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Abstract

We investigate the dimension two condensate 〈φ̄ab
i
φab
i

− ω̄ab
i
ωab
i
〉 within the Gribov-Zwanziger ap-

proach to Euclidean Yang-Mills theories in the Coulomb gauge, in both 3 and 4 dimensions. An
explicit calculation shows that, at the first order, the condensate 〈φ̄ab

i
φab

i
− ω̄ab

i
ωab

i
〉 is plagued by a

non-integrable IR divergence in 3D, while in 4D it exhibits a logarithmic UV divergence, being propor-
tional to the Gribov parameter γ2. These results indicate that in 3D the transverse spatial Coulomb
gluon two-point correlation function exhibits a scaling behaviour, in agreement with Gribov’s expres-
sion. In 4D, however, they suggest that, next to the scaling behaviour, a decoupling solution might
emerge too.

1 Introduction

Th Coulomb gauge, ∂iA
a
i = 0, i = 1, ....,D − 1, is largely employed in analytic [1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] as well as in lattice numerical investigations
[23, 24, 25, 26, 27] of non-perturbative aspects of Euclidean yang-Mills theories. An impressive number
of results are nowadays available in this gauge, providing a consistent scenario for confinement.

In this letter we focus on aspects of the Gribov-Zwanziger formulation of the Coulomb gauge [28, 3, 4, 6, 8],
which implements the restriction of the domain of integration in the functional Euclidean integral to the
Gribov Region Ω, defined as the set of all field configurations fulfilling the Coulomb condition and for
which the Faddeev-Popov operator, Mab = −δab∂i∂i − gfacbAc

i∂i, is strictly positive, namely

Ω = {Aa
i , ∂iA

a
i = 0 , Mab > 0 } . (1)

The restriction to the region Ω accounts for the existence of the Gribov copies, which affect the Coulomb
gauge. The so called Gribov-Zwanziger action [28, 3, 4, 6, 8] is the final result of the restriction to
the region Ω. Besides the Coulomb gauge, the restriction to the Gribov region has been effectively
implemented in the Landau [28, 29, 30] and maximal Abelian gauges [31, 32], where the corresponding
Gribov-Zwanziger actions have been worked out. A feature of the Gribov-Zwanziger set up in the Landau
and maximal Abelian gauges is that the two-point gluon correlation function is strongly suppressed in the
infrared region in momentum space k, attaining a vanishing value when k = 0. This kind of behaviour is
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usually referred to as the scaling solution, also observed in the study of the Dyson-Schwinger equations
in these gauges, see [33, 34]. Such a behaviour is also found for the spatial gluon correlation function in
the Coulomb gauge.

Nevertheless, next to the scaling solution, another type of solution, called decoupling solution, was found
in both Landau [35, 36, 37, 38, 39, 40, 41] and maximal Abelian gauges [42, 43, 44], in both 3 and 4
dimensions. Similarly to the scaling solution, the decoupling solution is also strongly suppressed in the
infrared region, displaying a violation of positivity. However, it does not attain a vanishing value at k = 0.

Within the Gribov-Zwanziger approach, the decoupling solution arises as the consequence of the ex-
istence of dimension two condensates [37, 39, 40, 42, 43, 44]. The resulting action accounting for the
inclusion of these condensates is known as the Refined-Gribov-Zwanziger action [37, 39, 40, 42, 43, 44].

In the present work, we investigate the condensate 〈φ̄ab
i φab

i −ω̄ab
i ωab

i 〉 in Coulomb gauge, in both 3 and 4 di-
mensions. In 3D we find, by an explicit first order calculation, that the integral defining 〈φ̄ab

i φab
i −ω̄ab

i ωab
i 〉

exhibits a non-integrable IR divergence, showing that the condensate cannot be safely introduced in 3D.
As a consequence, in 3D, the transverse equal-time gluon propagator exhibits the scaling type behaviour
given by Gribov’s expression.

