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1. Introduction

In the chiral limit of QCD, obtained by setting the light gkanasses to zero, the global sym-
metry of QCD is chiraBU(2) x SU(2). This is homomorphic to a O(4) symmetry. The universality
conjecture then leads us expect that the critical indicescatical amplitude ratios in chiral QCD
should be the same as for O(4) magnetic systémns [1].

In recent times, the chiral condensate of QCD (which is exjeiv to the spontaneous magne-
tization of the magnet), its derivatives with respect toqoark mass (equivalent to the magnetic
susceptibility), and their scaling towards the chiral tinfiave been studied with somewhat am-
biguous result{]2].

The scaling of the internal energy and the specific heat of)@¢imetric systems is intricate,
as is known from the phenomenology of liquid Helium. Howewéth the extensive lattice QCD
computations now available on quark number susceptéslith QCD at zero baryon density [3],
their important role in heavy-ion collisionf] [4], and theannection with temperature derivatives
of the free energy, it is important to initiate the scalinglgsis of these quantities. That is the
purpose of this talk.

2. Scaling and the limits of universality

The thermodynamics of QCD is characterized by a free energigh is a function of some
number of intensive control parameters. These could ircthd temperaturel;, and the baryon
chemical potentialy. If the pion mass were exactly vanishing, then QCD would lze€%4) global
chiral symmetry. Since we are interested in real QCD, wHaeepton is not massless, an explicit
chiral symmetry breaking parameter is needed. This is tlekgmassm, which plays the same
role in QCD as a magnetic field does for the O(4) magnet.

Near the critical point one can decompose the free enér@y,m), into the sum of two terms.
One of these is a regular pa,(T, m), and the other is a singular paf(T, m). F (T, m) is Taylor
expandable around the critical poifit,= T, andm = 0 with some large radius of convergence.
The modern theory of critical phenomena starts from thermhasien that the most singular part is
a scaling function
t

T=——— (2.1)

__ 12— _
Fs(T,m) =t %®d(1), where t—‘l— ) (/M) /3"

T

where we have chosen the scaling variablaad T to be dimensionlesd is the critical temper-
ature,Mg is any mass scale which remains finite in the chiral limit, andA = 8 are critical
exponents. The functioRs(t, T), defined so, is universal, in the sense that whether we examin
an O(4) Heisenberg magnet, QCD, a non-linear sigma modeabogpor the Nambu-Jona-Lasinio
(NJL) model, theR(t, T) we obtain from all of them are the same. As a result, the usalgrop-
erties of thermal QCD know nothing about QCD, aside from litsad symmetry. However, the
various models differ ir (T, m), so this is the piece which gives information about the dctua
degrees of freedom involved in the QCD phase transition.

Even if the magnitude dfs is comparable téy, since it is singular, its effect may be enhanced
by taking sufficient number of derivatives. For example, specific heatc, (0 t~%, and hence
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Model  Example B o a Ref
O(c) 1/2 5 -1 (A1
O(4) chiralQCD| 0.380 4.86 -0.2268 [g]
0(@3) ? 0.365 4.79 -0.115| [g]
O(2) liquidHe | 0.349 4.78 -0.0172 [f]
O(1) liquid-gas | 0.325 4.8  0.11 | [H]
MFT 1/2 3 0

Table 1: Critical exponents of O(N) models in three spatial dimensioThe exponent is obtained from
the other reported exponents using scaling identities) €i{@uld be taken to mean the Ising model. MFT
stands for mean field theory. There are no known examples 3f @¢dels, since real ferromagnets have
relevant terms which break this symmetry.

diverges afl = T, provided thatoa > 0. As one can see from TabfE 1, this is true of the Ising
model. However, for all othe®(N) modelsa < 0, and, as a result, the singular contribution to the
specific heat exactly vanishes for=T..

This seems to contradict our knowledge of the specific helgtl He, which is in the O(2)
universality class and has a cusp at the critical point. Hselution of this puzzle comes from
noticing that the peak af, is only finite, and hence is regular. It is the shape whichngar.

