℓ− [15]. The determination

of the form factor value T1(0) = 0.35 ± 0.05 relevant for the B → K∗γ and B → K∗ℓ+ℓ−

[12, 16] decays allowed to predict the ratio Γ(B → K∗γ)/Γ(b → sγ) = 0.17 ± 0.05, which

agrees with the experimental measurements [17–19]. The obtained results of the decay

B → πℓν [10], and simulations on the lattice [20–22] are in a reasonable agreement.

However, considering the structure of the 3PSR for heavy-light transitions shows a dif-

ficulty which is due to the dependence of the various terms of the short-distance expansion

to mass of the b-quark [23]. Therefore, some authors claimed that the 3PSR is not a well-

established tool for heavy-light transition, and is ill-behaved for large mb mass which has

been discussed in [24].

It should be noted that the treatment of the 3PSR and light-cone QCD sum rules
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(LCSR) are different for the light hadron in the final state. The 3PSR, without considering

wave functions, introduces a three-point correlation function with appropriate interpolating

currents and extract the perturbative and nonperturbative contributions of the transition

form factors. In the limit of mb → ∞, the coefficients of the nonperturbative effects such as

quark-quark and quark-gluon condensate are increased with mb faster than the perturbative

coefficient. In the light-cone sum rules (LCSR) method, this problem does not appear since

the nonperturbative effects are included in the hadron distribution amplitudes [25].

This problem could be irrelevant for the actual value of the b-quark mass, and also for

particular processes and final states. For instance, the obtained results based on the 3PSR

for the B → π, and B → K∗ transitions are in good agreement with the experimental

values, as it was already mentioned. On the other hand, using the Borel transformation

exponentially suppresses the contributions of the highest-order operators. However, it is

necessary to compare the results obtained for heavy-light transition from the 3PSR with

other methods, especially the LCSR and experimental data if exist.

It should be emphasized that a suitable choice of the Borel parameter interval keeps the

convergence of the condensate expansion under control. Therefore, neglecting the higher-

dimensional terms do not introduce a large error. In Ref. [24], authors have obtained

TB→K∗

1 (0) ≃ 0.5− 0.6 and 0.32 via the 3PSR and the LCSR, respectively, where the 3PSR

value is larger than that for the LCSR. Also, this quantity has been calculated 0.38 based

on the 3PSR in [26], which has a reasonable agreement with the LCSR value. The main

reason for the difference between results based on the 3PSR in the two papers is due to the

difference in selection of the Borel parameter interval [24].

In this work, we investigate the B(Bs) → K∗2(a2, f2)ℓν decays within the 3PSR method.

For analysis of these decays, the form factors and their branching ratio values are calculated.

So far, the form factors of the semileptonic decays B(Bs) → K∗2 (a2, f2)ℓν have been studied

via different approaches such as the LCSR [27], the perturbative QCD (PQCD) [5], the large

energy effective theory (LEET) [28–30], and the ISGW II model [31]. A comparison of our

results for the form factor values in q2 = 0 and branching ratio data with predictions

obtained from other approaches, especially the LCSR, is also made.

The plan of the present paper is as follows: The 3PSR approach for calculation of the

relevant form factors of the B(Bs) → K∗2 (a2, f2)ℓν decays presented in Section II. In the
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final section, the value of the form factors in q2 = 0 and the branching ratio of the considered

decays are reported. For a better analysis, the form factors and differential branching ratios

related to these semileptonic decays are plotted with respect to the momentum transfer

squared q2.

II. THEORETICAL FRAMEWORK

In order to study of B(Bs) → K∗2 (a2, f2)ℓν decays, we focus on the exclusive decay

Bs → K∗2 via the 3PSR. The Bs → K∗2ℓν decay governed by the tree level b → u transition

(see Fig. 1). In the framework of the 3PSR, the first step is appropriate definition of

�
�
l

b

s

B
s
(p)

u

K
2
*(p’)y x

0

FIG. 1: Schematic picture of the spectator mechanism for the Bs → K∗2ℓν decay.

