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Curvilinear integral theorems for monogenic

functions in commutative associative algebras

V. S. Shpakivskyi

Abstract. We consider an arbitrary finite-dimensional commu-
tative associative algebra, Am

n , with unit over the field of complex
number with m idempotents. Let e1 = 1, e2, e3 be elements of Am

n

which are linearly independent over the field of real numbers. We
consider monogenic (i. e. continuous and differentiable in the sense
of Gateaux) functions of the variable xe1 + ye2 + ze3 , where x, y, z
are real. For mentioned monogenic function we prove curvilinear
analogues of the Cauchy integral theorem, the Morera theorem and
the Cauchy integral formula.

Keywords: Commutative associative algebra; Cauchy integral
theorem; Morera theorem; Cauchy integral formula.

1 Introduction.

The Cauchy integral theorem and Cauchy integral formula for the
holomorphic function of the complex variable are a fundamental
result of the classical complex analysis. Analogues of these results
are also an important tool in commutative algebras of dimensional
more that 2.

In the paper of E. R. Lorch [1] for functions differentiable in the
sense of Lorch in an arbitrary convex domain of commutative asso-
ciative Banach algebra, some properties similar to properties of holo-
morphic functions of complex variable (in particular, the curvilinear
integral Cauchy theorem and the integral Cauchy formula, the Tay-
lor expansion and the Morera theorem) are established. E. K. Blum
[2] withdrew a convexity condition of a domain in the mentioned
results from [1].

Let us note that a priori the differentiability of a function in the
sense of Gateaux is a restriction weaker than the differentiability
of this function in the sense of Lorch. Therefore, we consider a
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monogenic functions defined as a continuous and differentiable in
the sense of Gateaux. Also we assume that a monogenic function
is given in a domain of three-dimensional subspace of an arbitrary
commutative associative algebra with unit over the field of complex
numbers. In this situation the results established in the papers
[1, 2] is not applicable for a mentioned monogenic function, because
it deals with an integration along a curve on which the function is
not given, generally speaking.

In the papers [3, 4, 5] for monogenic function the curvilinear ana-
logues of the Cauchy integral theorem, the Cauchy integral formula
and the Morera theorem are obtained in special finite-dimensional
commutative associative algebras.

In this paper we generalize results of the papers [3, 4, 5] for an
arbitrary commutative associative algebra over the field of complex
numbers.

Let us note that some analogues of the curvilinear Cauchy inte-
gral theorem and the Cauchy integral formula for another classes
of functions in special commutative algebras are established in the
papers [6, 7, 8, 9, 10].

2 The algebra A
m

n
.

Let N be the set of natural numbers. We fix the numbers m,n ∈ N

such that m ≤ n. Let Am
n be an arbitrary commutative associative

algebra with unit over the field of complex number C. E. Cartan
[11, pp. 33 – 34] proved that in the algebra A

m
n there exist a basis

{Ik}
n
k=1 satisfies the following multiplication rules:

1. ∀ r, s ∈ [1, m] ∩ N : IrIs =

{
0 if r 6= s,

Ir if r = s;

2. ∀ r, s ∈ [m+ 1, n] ∩ N : IrIs =
n∑

k=max{r,s}+1

Υs
r,kIk ;

3. ∀ s ∈ [m+ 1, n] ∩ N ∃! us ∈ [1, m] ∩ N ∀ r ∈ [1, m] ∩ N :

IrIs =

{
0 if r 6= us ,

Is if r = us .
(1)
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Furthermore, the structure constants Υs
r,k ∈ C satisfy the associa-

tivity conditions:

(A 1). (IrIs)Ip = Ir(IsIp) ∀ r, s, p ∈ [m+ 1, n] ∩ N;

(A 2). (IuIs)Ip = Iu(IsIp) ∀ u ∈ [1, m]∩N ∀ s, p ∈ [m+1, n]∩
N.

Obviously, the first m basis vectors {Iu}
m
u=1 are the idempotents

and, respectively, form the semi-simple subalgebra. Also the vectors
{Ir}

n
r=m+1 form the nilpotent subalgebra of algebra Am

n . The unit
of Am

n is the element 1 =
∑m

u=1 Iu. Therefore, we will write that the
algebra Am

n is a semi-direct sum of the m-dimensional semi-simple
subalgebra S and (n−m)-dimensional nilpotent subalgebra N , i. e.

A
m
n = S ⊕s N.

In the cases where Am
n has some specific properties, the following

propositions are true.
Proposition 1 [15]. If there exists the unique u0 ∈ [1, m] ∩ N

such that Iu0
Is = Is for all s = m + 1, . . . , n, then the associativity

condition (A 2) is satisfied.

Thus, under the conditions of Proposition 1, the associativity
condition (A1) is only required. It means that the nilpotent subal-
gebra of Am

n with the basis {Ir}
n
r=m+1 can be an arbitrary commuta-

tive associative nilpotent algebra of dimension n−m. We note that
such nilpotent algebras are fully described for the dimensions 1, 2, 3
in the paper [12], and some four-dimensional nilpotent algebras can
be found in the papers [13], [14].

Proposition 2 [15]. If all ur are different in the multiplication

rule 3, then IsIp = 0 for all s, p = m+ 1, . . . , n.
Thus, under the conditions of Proposition 2, the multiplication

table of the nilpotent subalgebra of Am
n with the basis {Ir}

n
r=m+1

consists only of zeros, and all associativity conditions are satisfied.
The algebra Am

n contains m maximal ideals

Iu :=

{
n∑

k=1, k 6=u

λkIk : λk ∈ C

}
, u = 1, 2, . . . , m,

the intersection of which is the radical

R :=
{ n∑

k=m+1

λkIk : λk ∈ C

}
.
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We define m linear functionals fu : Am
n → C by put

fu(Iu) = 1, fu(ω) = 0 ∀ω ∈ Iu , u = 1, 2, . . . , m.