Moreover, in 4D, we find that the condensate is safe in the IR, being plagued by a mild UV logarithmic
divergence, precisely as the gap equation defining the Gribov parameter. This suggests that, apart from
a UV proper renormalization, a non-vanishing dimension two condensate 〈φ̄ab

i φab
i − ω̄ab

i ωab
i 〉 might show

up also in the Coulomb gauge. As a consequence, the spatial transverse two-point gluon correlation func-
tion exhibits a decoupling solution, next to the well known scaling one. To some extent, this suggests a
kind of common feature of the Landau, Coulomb and maximal Abelian gauge in 4D Euclidean space-time.

The present letter is organised as follows. In Sect.2 we give a short overview of the Gribov-Zwanziger
action in the Coulomb gauge. Sect.3 is devoted to the evaluation of the condensate 〈φ̄ab

i φab
i − ω̄ab

i ωab
i 〉 at

the first order, in both 3D and 4D.

2 The Gribov-Zwanziger action in the Coulomb gauge

The Gribov-Zwanziger action implementing the restriction to the Gribov region Ω, eq.(1), in the
Coulomb gauge, ∂iA

a
i = 0, i = 1, ..., (D − 1), reads [28, 3, 4, 6, 8]

SGZ =

∫

dDx

(

1

4
F a
µνF

a
µν + ba∂iA

a
i + c̄a∂iD

ab
i cb

)

+

∫

dDx
(

−φ̄ab
µ ∂iD

ab
i φcb

µ + ω̄ab
µ ∂iD

ab
i ωcb

µ − gfacm(∂iω̄
ab
µ )(Dcp

i cp)φmb
µ

)

+

∫

dDx
(

γ2gfabcAa
i (φ

bc
i − φ̄bc

i )− (D − 1)(N2 − 1)γ4
)

. (2)

The field ba is the Lagrange multiplier enforcing the Coulomb condition, ∂iA
a
i = 0, while the fields (c̄a, ca)

are the Faddeev-Popov ghosts. The fields (φ̄ab
µ , φab

µ ), µ = 1, ...,D, are a set of commuting fields while

(ω̄ab
µ , ωab

µ ) are anti-commuting. These fields are introduced in order to implement the restriction to the
region Ω through a local action, eq.(2). Finally, the parameter γ2 appearing in expression (2) is the
Gribov parameter. It has the dimension of mass squared and has a dynamical origin, being determined
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in a self consistent way through the gap equation

∂Ev
∂γ2

= 0 , (3)

where Ev is the vacuum energy, namely

e−V Ev =

∫

[DΦ] e−SGZ . (4)

To the first order

Ev = −(D−1)(N2−1)γ4+
(D − 2)

2
(N2−1)

∫

dDk

(2π)D
log

(

k2D + ~k2 +
2Ng2γ4

~k2

)

+ terms independent from γ2 ,

(5)
so that the gap equation, eq.(3), takes the form

∫

dDk

(2π)D
1

k2D
~k2 + ~k4 + 2Ng2γ4

=
(D − 1)

(D − 2)

1

2Ng2
. (6)

From the Gribov-Zwanziger action, it follows that the tree level two-point gluon spatial correlation
function is given by

〈Aa
i (k)A

b
j(−k)〉 = δab

k2D + ~k2 + 2Ng2γ4

~k2

(

δij −
kikj
−→
k

2

)

, (7)

leading to an equal-time transverse form factor [27]

Dtr
GZ(

−→
k ) =

|−→k |
√−→

k
4
+ 2Ng2γ4

, (8)

which exhibits the scaling behaviour, Dtr
GZ(0) = 0. Before going any further, it is worth reminding

briefly how expression (7) is derived. A simple calculation shows in fact that the quadratic part of the
Gribov-Zwanziger action in the gluon sector takes the following form

S
quadr−gluon
GZ =

∫

dDx

(

1

2
Aa

D(−~∂2 )Aa
D +

1

2
Aa

i

(

−∂2
D − ~∂2 +

2Ng2γ4

−~∂2

)