correlation function. In this work, the correlation function should be taken as

Παβµ(p
2, p′2, q2) = i

∫ ∫
d4x d4y ei(p

′x−py)
〈
0
∣∣∣T

{
j
K∗

2
αβ (x)jµ(0)j

Bs(y)
}∣∣∣ 0

〉
, (1)

where p and p′ are four-momentum of the initial and final mesons, respectively. q2 is the

squared momentum transfer and T is the time ordering operator. jµ = ūγµ(1 − γ5)b is

the transition current. jBs and j
K∗

2
αβ are also the interpolating currents of the Bs and the

tensor meson K∗2 , respectively. With considering all quantum numbers, their interpolating

currents can be written as

jBs(y) = b̄(y)γ5s(y),

j
K∗

2
αβ (x) =

i

2

[
s̄(x)γα

↔

Dβ (x)u(x) + s̄(x)γβ
↔

Dα (x)u(x)
]
, (2)

where
↔

Dµ (x) is the four-derivative with respect to x acting at the same time on the left

and right. It is given as

↔

Dµ (x) =
1

2

[
→

Dµ (x)−
←

Dµ (x)
]
,
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→

Dµ (x) =
→

∂µ (x)− i
g

2
λa
A

a
µ(x),

←

Dµ (x) =
←

∂µ (x) + i
g

2
λa
A

a
µ(x),

where λa and A
a
µ(x) are the Gell-Mann matrices and the external gluon fields, respectively.

The correlation function is a complex function of which the imaginary part comprises

the computations of the phenomenology and real part comprises the computations of the

theoretical part (QCD). By linking these two parts via the dispersion relation, the physical

quantities are calculated. In the phenomenological part of the QCD sum rules approach, the

correlation function in Eq. (1) is calculated by inserting two complete sets of intermediate

states with the same quantum numbers as Bs and K∗2 . After performing four-integrals over

x and y, it will be:

Παβµ = −
〈0|jK

∗

2
αβ |K∗2(p′)〉〈K∗2(p′)|jµ|Bs(p)〉〈Bs(p)|jBs|0〉

(p2 −m2
Bs
)(p′2 −m2

K∗

2
)

+ higher states. (3)

In Eq. (3), the vacuum to initial and final meson state matrix elements are defined as

〈0|jK
∗

2
αβ |K∗2(p′, ε)〉 = fK∗

2
m2

K∗

2
εαβ, 〈0|jBs|Bs(p)〉 = −i

fBs
m2

Bs

(mb +ms)
, (4)

where fK∗

2
and fBs

are the leptonic decay constants of K∗2 and Bs mesons, respectively. εαβ

is polarization tensor of K∗2 . The transition current give a contribution to these matrix

elements and it can be parametrized in terms of some form factors using the Lorentz

invariance and parity conservation. The correspondence between a vector meson and a

tensor meson allows us to get these parametrization in a comparative way ( for more

information see [5]). The parametrization of B → T form factors is analogous to the

B → V case except that the ε is replaced by εT , as follows:

cV 〈K∗2(p′, ε)|ūγµ(1− γ5)b|Bs(p)〉 = −iε∗Tµ(mBs
+mK∗

2
)A1(q

2) + i(p+ p′)µ(ε
∗

T .q)
A2(q

2)

mBs
+mK∗

2

+ iqµ(ε
∗

T .q)
2mK∗

2

q2
(
A3(q

2)− A0(q
2)
)
+ ǫµνρσε

∗ν
T pρp′σ

2V (q2)

mBs
+mK∗

2

(5)

with A3(q
2) =

mBs
+mK∗

2

2mK∗

2

A1(q
2)−

mBs
−mK∗

2

2mK∗

2

A2(q
2) and A0(0) = A3(0), (6)

where q = p − p′, P = p + p′, and ε∗Tµ =
p
λ

mBs
εµλ. The factor cV accounts for the flavor

content of particles: cV =
√
2 for a2, f2 and cV = 1 for K∗2 [32]. Inserting Eqs. (4) and (5)

in Eq. (3) and performing summation over the polarization tensor as

εµνεαβ =
1

2
TµαTνβ +

1

2
TµβTνα − 1

3
TµνTαβ ,
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where Tµν = −gµν +
p′µp

′

ν

m2
K∗

2

, the final representation of the physical side is obtained as

Παβµ =
fBs

mBs

(mb +ms)

fK∗

2
m2

K∗

2

(p2 −m2
Bs
)(p′2 −m2

K∗

2
)

{
V ′(q2)iǫβµρσpαp

ρp′σ + A′0(q
2)pαpβp

′

µ

+ A′1(q
2)gβµpα + A′2(q

2)pαpβpµ
}
+ higher states. (7)

For simplicity in calculations, the following redefinitions have been used in Eq. (7):

V ′(q2) =
V (q2)

mBs
+mK∗

2

, A′0(q
2) = −

mK∗

2
(A3(q

2)− A0(q
2))

q2
,

A′1(q
2) = −

(mBs
+mK∗

2
)

2
A1(q

2), A′2(q
2) =

A2(q
2)

2(mBs
+mK∗

2
)
.