Since the kernels of functionals fu are, respectively, the maximal ide-
als Iu, then these functionals are also continuous and multiplicative
(see [16, p. 147]).

3 Monogenic functions.

We consider the vectors e1 = 1, e2, e3 in Am
n which are linearly inde-

pendent over the field of real number R. It means that the equality

α1e1 + α2e2 + α3e3 = 0, α1, α2, α3 ∈ R,

holds if and only if α1 = α2 = α3 = 0.
Let the vectors e1 = 1, e2, e3 have the following decompositions

with respect to the basis {Ik}
n
k=1:

e1 = 1, e2 =
n∑

k=1

akIk , e3 =
n∑

k=1

bkIk , (2)

where ak, bk ∈ C.
Let ζ := xe1 + ye2 + ze3, where x, y, z ∈ R. It is also obvious

that ξu := fu(ζ) = x + yau + zbu, u = 1, 2, . . . , m. Let E3 :=
{ζ = xe1 + ye2 + ze3 : x, y, z ∈ R} be the linear span of vectors
e1, e2, e3 over the field of real numbers R. We note that in the
further investigations, it is essential assumption: fu(E3) = C for all
u = 1, 2, . . . , m, where fu(E3) is the image of E3 under the mapping
fu. Obviously, it holds if and only if for every fixed u = 1, 2, . . . , m
at least one of the numbers au or bu belongs to C \ R.

With a set Q ⊂ R3 we associate the set Qζ := {ζ = xe1 + ye2 +
ze3 : (x, y, z) ∈ Q} in E3. We also note that the topological prop-
erties of a set Qζ in E3 understood as a corresponding topological
properties of a set Q in R3. For example, a homotopicity of a curve
γζ ⊂ E3 to the zero means a homotopicity of γ ⊂ R3 to the zero,
etc.

Let Ω be a domain in R3.
A continuous function Φ : Ωζ → Am

n is monogenic in Ωζ if Φ is
differentiable in the sense of Gateaux in every point of Ωζ , i. e. if
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for every ζ ∈ Ωζ there exists an element Φ′(ζ) ∈ Am
n such that

lim
ε→0+0

(Φ(ζ + εh)− Φ(ζ)) ε−1 = hΦ′(ζ) ∀h ∈ E3. (3)

Φ′(ζ) is the Gateaux derivative of the function Φ in the point ζ .
Consider the decomposition of a function Φ : Ωζ → Am

n with
respect to the basis {Ik}

n
k=1:

Φ(ζ) =

n∑

k=1

Uk(x, y, z) Ik . (4)

In the case where the functions Uk : Ω → C are R-differentiable
in Ω, i. e. for every (x, y, z) ∈ Ω,

Uk(x+∆x, y+∆y, z+∆z)−Uk(x, y, z) =
∂Uk

∂x
∆x+

∂Uk

∂y
∆y+

∂Uk

∂z
∆z+

+ o
(√

(∆x)2 + (∆y)2 + (∆z)2
)
, (∆x)2 + (∆y)2 + (∆z)2 → 0 ,

the function Φ is monogenic in the domain Ωζ if and only if the
following Cauchy – Riemann conditions are satisfied in Ωζ :

∂Φ

∂y
=

∂Φ

∂x
e2,

∂Φ

∂z
=

∂Φ

∂x
e3. (5)

Expansion of the resolvent is of the form

(te1 − ζ)−1 =

m∑

u=1

1

t− ξu
Iu +

n∑

s=m+1

s−m+1∑

k=2

Qk,s

(t− ξus
)k

Is (6)

∀ t ∈ C : t 6= ξu, u = 1, 2, . . . , m,

where Qk,s are determined by the following recurrence relations:

Q2,s := Ts , Qk,s =
s−1∑

r=k+m−2

Qk−1,r Br, s , k = 3, 4, . . . , s−m+ 1.

(7)
with

Ts := yas + zbs , Br,s :=
s−1∑

k=m+1

TkΥ
k
r,s , s = m+ 2, . . . , n,
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and natural numbers us are defined in the rule 3 of the multiplication
table of the algebra Am

n .
From the relations (6) follows that the points (x, y, z) ∈ R

3 cor-
responding to the noninvertible elements ζ ∈ Am

n form the straight
lines

Lu :

{
x+ yRe au + zRe bu = 0,

y Im au + z Im bu = 0

in the three-dimensional space R3.
Denote by Du ⊂ C the image of Ωζ under the mapping fu, u =

1, 2, . . . , m. A constructive description of all monogenic functions in
the algebra Am

n by means of holomorphic functions of the complex
variable are obtained in the paper [15]. Namely, it is proved the
theorem:

Let a domain Ω ⊂ R
3 be convex in the direction of the straight

lines Lu and fu(E3) = C for all u = 1, 2, . . . , m. Then any monogenic
function Φ : Ωζ → Am

n can be expressed in the form

Φ(ζ) =
m∑

u=1

Iu
1

2πi

∫

Γu

Fu(t)(te1−ζ)−1 dt+
n∑

s=m+1

Is
1

2πi

∫

Γus

Gs(t)(te1−ζ)−1 dt,

(8)
where Fu is the certain holomorphic function in a domain Du; Gs

is the certain holomorphic function in a domain Dus
; Γq is a closed

Jordan rectifiable curve lying in the domain Dq surround a point ξq
and containing no points ξℓ, ℓ, q = 1, 2, . . . , m, ℓ 6= q.