So the specific heat has to arise through a playoff betweesitigellar and regular parts. In fact,
a very precise microgravity experiment has been done oeerage| T — T| < 2 nK [8], and the
results fitted to the formula

¢ =A +t9(B+Ct™2), (2.2)

whereA,; comes only fronF,. A’ is a possible correction-to-scaling exponeAt.is positive and
B is constrained to be negative. It can be shown Baan be negative without violating the
thermodynamic consistency criterion tlgat> 0. A result of the microgravity experiment is that
a = —0.0128538). Interestingly this is in disagreement with the careful kvof [[].

This mechanism also works for QCD and other O(N) symmetridei® For these we may

write
—a

o/ (T,m) = A+ —W(L,T). (2.3)

T. and A; are non-universal, and change from QCD to various effedtieries for it, but the
exponenta, and the regular functiow (which may be written in terms of the scaling functidn
and its derivatives’ and®”, if desired) are universal. So the shape of the specific hest is
universal but its height and width must be determined in QRIDthermore, these two parameters
are good tests of possible effective models, since a badlnb@CD will not reproduce its non-
universal properties.

An interesting statement about the scalingcpfwith mass arises from this. Suppose we
succeeded in measuring (on the lattice¥or QCD with various different light quark masses. By
plotting the data as a function band scalings, appropriately, can we observe scaling in the form
of data collapsing on to an universal curve? Clearly, thezena singularities of the free energy if
T is varied around, at fixed non-vanishingn. As a result, taking — 0 andt — 0 simultaneously
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Figure 1. Data collapse obtained in an MFT treatment of the NJL modaeinwkeeping only the data for
T > 50. Tiny violations of scaling are visible; these can be oafed by increasing the cut on The value

of this cut depends on the choiceM§ (here it was taken to b&), and the renormalization scheme, when
going beyond MFT. Also, since this value is not universaipitild be differentin QCD. Only data fdr < T

is used in this plot to avoid having to subtract a large regpdat, as discussed in the text.

will not reveal scaling. Instead, one must take the limit> O first andT — T¢ next, which means
that one must take — oo first and thert — 0 in order to see data collapse.

One can test this in the NJL model even at tree leuel,in the MFT approximation. The high
temperature limit of this model contains weakly interagtaquarks, so the regular contribution to
¢, actually increases fairly rapidly with temperature. As sute one may miss the pseudo-critical
behaviour inc, unless the temperature range is scanned finely to discoveala gtting over a
rising background, or the free quark contribution is sulid to make the peak stand out over a
falling background. This difficulty would also occur in QC[R]], but not in the O(4) Heisenberg
magnet.

With this MFT one sees that data collapse is possible wheplotgc, against provided that
one selects only > 50. This is sufficient to ensure that for any finiteone does not approach
t = 0 too closely. Figurf] 1 shows that one may relax the conditienc provided one is willing to
tolerate small enough violation of scaling. Since expentakdata or Monte Carlo computations
come with errors, it should be possible to tune the cutoffran order to find the scaling curve
within the errors.

We end this section with a remark about the scaling fields. dking use of effective models
to study universal properties of QCD, most works make tharapion that the scaling fields of
the effective theory andm) are identical to those of QCD. Whether or not this assumpio



Lambda phenomena Sourendu Gupta

0-15 T T T T T T T T T T T
0.58
0.31
0.25
,_E
]
01' g . z:r\ 7
<m Y
><
E <
S
e “ 9
0.05} .
R b -
——
R ¢ o ) R—C 02 03
1-T/Tc

Figure 2: Data collapse obtained foqg using the results 04], when keeping only the datarfor 0.04
with O(4) exponents. The data is plotted as a function-efTl/T; instead ot because the regular parts on
the two sides ofl; are have not been removed. The colour coding corresponls t@tues ofn%/m% given

in the figure legend.

correct can be tested, but, to the best of our knowledge, testh have not been performed.