Now, the QCD part of the correlation function is calculated by expanding it in terms of

the OPE at large negative value of q2:

Παβµ = C
(0)
αβµI + C

(3)
αβµ〈0|Ψ̄Ψ|0〉+ C

(4)
αβµ〈0|Ga

ρνG
ρν
a |0〉+ C

(5)
αβµ〈0|Ψ̄σρνT

aGρν
a Ψ|0〉+ ..., (8)

where C
(i)
αβµ are the Wilson coefficients, I is the unit operator, Ψ̄ is the local fermion field

operator and Ga
ρν is the gluon strength tensor. In Eq. (8) the first term is contribution of

the perturbative and the other terms are contribution of the non-perturbative part.

To compute the portion of the perturbative part (Fig. 1), using the Feynman rules for

the bare loop, we obtain:

C
(0)
αβµ = − i

4

∫ ∫
d4x d4y ei(p

′x−py)
{
Tr

[
Ss(x− y)γα

↔

Dβ (x)Su(−x)γµ(1− γ5)Sb(y)γ5

]

+ Tr[α ↔ β]} , (9)

taking the partial derivative with respect to x of the quark free propagators, and performing

the Fourier transformation and using the Cutkosky rules, i.e., 1
p2−m2 → −2iπδ(p2 − m2),

imaginary part of the C
(0)
αβµ is calculated as

Im
[
C

(0)
αβµ

]
=

1

8π

∫
d4kδ(k2 −m2

s)δ((p+ k)2 −m2
b)δ((p

′ + k)2 −m2
u)(2k + p′)β

× Tr [( 6 k +ms)γα( 6 p′+ 6 k +mu)γµ(1− γ5)( 6 p+ 6 k +mb)γ5] + {α ↔ β},(10)

where k is four-momentum of the spectator quark s. To solve the integral in Eq. (10),

we will have to deal with the integrals such as I0, Iα, Iαβ and Iαβµ with respect to k. For

example Iαβµ can be as:

Iαβµ(s, s
′, q2) =

∫
d4k [kαkβkµ]δ(k

2 −m2
s)δ((p+ k)2 −m2

b)δ((p
′ + k)2 −m2

u).
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where s = p2 and s′ = p′2. I0, Iα, Iαβ and Iαβµ can be taken as an appropriate tensor

structure as follows:

I0 =
1

4
√

λ(s, s′, q2)
,

Iα = B1[pα] +B2[p
′

α],

Iαβ = D1[gαβ] +D2[pαpβ] +D3[pαp
′

β + p′αpβ] +D4[p
′

αp
′

β],

Iαβµ = E1[gαβpµ + gαµpβ + gβµpα] + E2[gαβp
′

µ + gαµp
′

β + gβµp
′

α] + E3[pαpβpµ]

+ E4[p
′

αpβpµ + pαp
′

βpµ + pαpβp
′

µ] + E5[p
′

αp
′

βpµ + p′αpβp
′

µ + pαp
′

βp
′

µ]

+ E6[p
′

αp
′

βp
′

µ], (11)

The quantities λ(s, s′, q2), Bl (l = 1, 2), Dj (j = 1, ..., 4), and Er (r = 1, ..., 6), are indicated

in the Appendix. Using the relations in Eq. (11), Im[C
(0)
αβµ] can be calculated for the each

structure corresponding to Eq. (7) as follows:

Im
[
C

(0)
αβµ

]
= ρ

V
(iǫβµρσpαp

ρp′σ) + ρ0(pαpβp
′

µ) + ρ1(gβµpα) + ρ2(pαpβpµ). (12)

where the spectral densities ρi, (i = V, 0, 1, 2) are found as

ρ
V
(s, s′, q2) = 24B1

√
λ [B1(ms −mb) +B2(ms −mu) +msI0] ,

ρ0(s, s
′, q2) = 12[D2(ms −mb) +D3(ms −mu) + 2B1ms − 2E4(mb −ms)],

ρ
1
(s, s′, q2) = 3B1[2m

2
s(mb +mu −ms)−ms(2mbmu + u) + ∆(ms −mu) + ∆′(ms −mb)]

+ 6D1(ms −mu)− 24E1(mb −ms),

ρ2(s, s
′, q2) = 24[D2ms + E3(ms −mb)].