4 Cauchy integral theorem for a curvilinear in-

tegral.

Let γ be a Jordan rectifiable curve in R3. For a continuous function
Ψ : γζ → A

m
n of the form

Ψ(ζ) =

n∑

k=1

Uk(x, y, z) Ik + i

n∑

k=1

Vk(x, y, z) Ik, (9)
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where (x, y, z) ∈ γ and Uk : γ → R, Vk : γ → R, we define an
integral along a Jordan rectifiable curve γζ by the equality:

∫

γζ

Ψ(ζ)dζ :=

n∑

k=1

Ik

∫

γ

Uk(x, y, z)dx+

n∑

k=1

e2Ik

∫

γ

Uk(x, y, z)dy+

+

n∑

k=1

e3Ik

∫

γ

Uk(x, y, z)dz + i

n∑

k=1

Ik

∫

γ

Vk(x, y, z)dx+

+i

n∑

k=1

e2Ik

∫

γ

Vk(x, y, z)dy + i

n∑

k=1

e3Ik

∫

γ

Vk(x, y, z)dz,

where dζ := dx+ e2dy + e3dz.
Also we define a surface integral. Let Σ be a piece-smooth surface

in R3. For a continuous function Ψ : Σζ → Am
n of the form (9), where

(x, y, z) ∈ Σ and Uk : Σ → R, Vk : Σ → R, we define a surface
integral on Σζ with the differential form dxdy, by the equality

∫

Σζ

Ψ(ζ)dxdy :=
n∑

k=1

Ik

∫

Σ

Uk(x, y, z)dxdy+i
n∑

k=1

Ik

∫

Σ

Vk(x, y, z)dxdy.

A similarly defined the integrals with the forms dydz and dzdx.
If a function Φ : Ωζ → Am

n is continuous together with partial
derivatives of the first order in a domain Ωζ , and Σ is a piece-smooth
surface in Ω, and the edge γ of surface Σ is a rectifiable Jordan curve,
then the following analogue of the Stokes formula is true:
∫

γζ

Ψ(ζ)dζ =

∫

Σζ

(
∂Ψ

∂x
e2 −

∂Ψ

∂y

)
dxdy +

(
∂Ψ

∂y
e3 −

∂Ψ

∂z
e2

)
dydz+

+

(
∂Ψ

∂z
−

∂Ψ

∂x
e3

)
dzdx. (10)

Now, the next theorem is a result of the formula (10) and the equal-
ities (5).

Theorem 1. Suppose that Φ : Ωζ → Am
n is a monogenic

function in a domain Ωζ , and Σ is a piece-smooth surface in Ω, and
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the edge γ of surface Σ is a rectifiable Jordan curve. Then
∫

γζ

Φ(ζ)dζ = 0. (11)

In the case where a domain Ω is convex, then by the usual way
(see, e. g., [17]) the equality (11) can be prove for an arbitrary closed
Jordan rectifiable curve γζ .

In the case where a domain Ω is an arbitrary, then similarly to
the proof of Theorem 3.2 [2] we can prove the following

Theorem 2. Let Φ : Ωζ → Am
n be a monogenic function

in a domain Ωζ . Then for every closed Jordan rectifiable curve γ
homotopic to a point in Ω, the equality (11) is true.

5 The Morera theorem.

To prove the analogue of Morera theorem in the algebra Am
n , we

introduce auxiliary notions and prove some auxiliary statements.
Let us consider the algebra Am

n (R) with the basis {Ik, iIk}
n
k=1 over

the field R which is isomorphic to the algebra Am
n over the field C.

In the algebra A
m
n (R) there exist another basis {ek}

2n
k=1, where the

vectors e1, e2, e3 are the same as in the Section 3.

For the element a :=
2n∑
k=1

akek, ak ∈ R we define the Euclidian

norm

‖a‖ :=

√√√√
2n∑

k=1

a2k .

Accordingly, ‖ζ‖ =
√
x2 + y2 + z2 and ‖e1‖ = ‖e2‖ = ‖e3‖ = 1.

Using the Theorem on equivalents of norms, for the element b :=
n∑

k=1

(b1k + ib2k)Ik, b1k, b2k ∈ R we have the following inequalities

|b1k + ib2k| ≤

√√√√
2n∑

k=1

(
b21k + b22k

)
≤ c‖b‖, (12)

where c is a positive constant does not depend on b.
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Lemma 1. If γ is a closed Jordan rectifiable curve in R3 and

function Ψ : γζ → Am
n is continuous, then

∥∥∥∥∥

∫

γζ

Ψ(ζ) dζ

∥∥∥∥∥ ≤ c

∫

γζ

‖Ψ(ζ)‖‖dζ‖, (13)

where c is a positive absolutely constant.

Proof. Using the representation of function Ψ in the form (9)
for (x, y, z) ∈ γ, we obtain

∥∥∥∥∥

∫

γζ

Ψ(ζ)dζ

∥∥∥∥∥ ≤
n∑

k=1

‖Ik‖

∫

γ

∣∣Uk(x, y, z) + iVk(x, y, z)
∣∣ dx+

+

n∑

k=1

‖e2Ik‖

∫

γ

∣∣Uk(x, y, z) + iVk(x, y, z)
∣∣ dy+

+
n∑

k=1

‖e3Ik‖

∫

γ

∣∣Uk(x, y, z) + iVk(x, y, z)
∣∣ dz.

Now, taking into account the inequality (12) for b = Ψ(ζ) and the
inequalities ‖esIk‖ ≤ cs, s = 1, 2, 3, where cs are positive absolutely
constants, we obtain the relation (13). The lemma is proved.