Aa
i + ba∂iA

a
i

)

, (9)

from which one immediately derives the tree level expression for the transverse spatial gluon propaga-
tor given in eq.(7). Moreover, one has to observe that, unlike expression (7), the tree level temporal
correlator 〈Aa

D(k)A
b
D(−k)〉 does not display an energy resolution, due to the well known existence of

residual temporal gauge transformations which affect the Coulomb condition. The resolution of the
energy behaviour of this correlation function is a quite delicate point which requires a detailed mas-
tering of the renormalization procedure of the Coulomb gauge. Here, we remind the reader to the
large literature existing on this subject, both in the continuum as well as in the lattice formulation
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].

3 The dimension two condensate 〈φ̄ab
i φ

ab
i − ω̄ab

i ωab
i 〉

In order to evaluate the condensate 〈φ̄ab
i φab

i −ω̄ab
i ωab

i 〉, we couple the operator
(

φ̄ab
i (x)φab

i (x)− ω̄ab
i (x)ωab

i (x)
)

to a constant source J , i.e.

SGZ → SGZ +

∫

dDxJ
(

φ̄ab
i (x)φab

i (x)− ω̄ab
i (x)ωab

i (x)
)

, (10)
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and we evaluate

e−V Ev(J) =

∫

[DΦ] e−(SGZ+
∫
dDxJ(φ̄ab

i
(x)φab

i
(x)−ω̄ab

i
(x)ωab

i
(x))) . (11)

The condensate is thus obtained by differentiating Ev(J) with respect to J and setting J = 0 at the end,
namely

∂Ev(J)
∂J

∣

∣

∣

J=0
=

∫

[DΦ]
(

φ̄ab
i (x)φab

i (x)− ω̄ab
i (x)ωab

i (x)
)

e−SGZ

∫

[DΦ] e−SGZ

= 〈φ̄ab
i φab

i − ω̄ab
i ωab

i 〉 . (12)

At the first order, we get

Ev(J) =
(D − 2)

2
(N2 − 1)

∫

dDk

(2π)D
log

(

k2D + ~k2 +
2Ng2γ4

~k2 + J

)

+ terms independent from J . (13)

Taking the derivative with respect to J and setting J = 0, it turns out that

〈φ̄ab
i φab

i − ω̄ab
i ωab

i 〉 = −Ng2γ4(N2 − 1)(D − 2)

∫

dDk

(2π)D
1

k2D
~k2 + ~k4 + 2Ng2γ4

1

~k2
. (14)

3.1 The 3D case

Let us start by considering first expression (14) in 3D. Here, we have

〈φ̄ab
i φab

i − ω̄ab
i ωab

i 〉 = −Ng2γ4(N2 − 1)

∫

dk3 d
2~k

(2π)3
1

k23
~k2 + ~k4 + 2Ng2γ4

1

~k2
, (15)

while for the gap equation
∫

dk3 d
2~k

(2π)3
1

k23
~k2 + ~k4 + 2Ng2γ4

=
1

Ng2
. (16)

We see that, while the integral defining the gap equation, eq.(16), is convergent in both IR and UV
regions, the expression for the condensate, eq.(15), exhibits a non-integrable singularity in the IR, due
to the presence of the term 1

~k2
which is non-integrable in two-dimensional space. This indicates that the

condensate 〈φ̄ab
i φab

i − ω̄ab
i ωab

i 〉 cannot be introduced in 3D, due to the existence of infrared divergences.
A similar phenomenon occurs in the Landau gauge in 2D, where the analogous condensate cannot be
introduced due to infrared divergences [45].