Using the dispersion relation, the perturbative part contribution of the correlation function

can be calculated as follows:

C
(0)
i =

∫
ds′

∫
ds

ρi(s, s
′, q2)

(s− p2)(s′ − p′2)
. (13)

For calculation of the non-perturbative contributions (condensate terms), we consider

the condensate terms of dimension 3, 4 and 5 related to the contributions of the quark-

quark, gluon-gluon and quark-gluon condensate, respectively. They are more important

than the other terms in the OPE. In the 3PSR, when the light quark is a spectator, the

gluon-gluon condensate contributions can be easily ignored [23]. On the other hand, the

7



quark condensate contributions of the light quark which is a non spectator, are zero after

applying the double Borel transformation with respect to the both variables p2 and p′2,

because only one variable appears in the denominator. Therefore, only two important

diagrams of dimension 3, 4 and 5 remain from the non-perturbative part contributions. The

diagrams of these contributions corresponding to C
(3)
αβµ and C

(5)
αβµ are depicted in Fig. 2.

After some calculations, the non-perturbative part of the correlation function are obtained

b u ub

(a) (b)

s s s s

FIG. 2: The diagrams of the effective contributions of the condensate terms.

as follows:

C
(3)
V + C

(5)
V = − 2κ

(p2 −m2
b)

2
(p′2 −m2

u)
,

C
(3)
0 + C

(5)
0 = − 4κ

(p2 −m2
b)

2
(p′2 −m2

u)
,

C
(3)
1 + C

(5)
1 =

κ

(p2 −m2
b)(p

′2 −m2
u)

+
κ[(mb +mu)

2 − q2]

(p2 −m2
b)

2
(p′2 −m2

u)
,

C
(3)
2 + C

(5)
2 = − 4κ

(p2 −m2
b)

2
(p′2 −m2

u)
, (14)

where κ =
(m2

s−
m2

0
2

)

48
〈0|ss̄|0〉, m2

0 = (0.8 ± 0.2)GeV2 [33], and 〈0|s̄s|0〉 = (0.8 ± 0.2)〈0|ūu|0〉,
〈0|ūu|0〉 = 〈0|d̄d|0〉 = −(0.240 ± 0.010 GeV)3 that we choose the value of the condensates

at a fixed renormalization scale of about 1 GeV.

The next step is to apply the Borel transformations with respect to the p2(p2 → M2
1 ) and

p′2(p′2 → M2
2 ) on the phenomenological as well as the perturbative and non-perturbative

parts of the correlation functions and equate these two representations of the correlations.

The following sum rules for the form factors are derived:

V ′(q2) =
(mb +ms)e

m2
Bs

/M2
1 e

m2
K∗

2
/M2

2

fBs
mBs

fK∗

2
m2

K∗

2

{
−1

(2π)2

∫ s′0

m2
s

ds′
∫ s0

sL

ds ρ
V
(s, s′, q2)e−s/M

2
1 e−s

′/M2
2

+ B̃
[
C

(3)
V + C

(5)
V

]}
,

8



A′n(q
2) =

(mb +ms)e
m2

Bs
/M2

1 e
m2

K∗

2
/M2

2

fBs
mBs

fK∗

2
m2

K∗

2

{
−1

(2π)2

∫ s′0

m2
s

ds′
∫ s0

sL

ds ρn(s, s
′, q2)e−s/M

2
1 e−s

′/M2
2

+ B̃
[
C(3)

n + C(5)
n

]}
, (15)

where n = 0, ..., 2, s0 and s′0 are the continuum thresholds in the initial and final channels,

respectively. The lower limit in the integration over s is: sL = m2
b +

m2
b

m2
b
−q2

s′. Also B̃

transformation is defined as follows:

B̃

[
1

(p2 −m2
b)

m
(p′2 −m2

u)
n

]
=

(−1)m+n

Γ(n)Γ(m)

e−m
2
b
/M2

1 e−m
2
u/M

2
2

(M2
1 )

m−1
(M2

2 )
n−1 , (16)

where M2
1 and M2

2 are Borel mass parameters.