Using Lemma 1, for functions taking values in the algebra Am
n ,

the following Morera theorem can be established in the usual way.

Theorem 3. If a function Φ : Ωζ → Am
n is continuous in a

domain Ωζ and satisfies the equality

∫

∂△ζ

Φ(ζ)dζ = 0 (14)

for every triangle △ζ such that closure △ζ ⊂ Ωζ , then the function

Φ is monogenic in the domain Ωζ .
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6 Cauchy integral formula for a curvilinear in-
tegral.

Let ζ0 := x0e1 + y0e2 + z0e3 be a point in a domain Ωζ ⊂ E3. In a
neighborhood of ζ0 contained in Ωζ let us take a circle Cζ(ζ0, ε) of

radius ε with the center at the point ζ0. By Cu(ξ
(0)
u , ε) ⊂ C we denote

the image of Cζ(ζ0, ε) under the mapping fu, u = 1, 2, . . . , m. We
assume that the circle Cζ(ζ0, ε) embraces the set {ζ − ζ0 : (x, y, z) ∈
m⋃

u=1

Lu}. It means that the curve Cu(ξ
(0)
u , ε) bounds some domain

D′
u and fu(ζ0) = ξ

(0)
u ∈ D′

u, u = 1, 2, . . . , m.
We say that the curve γζ ⊂ Ωζ embraces once the set {ζ − ζ0 :

(x, y, z) ∈
m⋃

u=1

Lu}, if there exists a circle Cζ(ζ0, ε) which embraces

the mentioned set and is homotopic to γζ in the domain Ωζ \{ζ−ζ0 :

(x, y, z) ∈
m⋃

u=1

Lu}.

Since the function ζ−1 is continuous on the curve Cζ(0, ε), then
there exist the integral

λ :=

∫

Cζ(0,ε)

ζ−1dζ. (15)

The following theorem is an analogue of Cauchy integral theorem
for monogenic function Φ : Ωζ → Am

n .

Theorem 4. Suppose that a domain Ω ⊂ R3 is convex in

the direction of the straight lines Lu and fu(E3) = C for all u =
1, 2, . . . , m. Suppose also that Φ : Ωζ → Am

n is a monogenic func-

tion in Ωζ . Then for every point ζ0 ∈ Ωζ the following equality is

true:

λΦ(ζ0) =

∫

γζ

Φ(ζ) (ζ − ζ0)
−1 dζ, (16)

where γζ is an arbitrary closed Jordan rectifiable curve in Ωζ , that

embraces once the set {ζ − ζ0 : (x, y, z) ∈
m⋃

u=1

Lu}.

Proof. Inasmuch as γζ is homotopic to Cζ(ζ0, ε) in the domain
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Ωζ \ {ζ − ζ0 : (x, y, z) ∈
m⋃

u=1

Lu}, it follows from Theorem 2 that

∫

γζ

Φ(ζ) (ζ − ζ0)
−1 dζ =

∫

Cζ(ζ0,ε)

Φ(ζ) (ζ − ζ0)
−1 dζ. (17)

Taking into account the equality (17) we represent the integral
on the right-hand side of equality (16) as the sum of the following
two integrals:

∫

γζ

Φ(ζ) (ζ − ζ0)
−1 dζ =

∫

Cζ(ζ0,ε)

(Φ(ζ)− Φ(ζ0)) (ζ − ζ0)
−1 dζ+

+Φ(ζ0)

∫

Cζ (ζ0,ε)

(ζ − ζ0)
−1 dζ =: J1 + J2.

Let us note that from the relation (17) follows that if there exist
the integral in the equality (15) then it does not depend on ε. As
a consequence of the equalities (15), (17), we have the following
relation

J2 = Φ(ζ0)

∫

Cζ(0,ε)

τ−1dτ = λΦ(ζ0), (18)

where τ := ζ − ζ0.
The integrand in the integral J1 is bounded by a constant which

does not depend on ε: when ε → 0 the integrand tends to Φ′(ζ0)
(see Lemma 5 [15]). Therefore, using the Lemma 1 the integral J1

tends to zero as ε → 0. The theorem is proved.
Below, it will be shown that the constant λ is an invertible ele-

ment in A
m
n .

7 A constant λ.

In some special algebras (see [3, 4, 5]) the Cauchy integral formula
(16) has the form

Φ(ζ0) =
1

2πi

∫

γζ

Φ(ζ) (ζ − ζ0)
−1 dζ, (19)

11



i. e.
λ = 2πi. (20)

In this Section we indicate a set of algebras Am
n for which (20)

holds. In this a way we first consider some auxiliary statements.
As a consequence of the expansion (6), we obtain the following

equality:

ζ−1 =
n∑

k=1

Ãk Ik (21)

with the coefficients Ãk determined by the following relations:

Ãu =
1

ξu
, u = 1, 2, . . . , m,

Ãs =
s−m+1∑

k=2

Q̃k,s

ξkus

, s = m+ 1, m+ 2, . . . , n,

(22)

where Q̃k,s are determined by the following recurrence relations:

Q̃2,s := −Ts , Q̃k,s = −

s−1∑

r=k+m−2

Q̃k−1,r Br, s , k = 3, 4, . . . , s−m+1.