3.2 The 4D case

Let us turn now to the 4D case, where for the condensate and for the gap equation we get

〈φ̄ab
i φab

i − ω̄ab
i ωab

i 〉 = −2Ng2γ4(N2 − 1)

∫

dk4 d
3~k

(2π)4
1

k24
~k2 + ~k4 + 2Ng2γ4

1

~k2
, (17)

and
∫

dk4 d3~k

(2π)4
1

k24
~k2 + ~k4 + 2Ng2γ4

=
3

2

1

2Ng2
. (18)

In this case, both expressions are safe in the IR, while they suffer from UV divergences which should be
handled by a suitable renormalization procedure in the Coulomb gauge. In fact, taking a closer look at
the expression (17), we may write

〈φ̄ab
i φab

i − ω̄ab
i ωab

i 〉 = −Ng2γ4(N2 − 1)
1

π3

∫ ∞

0
dρ

∫ ∞

0
dr

1

ρ2r2 + r4 + 2Ng2γ4
. (19)
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where use has been made of three dimensional polar coordinates. Making the change of variables

ρ → (2Ng2γ4)1/4 ρ , r → (2Ng2γ4)1/4 r , (20)

we get

〈φ̄ab
i φab

i − ω̄ab
i ωab

i 〉 = −(N2 − 1)
√

2g2N γ2
1

2π3

∫ ∞

0
dρ

∫ ∞

0
dr

1

ρ2r2 + r4 + 1
. (21)

To evaluate the integral

I =

∫ ∞

0
dρ

∫ ∞

0
dr

1

ρ2r2 + r4 + 1
, (22)

we adopt two-dimensional polar coordinates, (ρ = R cos θ, r = R sin θ), obtaining

I =

∫

√
2Λ

0
dRR

∫ π

2

0
dθ

1

R4 sin2 θ + 1
, (23)

where Λ is a cutoff. From
∫ φ

0
dθ

1

R4 sin2 θ + 1
=

arctan(
√
R4 + 1 tan φ)√
R4 + 1

, (24)

we finally get

I =
π

2

∫

√
2Λ

0
dR

R√
R4 + 1

=
π

4
arcsinh(2Λ2) , (25)

which diverges logarithmically as Λ → ∞.

We see therefore that, apart from a UV renormalization, a non-vanishing two-dimensional condensate
〈φ̄ab

i φab
i − ω̄ab

i ωab
i 〉 might emerge in 4D. The effect of this condensate on the dynamics of the theory can

be taken into account by introducing the Refined Gribov-Zwanziger action in the Coulomb gauge

SRGZ = SGZ +

∫

d4x µ2
(

φ̄ab
i (x)φab

i (x)− ω̄ab
i (x)ωab

i (x)
)

, (26)

where the parameter µ2 can be obtained order by order by evaluating the effective potential for the
operator

(

φ̄ab
i (x)φab

i (x)− ω̄ab
i (x)ωab

i (x)
)

, as done in [46] in the case of the Landau gauge. Evaluating now
the spatial two-point gluon correlation function with the refined action (26), one gets the decoupling
solution

〈Aa
i (k)A

b
j(−k)〉RGZ =

δab

k24 +
−→
k

2
+ 2Ng2γ4

−→
k

2

+µ2

(

δij −
kikj
−→
k

2

)

, (27)

leading to an equal time transverse form factor of the decoupling type, namely

Dtr
RGZ(

−→
k ) =

√−→
k

2
+ µ2

√

−→
k

2 (−→
k

2
+ µ2

)

+ 2Ng2γ4

. (28)

Even if being well beyond the aim of the present letter, one might expect that the existence of a decoupling
type behavior for the transverse gluon propagator should entail modifications on the infrared behavior
of the ghost, perhaps resulting in a milder behavior of the ghost form factor in the deep infrared region,
similarly to what happens in the Landau gauge. It is worth in fact to point out that, within the Schwinger-
Dyson approach, a decoupling type solution for the transverse gluon and its consequences on the ghost
form factor as well as on the Coulomb potential have been already analysed by the authors of [47]. We
hope to report soon on this important topic, which deserves a more complete and detailed analysis.
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