We would like to provide the same results for the B → a2ℓν, and B → f2ℓν decays. With

a little bit of change in the above expressions such as s ↔ d(u) and mK∗

2
↔ ma2(mf2), we

can easily find similar results in Eq. (15) for the form factors of the new transitions.

III. NUMERICAL ANALYSIS

In this section, we numerically analyze the sum rules for the form factors V (q2), A0(q
2),

A1(q
2) and A2(q

2) as well as branching ratio values of the transitions B(Bs) → T , where T

can be one of the tensor mesons K∗2 , a2, or f2. The values of the meson masses and leptonic

decay constants are chosen as presented in Table I. Also mb = 4.820 GeV, ms = 0.150 GeV

TABLE I: The values of the meson masses [35] and decay constants [5] in GeV.

meson Bs B K∗2 a2 f2

Mass 5.366 5.279 1.425 1.318 1.275

Decay Constant 0.230 0.190 0.118 0.107 0.102

[34], mτ = 1.776 GeV, and mµ = 0.105 GeV [35].

From the 3PSR, it is clear that the form factors also contain the continuum thresholds

s0 and s′0 and the Borel parameters M2
1 and M2

2 as the main input. These are not physical

quantities, hence the form factors, should be independent of these parameters. The contin-

uum thresholds, s0 and s′0 are not completely arbitrary, but these are in correlation with

9



FIG. 3: The form factors of Bs → K∗2 on M2
1 and M2

2 .

the energy of the first exited state with the same quantum numbers as the considered inter-

polating currents. The value of the continuum threshold s
B(Bs)
0 = 35 GeV2 [36] calculated

from the 3PSR. The values of the continuum threshold s′0 for the tensor mesons K∗2 , a2 and

f2 are taken to be s
K∗

2
0 = 3.13 GeV2, sa20 = 2.70 GeV2 and sf20 = 2.53 GeV2, respectively [9].

We search for the intervals of the Borel parameters so that our results are almost insen-

sitive to their variations. One more condition for the intervals of these parameters is the

fact that the aforementioned intervals must suppress the higher states, continuum and con-

tributions of the highest-order operators. In other words, the sum rules for the form factors

must converge. As a result, we get 8 GeV2 ≤ M2
1 ≤ 12 GeV2 and 4 GeV2 ≤ M2

2 ≤ 8 GeV2.

To show how the form factors depend on the Borel mass parameters, as examples, we depict

the variations of the form factors V , A0, A1 and A2 for Bs → K∗2ℓν at q2 = 0 with respect

to the variations of the M2
1 and M2

2 parameters in their working regions in Fig. 3. From

these figures, it revealed that the form factors weakly depend on these parameters in their

working regions.

The sum rules for the form factors are truncated at about 0 ≤ q2 ≤ 11 GeV2. The

dependence of the form factors V , A0, A1 and A2 on q2 for B → T transitions are shown in

Fig. 4. However, it is necessary to obtain the behavior of the form factors with respect to q2

in the full physical region, 0 ≤ q2 ≤ (mB(Bs) −mT )
2, in order to calculate the decay width

of the B → T transitions. So to extend our results, we look for a parametrization of the

form factors in such a way that in the region 0 ≤ q2 ≤ (mB(Bs)−mT )
2, this parametrization

coincides with the sum rules predictions. Our numerical calculations show that the sufficient

10



FIG. 4: The SR predictions for the form factors of the B(Bs) → Tℓν transitions on q2.

parametrization of the form factors with respect to q2 is as follows:

f(q2) =
f(0)

1− a( q2

m2
B(Bs)

) + b( q2

m2
B(Bs)

)2
. (17)

The values of the parameters f(0), a, and b for the transition form factors of the B → T

are given in the Table II.

TABLE II: Parameter values appearing in the fit functions of the B → Tℓν decays.

Form Factor f(0) a b Form Factor f(0) a b

V Bs→K∗

2 0.13 2.19 0.83 A
Bs→K∗

2
0 0.23 3.77 4.21

A
Bs→K∗

2
1 0.10 1.36 0.09 A

Bs→K∗

2
2 0.05 0.21 −2.99

V B→a2 0.13 2.10 0.75 AB→a2
0 0.26 3.71 4.03

AB→a2
1 0.11 1.45 0.23 AB→a2

2 0.09 0.63 0.46

V B→f2 0.12 2.01 0.60 A
B→f2
0 0.24 3.70 4.02

A
B→f2
1 0.10 1.40 0.16 A

B→f2
2 0.09 0.46 0.29

In Table III, our results for the form factors of B → Tℓν decays in q2 = 0 is compared

with those of other approaches such as the LCSR, the PQCD, the LEET, and the ISGW

II model. Our results are in good agreement with those of the LCSR, PQCD and LEET in

all cases.