(23)
where Ts and Br,s are the same as in the equalities (7), and natural
numbers us are defined in the rule 3 of the multiplication table of
the algebra Am

n .
Taking into account the equality (21) and the relation

dζ = dxe1 + dye2 + dze3 =
m∑

u=1

(
dx+ dy au + dz bu

)
Iu+

+

n∑

r=m+1

(
dy ar + dz br

)
Ir =

m∑

u=1

dξu Iu +

n∑

r=m+1

dTr Ir ,

we have the following equality

ζ−1dζ =

m∑

u=1

Ãu dξu Iu +

n∑

r=m+1

Ãur
dTr Ir+

+
n∑

s=m+1

Ãs dξus
Is +

n∑

s=m+1

n∑

r=m+1

Ãs dTr IsIr =:
n∑

k=1

σk Ik . (24)
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Now, taking into account the denotation (24) and the equality
(22), we calculate:

∫

Cζ(0,R)

m∑

u=1

σu Iu =

m∑

u=1

Iu

∫

Cu(ξu,R)

dξu
ξu

= 2πi

m∑

u=1

Iu = 2πi.

Therefore,

λ = 2πi+
n∑

k=m+1

Ik

∫

Cζ(0,R)

σk . (25)

We note that form the relations (25), (21), and (22) that λ is an
invertible element.

Thus, the equality (20) holds if and only if
∫

Cζ(0,R)

σk = 0 ∀ k = m+ 1, . . . , n. (26)

But, for satisfying the equality (26) the differential form σk must be
a total differential of some function. We note that the property of
being a total differential is invariant under admissible transforma-
tions of coordinates [18, Theorem 2, p. 328]. In our situation, if we
show that σk is a total differential of some function depend of the
variables Tm+1

ξ
, . . . , Tk

ξ
, then it means that σk is a total differential

of some function depending on x, y, z.

7.1

In this subsection we indicate a set of algebras in which the vectors
(2) chosen arbitrarily and the equality (20) holds. We remind that
an arbitrary commutative associative algebra, Am

n , with unit over
the field of complex number C can be represented as Am

n = S ⊕s N ,
where S is m-dimensional semi-simple subalgebra and N is (n−m)-
dimensional nilpotent subalgebra (see Section 2).

Theorem 5. If Am
n ≡ S, then the equality (20) holds.

The proof immediately follows from the conditions σk ≡ 0 for
k = m + 1, . . . , n and (25). This theorem is obtained in the paper
[5].
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Theorem 6. If Am
n = S ⊕s N and N is a zero nilpotent subal-

gebra, then the equality (20) holds.

Proof. From the condition of theorem follows that in the rela-
tions (22) all Bk,p = 0. Therefore, (22) takes the form

Ãk = −
Tk

ξ2uk

, k = m+ 1, . . . , n. (27)

Since IsIr = 0 for r, s = m + 1, . . . , n, then form the denotation
(24) and the identity (27), we obtain

σk =
dTk

ξuk

+Ãk dξuk
=

dTk

ξuk

−
Tk

ξ2uk

dξuk
= d

(
Tk

ξuk

)
=: dτk , k = m+1, . . . , n.

Under the transformation (x, y, z) → τk the circle Cζ(0, R) maps

into a closed smooth curve C̃ (Jordan or not) and the singularity
ξuk

= 0 maps on τk = ∞. Consequently, in an interior of the curve

C̃ does not exist singular points. By the Cauchy theorem in complex
plane [18, p. 90], we have:

∫

Cζ(0,R)

σk =

∫

C̃

dτk = 0.

So, the equality (20) is a consequence of the last relation and (25).
The theorem is proved.

The Theorem 6 implies the formula (19) for monogenic functions
in the three-dimensional algebra A2 which investigated in the paper
[19].

Further we consider the case where N in non-zero nilpotent subal-
gebra. For this goal we establish an explicitly form of σm+1, σm+2, σm+3

and σm+4.
From the relation (24) follows the equalities

σm+1 =
dTm+1

ξum+1

+ Ãm+1 dξum+1
,

σk =
dTk

ξuk

+ Ãk dξuk
+

k−1∑

r,s=m+1

Ãr dTsΥ
s
r,k , k = m+ 2, . . . , n.

(28)
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Now, the equalities (22) and (23) implies the following equalities:

Ãm+1 = −
Tm+1

ξ2um+1

, Ãm+2 = −
Tm+2

ξ2um+2

+
T 2
m+1

ξ3um+2

Υm+1
m+1,m+2 ,

Ãm+3 = −
Tm+3

ξ2um+3

+
T 2
m+1

ξ3um+3

Υm+1
m+1,m+3 + 2

Tm+1Tm+2

ξ3um+3

Υm+1
m+2,m+3−

−
T 3
m+1

ξ4um+3

Υm+1
m+1,m+2Υ

m+1
m+2,m+3+

T 2
m+2

ξ3um+3

Υm+2
m+2,m+3−

T 2
m+1Tm+2

ξ4um+3

Υm+2
m+2,m+3Υ

m+1
m+1,m+2 ,

Ãm+4 = −
Tm+4

ξ2um+4

+
T 2
m+1

ξ3um+4

Υm+1
m+1,m+4 + 2

Tm+1Tm+3

ξ3um+4

Υm+1
m+3,m+4+

+2
Tm+1Tm+2

ξ3um+4

Υm+1
m+2,m+4 + 2

Tm+2Tm+3

ξ3um+4

Υm+2
m+3,m+4 +

T 2
m+2

ξ3um+4

Υm+2
m+2,m+4−

−
T 3
m+1

ξ4um+4

Υm+1
m+1,m+2Υ

m+1
m+2,m+4 −

T 2
m+1Tm+2

ξ4um+4

Υm+1
m+1,m+2Υ

m+2
m+2,m+4−

−
T 2
m+1Tm+3

ξ4um+4

Υm+1
m+1,m+2Υ

m+2
m+3,m+4+

T 2
m+3

ξ3um+4

Υm+3
m+3,m+4−

T 3
m+1

ξ4um+4

Υm+1
m+1,m+3Υ

m+1
m+3,m+4−

−
T 2
m+1Tm+2

ξ4um+4

Υm+1
m+1,m+3Υ

m+2
m+3,m+4 −

T 2
m+1Tm+3

ξ4um+4

Υm+1
m+1,m+3Υ

m+3
m+3,m+4−

−2
T 2
m+1Tm+2

ξ4um+4

Υm+1
m+2,m+3Υ

m+1
m+3,m+4−2

Tm+1T
2
m+2

ξ4um+4

Υm+1
m+2,m+3Υ

m+2
m+3,m+4−

−2
Tm+1Tm+2Tm+3

ξ4um+4

Υm+1
m+2,m+3Υ

m+3
m+3,m+4+

T 4
m+1

ξ5um+4

Υm+1
m+1,m+2Υ

m+1
m+2,m+3Υ

m+1
m+3,m+4+

+
T 3
m+1Tm+2

ξ5um+4

Υm+1
m+1,m+2Υ

m+1
m+2,m+3Υ

m+2
m+3,m+4+

T 3
m+1Tm+3

ξ5um+4

Υm+1
m+1,m+2Υ

m+1
m+2,m+3Υ

m+3
m+3,m+4−

−
Tm+1T

2
m+2

ξ4um+4

Υm+2
m+2,m+3Υ

m+1
m+3,m+4 −

T 3
m+2

ξ4um+4

Υm+2
m+2,m+3Υ

m+2
m+3,m+4−

−
T 2
m+2Tm+3

ξ4um+4

Υm+2
m+2,m+3Υ

m+3
m+3,m+4+

T 3
m+1Tm+2

ξ5um+4

Υm+2
m+2,m+3Υ

m+1
m+1,m+2Υ

m+1
m+3,m+4+
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+
T 2
m+1T

2
m+2

ξ5um+4

Υm+2
m+2,m+3Υ

m+1
m+1,m+2Υ

m+2
m+3,m+4+

T 3
m+1Tm+2Tm+3

ξ5um+4

Υm+2
m+2,m+3Υ

m+1
m+1,m+2Υ

m+3
m+3,m+4 .

Finally, a consequence of the previous equalities and the relations
(28) is the following differential representation of σm+1, σm+2, σm+3

and σm+4:

σm+1 = d

(
Tm+1

ξum+1

)
, σm+2 = d

(
Tm+2

ξum+2

−
1

2
Υm+1

m+1,m+2

T 2
m+1

ξ2um+2

)
,

(29)

σm+3 = d

(
Tm+3

ξum+3

−
1

2
Υm+1

m+1,m+3

T 2
m+1

ξ2um+3

−Υm+1
m+2,m+3

Tm+1Tm+2

ξ2um+3

−

−
1

2
Υm+2

m+2,m+3

T 2
m+2

ξ2um+3

+
1

3
Υm+1

m+1,m+2Υ
m+1
m+2,m+3

T 3
m+1

ξ3um+3

)
+

+Υm+1
m+1,m+2Υ

m+2
m+2,m+3 σ

(1)
m+3 , (30)

σm+4 = d

(
Tm+4

ξum+4

−
1

2
Υm+1

m+1,m+4

T 2
m+1

ξ2um+4

−Υm+1
m+3,m+4

Tm+1Tm+3

ξ2um+4

−

−Υm+1
m+2,m+4

Tm+1Tm+2

ξ2um+4

−
1

2
Υm+2

m+2,m+4

T 2
m+2

ξ2um+4

−Υm+2
m+3,m+4

Tm+2Tm+3

ξ2um+3

+

+
1

3
Υm+1

m+1,m+2Υ
m+1
m+2,m+4

T 3
m+1

ξ3um+4

−
1

2
Υm+3

m+3,m+4

T 2
m+3

ξ2um+4

+
1

3
Υm+1

m+1,m+3Υ
m+1
m+3,m+4

T 3
m+1

ξ3um+4

−

−
1

4
Υm+1

m+1,m+2Υ
m+1
m+2,m+3Υ

m+1
m+3,m+4

T 4
m+1

ξ4um+4

+
1

3
Υm+2

m+2,m+3Υ
m+2
m+3,m+4

T 3
m+2

ξ3um+4

)
+

+Υm+1
m+1,m+2Υ

m+2
m+2,m+4 σ

(1,2)
m+4+Υm+1

m+1,m+2Υ
m+2
m+3,m+4 σ

(2,2)
m+4+Υm+1

m+1,m+3Υ
m+2
m+3,m+4 σ

(3,2)
m+4+

+Υm+3
m+3,m+4Υ

m+1
m+1,m+3 σ

(4,3)
m+4+Υm+1

m+2,m+3Υ
m+1
m+3,m+4 σ

(5,1)
m+4+Υm+1

m+2,m+3Υ
m+2
m+3,m+4 σ

(6,2)
m+4+

+Υm+1
m+2,m+3Υ

m+3
m+3,m+4 σ

(7,3)
m+4 −Υm+1

m+1,m+2Υ
m+1
m+2,m+3Υ

m+2
m+3,m+4 σ

(8,2)
m+4−

−Υm+1
m+1,m+2Υ

m+1
m+2,m+3Υ

m+3
m+3,m+4 σ

(9,3)
m+4 +Υm+2

m+2,m+3Υ
m+1
m+3,m+4 σ

(10,1)
m+4 +
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+Υm+2
m+2,m+3Υ

m+3
m+3,m+4 σ

(11,3)
m+4 −Υm+2

m+2,m+3Υ
m+1
m+1,m+2Υ

m+1
m+3,m+4 σ

(12,1)
m+4 −

−Υm+2
m+2,m+3Υ

m+1
m+1,m+2Υ

m+2
m+3,m+4 σ

(13,2)
m+4 −Υm+2

m+2,m+3Υ
m+1
m+1,m+2Υ

m+3
m+3,m+4 σ

(14,3)
m+4 ,

(31)
where

σ
(1)
m+3 :=

T 2
m+1

ξ3um+3

(
dTm+2 −

Tm+2

ξum+3

dξum+3

)
, (32)

and σ
(ℓ,r)
m+4, ℓ = 1, 2, . . . , 14 are determined by the following relations:

σ
(ℓ,r)
m+4 :=





T 2
m+1

ξ3um+4

g(r) for ℓ = 1, 2, 3, 4,

2Tm+1Tm+2

ξ3um+4

g(r) for ℓ = 5, 6, 7,

T 3
m+1

ξ4um+4

g(r) for ℓ = 8, 9,

T 2
m+2

ξ3um+4

g(r) for ℓ = 10, 11,

T 2
m+1

Tm+2

ξ4um+4

g(r) for ℓ = 12, 13, 14,

(33)

where g(r) := dTm+r −
Tm+r

ξum+4

dξum+4
.

Theorem 7. If Am
n = S⊕sN and dimC N ≤ 3, then the equality

(20) holds.

Proof. From the equality (29) for σm+1, we have

σm+1 = d

(
Tm+1

ξum+1

)
=: dτm+1 .

Now, the identity
∫
Cζ(0,R)

σm+1 = 0 proved as in Theorem 6.

Consider σm+2 from the equality (29), which is a total differential

of the certain function depending on the variables Tm+1

ξum+2

, Tm+2

ξum+2

. Un-

der the transformation (x, y, z) →
(

Tm+1

ξum+2

, Tm+2

ξum+2

)
the circle Cζ(0, R)

maps into a closed smooth curve
˜̃
C (Jordan or not) and the singular-

ity ξum+2
= 0 maps on ∞. Consequently, in an interior of the curve

˜̃
C does not exist singular points. Then by the Cauchy theorem in

17



the space C2 [18, p. 334], we have:

∫

Cζ(0,R)

σm+2(x, y, z) =

∫

˜̃
C

σm+2

(
Tm+1

ξum+2

,
Tm+2

ξum+2

)
= 0.

Finally, we prove the equality (26) for k = m + 3. In the paper
[12] is described all commutative associative nilpotent algebras over
the field C of dimensional 1, 2, 3. From results of the paper [12]
(Table 1) immediately follows that for all mentioned algebras the
relation Υm+1

m+1,m+2Υ
m+2
m+2,m+3 = 0 is always satisfied. Therefore, the

equality (30) implies that under the conditions of theorem σm+3 is
always a total differential of the certain function depending on the
variables Tm+1

ξum+3

, Tm+2

ξum+3

, Tm+3

ξum+3

.

Now as before, under the transformation

(x, y, z) →

(
Tm+1

ξum+3

,
Tm+2

ξum+3

,
Tm+3

ξum+3

)

the circle Cζ(0, R) maps into a closed smooth curve Ĉ (Jordan or
not) and the singularity ξum+3

= 0 maps on ∞. Hence, in an interior

of the curve Ĉ does not exist singular points. Then by the Cauchy
theorem in the space C3 [18, p. 334], we have:

∫

Cζ(0,R)

σm+3(x, y, z) =

∫

Ĉ

σm+3

(
Tm+1

ξum+3

,
Tm+2

ξum+3

,
Tm+3

ξum+3

)
= 0.

So, the equality (20) is a consequence of the last relation and (25).
The theorem is proved.

Let us note that from the Theorem 7 follows the formula (19) for
monogenic functions in the three-dimensional algebra A3 (see [3])
and in the three-dimensional algebra A2 which considered in the
paper [19].

Theorem 8. Let Am
n = S ⊕s N and dimC N = 4. Then the

18



equality (20) holds if the following relations satisfied

Υm+1
m+1,m+2Υ

m+2
m+2,m+3 = Υm+1

m+1,m+2Υ
m+2
m+2,m+4 = Υm+1

m+1,m+3Υ
m+2
m+3,m+4 =

= Υm+3
m+3,m+4Υ

m+1
m+1,m+3 = Υm+1

m+2,m+3Υ
m+1
m+3,m+4 = Υm+1

m+2,m+3Υ
m+2
m+3,m+4 =

= Υm+1
m+2,m+3Υ

m+3
m+3,m+4 = Υm+1

m+1,m+2Υ
m+1
m+2,m+3Υ

m+2
m+3,m+4 =

= Υm+1
m+1,m+2Υ

m+1
m+2,m+3Υ

m+3
m+3,m+4 = Υm+2

m+2,m+3Υ
m+1
m+3,m+4 = Υm+2

m+2,m+3Υ
m+3
m+3,m+4 =

= Υm+2
m+2,m+3Υ

m+1
m+1,m+2Υ

m+1
m+3,m+4 = Υm+2

m+2,m+3Υ
m+1
m+1,m+2Υ

m+2
m+3,m+4 =

= Υm+2
m+2,m+3Υ

m+1
m+1,m+2Υ

m+3
m+3,m+4 = 0.

(34)

Proof. From the equalities (30) and (31) it obvious that under
conditions (34) expressions for σm+3 and σm+4 are total differentials.
Further proof is similar to proof of the Theorem 7. The theorem is
proved.

Further we consider some examples of algebras, which satisfy the
relations (34).

Examples.

• Consider the algebra with the basis {I1 := 1, I2, I3, I4, I5} and
multiplication rules:

I22 = I3 , I2 I4 = I5

and other products are zeros (for nilpotent subalgebra see [14],
Table 21, algebra J69 and [13], page 590, algebra A1,4).