3. Relevanceto the phase diagram of chiral QCD

The phase diagram of chiral QCD can be extended to finite bacpemical potentialu.
Since this scaling field preserves the O(4) symmetry, thigakipoint of chiral QCD ajt = 0 gets
stretched into a line. The global CP symmetry of QCD impltest E(T,m=0,u) = F(T,m=
07 _u)’ SO

1
Te(M) =Te+ EKIJZ-F”'- (3.1)

The curvature has been studied in lattice QCD for about addedaifferent determinations agree
roughly on its value[[11].

If one assumes that enters the scaling function of ed. (2.1) only through theedejence of
Te on u as given in eq.[(3]1), then, as in]12], we can write

T. 02

17}
—ot, T =———=g(t,T . (3.2
oT ( )“:0 TK A2 ( )u:O

Quallitative evidence for this relation between derivativeas obtained very long badk J13]. The
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relation above implies a connection betwegand the fourth order baryon number susceptibility—

~ (kT2 (1>4 & (3.3)

_ 9*P(T,mp) o
=T ouh T.) T

4
XB(T7m) au4

u=0

The last expression fgfg comes from retaining only the most singular contributiohisTsuggests
a scaling test ofg similar to that forc, .

This test can be performed with the results[of [14]. For thattnent of lattice QCD computa-
tions we may replace/Mp in the definition oft by m%/mf,, so that, T andxa are all renormalized
quantities. In Figur¢]2 we plot the full measurggga/T. Data collapse should be expected in the
region where the contribution from the singular part dortéaa

The regular parts at temperatures well above and well b&loare expected to be different,
since effective theories in these two regions are the hagemnmodel T <« T;) and the weak
coupling expansion of QCDT(>> T.). We have plotted Figurf] 2 to show these two branches
separately. It seems that in the regton 0.1, the differences in the regular parts may be neglected
within the precision of the data. One particular implicatie that the gas model should not work
for xg within 10% of Te.

While this gives us a first test (in this sector) of scalingrat 0 at surprisingly large quark
masses, the current errors are large. Improvement in emarkl allow us to test scaling better, and
also to test the importance of the variation of the regular gfghese quantities with approximately
10% change in. These requirements set benchmarks for future measuremixg.

It is clear from eq.[(2]1) and the values®fin Table[] that derivatives af, with respect tar
would diverge in the vicinity of the critical point. As a rdswne should be able to observe scaling
of the higher order baryon number susceptibilities. Formgxa, the sixth order quantitxg would
be universal, and is likely to have a shape similar to thatvshia Figure[B. It would be interesting
to test this in future, when improvement in statistics makese tests significant.

4. Someremarks

It is interesting to recall that before the modern theoryrdfcal phenomena was developed,
the Ehrenfest classification of phase transitions was inu&od his attempted to define orders of
phase transitions according to which derivative of the &eergy diverged. In the case of O(N)
models one sees very clearly that such a classification niagriouble. On examining the chiral
(magnetic) susceptibilities, one comes to the conclugiahthe QCD transition is of second order.
However, on examining, one comes to the conclusion that the same transition is af trder,
sincec, does not diverge, but its derivative with respectTialoes. We realize today that the
differences are due only to the value of associated crifichgx.

We conclude by reiterating the importance of scaling tasth |s that suggested here. They
constitute a new domain of tests of the universality hypaithen the context of QCD. Not only
is this important in its own right, but also serves to put bision the region of applicability of
models such as the hadron gas model. This model is a mixtudealf gases and hence contains
no singular part, whereas O(4) universality is based dytoe the singularity due to pions in the
chiral limit. Since these are mutually exclusive descoipsi of the free energy, the success of one
rules out the other.
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Figure 3: In the chiral limitx§ diverges with critical exponent-& a and is proportional to the temperature
derivative ofc,. At finite m,zT/m% these divergences would be rounded off as shown.

We thank Deepak Dhar for discussions.
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