At the end of this section, we would like to present the differential decay widths of the

process under consideration. Using the parametrization of these transitions in terms of the

form factors, the differential decay width for B → Tℓν transition is obtained as:

dΓ(B → Tℓν)

dq2
=

| GFVub |2
√

λ(m2
B, m

2
T , q

2)

256 m3
B π3q2

(1− m2
ℓ

q2
)2(XL +X+ +X−), (18)
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TABLE III: Comparison of the form factor values of the B → Tℓν decays in q2 = 0 in different

approaches.

Form Factor This Work LCSR[27] PQCD[5] LEET[28–30] ISGW II[31]

V Bs→K∗

2 0.13 ± 0.03 0.15 ± 0.02 0.18+0.05
−0.04 − −

A
Bs→K∗

2
0 0.23 ± 0.06 0.22 ± 0.04 0.15+0.04

−0.03 − −

A
Bs→K∗

2
1 0.10 ± 0.02 0.12 ± 0.02 0.11+0.03

−0.02 − −

A
Bs→K∗

2
2 0.05 ± 0.01 0.05 ± 0.02 0.07+0.02

−0.02 − −

V B→a2 0.13 ± 0.03 0.18 ± 0.02 0.18+0.05
−0.04 0.18 ± 0.03 0.32

AB→a2
0 0.26 ± 0.07 0.21 ± 0.04 0.18+0.06

−0.04 0.14 ± 0.02 0.20

AB→a2
1 0.11 ± 0.04 0.14 ± 0.02 0.11+0.03

−0.03 0.13 ± 0.02 0.16

AB→a2
2 0.09 ± 0.02 0.09 ± 0.02 0.06+0.02

−0.01 0.13 ± 0.02 0.14

V B→f2 0.12 ± 0.04 0.18 ± 0.02 0.12+0.03
−0.03 0.18 ± 0.02 0.32

A
B→f2
0 0.24 ± 0.06 0.20 ± 0.04 0.13+0.04

−0.03 0.13 ± 0.02 0.20

A
B→f2
1 0.10 ± 0.02 0.14 ± 0.02 0.08+0.02

−0.02 0.12 ± 0.02 0.16

A
B→f2
2 0.09 ± 0.02 0.10 ± 0.02 0.04+0.01

−0.01 0.13 ± 0.02 0.14

mℓ represents the mess of the charged lepton. The other parameters are defined as

XL =
1

9

λ

m2
T m2

B

[(2q2 +m2
ℓ)h

2
0(q

2) + 3λm2
ℓA

2
0(q

2)],

X± =
2q2

3
(2q2 +m2

ℓ)
λ

8m2
T m2

B

[(mB +mT )A1(q
2)∓

√
λ

mB +mT
V (q2)]2,

h0(q
2) =

1

2mT

[(m2
B −m2

T − q2)(mB +mT )A1(q
2)− λ

mB +mT

A2(q
2)].

Integrating Eq. (18) over q2 in the whole physical region, and using Vub = (3.89± 0.44)×
10−3 [35], the branching ratios of the B → Tℓν are obtained. The differential branching

ratios of the B → Tℓν decays on q2 are shown in Fig. 5. The branching ratio values of

these decays are also obtained as presented in Table IV. Furthermore, this table contains

the results estimated via the PQCD. Considering the uncertainties, our estimations for the

branching ratio values of the B → Tℓν decays are in consistent agreement with those of

the PQCD.

In summary, we considered the Bs(B) → K∗2 (a2, f2)ℓν channels and computed the rel-

12



FIG. 5: The differential branching ratios of the semileptonic B → Tℓν decays on q2.

TABLE IV: Comparison of the branching ratio values of the B → Tℓν decays with those of the

PQCD (in units of 10−4).