• Consider the algebra with the basis {I1 := 1, I2, I3, I4, I5} and
multiplication rules:

I22 = I3

and other products are zeros (for nilpotent subalgebra see [13],
page 590, algebra A1,2 ⊕A2

0,1).

• The algebra with the basis {I1 := 1, I2, I3, I4, I5} and multipli-
cation rules:

I22 = I3 , I24 = I5

and other products are zeros (for nilpotent subalgebra see [13],
page 590, algebra A1,2 ⊕A1,2).
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• The algebra with the basis {I1 := 1, I2, I3, I4, I5} and multipli-
cation rules:

I22 = I3 , I2 I3 = I4

and other products are zeros (for nilpotent subalgebra see [14],
Table 21, algebra J71).

Now we consider an example of algebra, which does not satisfy
the relations (34). Moreover, we choose the vectors e1, e2, e3 of the
form (2) such that the equality (20) is not true.

Example.

Consider the algebra A5 with the basis {1, ρ, ρ2, ρ3, ρ4}, where
ρ5 = 0 (see [4] and [10], par. 11). Here n = 5, m = 1. It is obvious
that Υ2

2,3Υ
3
3,4 = 1 and the relations (34) are not true. Consider the

vectors:

e1 = 1, e2 = i+ ρ2 + ρ4, e3 = (1− i)ρ+

(
1

4
−

3

4
i

)
ρ3,

which are linearly independent over R and satisfy the equality

e21 + e22 + e23 = 0.

Let ζ = xe1 + ye2 + ze3. In the algebra A5 for given ζ , we have

ξu2
= ξu3

= ξu4
= ξu5

= x+ iy =: ξ .

The inverse element ζ−1 is of the form (21), where

Ã0 =
1

ξ
, Ã1 =

z(i− 1)

ξ2
, Ã2 = −

y

ξ2
+

z2(1− i)2

ξ3
,

Ã3 =
1

4

z(3i− 1)

ξ2
+

2yz(1− i)

ξ3
−

z3(1− i)3

ξ4
,

Ã4 = −
y

ξ2
+

y2 + 1
2
z2(1− i)(1− 3i)

ξ3
−

3yz2(1− i)2

ξ4
+

z4(1− i)4

ξ5
.

Let us set

Cζ(0, R) := {ζ = xe1 + ye2 ∈ E3 : x
2 + y2 = R2}. (35)
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On the circle of integration (35), we obtain:

Ã0 =
1

ξ
, Ã1 = Ã3 = 0, Ã2 = −

y

ξ2
, Ã4 = −

y

ξ2
+

y2

ξ3
. (36)

As a consequence of the equations (28), (36) on the circle (35) we
obtain the following expression

σ5 =

(
1

ξ
−

y

ξ2

)
dy +

(
−

y

ξ2
+

y2

ξ3

)
dξ.

It is easy to calculate that
∫

Cζ(0,R)

σ5 =
πi

2

and
∫

Cζ(0,R)

σ1 =

∫

|ξ|=R

dξ

ξ
= 2πi,

∫

Cζ(0,R)

σk = 0, k = 2, 3, 4.

Hence, in this example

λ =

∫

Cζ(0,R)

ζ−1dζ = 2πi+
πi

2
ρ4.

7.2

In this subsection we indicate sufficient conditions on a choose of
the vectors (2) for which the equality (20) is true. Let the algebra
Am

n be represented as Am
n = S ⊕s N . Let us note that the condition

ζ ∈ E3 ⊂ S means that in the decomposition (2) ak = bk = 0 for all
k = m+ 1, . . . , n.

Theorem 9. If Am
n = S⊕sN and ζ ∈ E3 ⊂ S, then the equality

(20) holds.

Proof. Since ζ ∈ S, then Tk = 0 for k = m + 1, . . . , n (see

denotation (7)). From (23), (22) follows that Ãk = 0, and now from
(28) follows that σk = 0 for k = m + 1, . . . , n. The equality (20)
is a consequence of the equality σk = 0 and the relation (25). The
theorem is proved.
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Let us note that by essentially the Theorem 9 generalizes the
Theorem 3 of the paper [20].

Now we consider a case where ζ /∈ S. If A
m
n = S ⊕s N and

dimC N ≤ 3, then by Theorem 7 the equality (20) holds for any
ζ ∈ E3.

Theorem 10. Let Am
n = S ⊕s N and dimCN = 4. Then the

equality (20) holds if the following two conditions satisfied:

1. am+1 = bm+1 = 0;

2. at least one of the relations am+2 = bm+2 = 0 or am+3 = bm+3 =
0 are true.

Proof. It follows from the condition of theorem that Tm+1 = 0
and at least one of the equalities Tm+2 = 0 or Tm+3 = 0 are true. To
prove (20) it is need to prove the equality (25) for k = m+1, . . . , m+
4. The equality (25) is proved in Theorem 7 for k = m + 1, m+ 2.

Under the condition Tm+1 = 0 from (32), we have σ
(1)
m+3 = 0. Since

now σm+3 is a total differential, then similar to proof of Theorem 7
can be proved the equality (25) for k = m+ 3.

Moreover, under the conditions of theorem from the denotation

(33) follows the equalities σ
(ℓ,r)
m+4 = 0 for all ℓ = 1, . . . , 14. Therefore,

σm+4 is a total differential, then similar to proof of Theorem 7 can
be proved the equality (25) for k = m+ 4.
The theorem is proved.
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plexă ı̂n spaţiul cu trei dimensiuni, Studii şi Cercetǎri Matem-
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