This Work PQCD[5]

Br(B → a2µν) 0.82 ± 0.25 1.16+0.81
−0.57

Br(Bs → K∗2µν) 0.65 ± 0.20 0.73+0.48
−0.33

Br(B → f2µν) 0.77 ± 0.23 0.69+0.48
−0.34

Br(B → a2τν) 0.51 ± 0.17 0.41+0.29
−0.20

Br(Bs → K∗2τν) 0.35 ± 0.11 0.25+0.17
−0.12

Br(B → f2τν) 0.53 ± 0.18 0.25+0.18
−0.13

evant form factors considering the contribution of the quark condensate corrections. Our

results are in good agreement with those of the LCSR, PQCD and LEET in all cases.

We also evaluated the total decays widthes and the branching ratios of these decays. Our

branching ratio values of these decays are in consistent agreement with those of the PQCD.
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Appendix

In this appendix, the explicit expressions of the coefficients λ(s, s′, q2), Bl (l = 1, 2), Dj (j =

1, ..., 4), and Er (r = 1, ..., 6), are given.

λ(s, s′, q2) = s2 + s′2 + (q2)2 − 2sq2 − 2s′q2 − 2ss′,

B1 =
I0

λ(s, s′, q2)
[2s′∆−∆′u] ,

B2 =
I0

λ(s, s′, q2)
[2s∆′ −∆u] ,

D1 = − I0
2λ(s, s′, q2)

[4ss′m2
s − s∆′2 − s′∆2 − u2m2

s + u∆∆′],

D2 = − I0
λ2(s, s′, q2)

[8ss′2m2
s − 2ss′∆′ − 6s′2∆2 − 2u2s′m2

s + 6s′u∆∆′ − u2∆′2],

D3 =
I0

λ2(s, s′, q2)

[
4ss′um2

s + 4ss′∆∆′ − 3su∆′2 − 3u∆2s′ − u3m2
3 + 2u2∆∆′

]
,

D4 =
I0

λ2(s, s′, q2)
[−6s′u∆∆′ + 6s2∆′2 − 8s2s′m2

s + 2u2s m2
s + u2∆2 + 2ss′∆2],

E1 =
I0

2λ2(s, s′, q2)

[
8s′2m2

s∆s− 2s′m2
s∆u2 − 4um2

s∆
′ss′ + u3m2

s∆
′ − 2s′2∆3

+ 3s′u∆2∆′ − 2∆′2∆ss′ −∆′2∆u2 + us∆3
]
,

E2 =
I0

2λ2(s, s′, q2)

[
8s2m2

s∆
′s′ − 2s2∆′3 − 4um2

s∆ss′ − 2∆2∆′ss′ + 3us∆′2∆

− 2sm2
s∆
′u2 + s′u∆3 + u3m2

s∆−∆2∆′u2
]
,

E3 = − I0
λ3(s, s′, q2)

[
48sm2

s∆s′3 − 24ss′2um2
s∆
′ − 12ss′2∆′2∆+ 6su∆′3s′ − 20s′3∆3

+ 30s′2u∆2∆′ − 12s′2m2
s∆u2 − 12s′∆′2∆u2 + 6s′u3m2

s∆
′ + u3∆′3

]
,

E4 = − I0
λ3(s, s′, q2)

[
16s2m2

s∆
′s′2 − 4s2∆′3s′ − 12ss′2∆2∆′ − 24ss′2um2

s∆+ 3u3∆′2∆

+ 18su∆′2∆s′ − 4s∆′3u2 + 10s′2u∆3 + 6s′u3m2
s∆− 12s′∆2∆′u2 − 2m2

s∆
′u4

+ 4ss′u2m2
s∆
′
]
,

E5 = − I0
λ3(s, s′, q2)

[
16s2m2

s∆s′2 − 24s2s′um2
s∆
′ − 12s2s′∆′2∆+ 10us2∆′3 − 4ss′2∆3

+ 4ss′u2m2
s∆+ 18su∆2∆′s′ + 6su3m2

s∆
′ − 12s∆2∆u2 − 4s′∆3u2 − 2m2

s∆u4

+ 3u3∆2∆′
]
,

E6 = − I0
λ3(s, s′, q2)

[
48s3m2

s∆
′s′ − 20s3∆′3 − 12s2∆2∆′s′ − 24s2s′um2

s∆− 12s2m2
s∆
′u2

+ 30us2∆′2∆+ 6su∆3s′ − 12s∆2∆′u2 + 6su3m2
s∆+ u3∆3

]
,

∆ = s+m2
s −m2

b , ∆′ = s′ +m2
s −m2

u, u = s+ s′ − q2.
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