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Curvilinear integral theorems for monogenic

functions in commutative associative algebras

V. S. Shpakivskyi

Abstract. We consider an arbitrary finite-dimensional commu-
tative associative algebra, A", with unit over the field of complex
number with m idempotents. Let e; = 1, eq, e3 be elements of A"
which are linearly independent over the field of real numbers. We
consider monogenic (i. e. continuous and differentiable in the sense
of Gateaux) functions of the variable ze; + yes + zeg , where x,y, z
are real. For mentioned monogenic function we prove curvilinear
analogues of the Cauchy integral theorem, the Morera theorem and

the Cauchy integral formula.
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1 Introduction.

The Cauchy integral theorem and Cauchy integral formula for the
holomorphic function of the complex variable are a fundamental
result of the classical complex analysis. Analogues of these results
are also an important tool in commutative algebras of dimensional
more that 2.

In the paper of E. R. Lorch [I] for functions differentiable in the
sense of Lorch in an arbitrary convex domain of commutative asso-
ciative Banach algebra, some properties similar to properties of holo-
morphic functions of complex variable (in particular, the curvilinear
integral Cauchy theorem and the integral Cauchy formula, the Tay-
lor expansion and the Morera theorem) are established. E. K. Blum
[2] withdrew a convexity condition of a domain in the mentioned
results from [I].

Let us note that a prior: the differentiability of a function in the
sense of Gateaux is a restriction weaker than the differentiability
of this function in the sense of Lorch. Therefore, we consider a
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monogenic functions defined as a continuous and differentiable in
the sense of Gateaux. Also we assume that a monogenic function
is given in a domain of three-dimensional subspace of an arbitrary
commutative associative algebra with unit over the field of complex
numbers. In this situation the results established in the papers
[1, 2] is not applicable for a mentioned monogenic function, because
it deals with an integration along a curve on which the function is
not given, generally speaking.

In the papers [3, 4] [5] for monogenic function the curvilinear ana-
logues of the Cauchy integral theorem, the Cauchy integral formula
and the Morera theorem are obtained in special finite-dimensional
commutative associative algebras.

In this paper we generalize results of the papers [3, 4, [5] for an
arbitrary commutative associative algebra over the field of complex
numbers.

Let us note that some analogues of the curvilinear Cauchy inte-
gral theorem and the Cauchy integral formula for another classes
of functions in special commutative algebras are established in the
papers [0, [7, [8, 9] [10].

2 The algebra A’".

Let N be the set of natural numbers. We fix the numbers m,n € N
such that m < n. Let A be an arbitrary commutative associative
algebra with unit over the field of complex number C. E. Cartan
[11, pp. 33 — 34] proved that in the algebra A" there exist a basis
{Ix}}_, satisfies the following multiplication rules:

0 if r#s,

1. 1 N: 1.1, = )
vV or,sell,mln {Ir s

2. Vrsem+1,nNN: LI, = > 5l s
k=max{r,s}+1

3. Vsem+1,nNN Fu,e[l,m]NnN V¥V rell,mNN:

ITISZ{OﬁT;éus, (1)

I, if r=u,.



S

Furthermore, the structure constants T}

tivity conditions:
(A1), (LI, =1.(II,) VY rs,pe[m+1,nNN;

(A2). (L), =1,I1,) Yue[l,mNN YV spe[m+1n|Nn
N.

Obviously, the first m basis vectors {I,}" , are the idempotents
and, respectively, form the semi-simple subalgebra. Also the vectors
{I;}7_,, 1 form the nilpotent subalgebra of algebra A7. The unit
of A" is the element 1 = """  I,,. Therefore, we will write that the
algebra A7" is a semi-direct sum of the m-dimensional semi-simple
subalgebra S and (n —m)-dimensional nilpotent subalgebra N, i. e.

A" =S, N.

w € C satisfy the associa-

In the cases where A" has some specific properties, the following
propositions are true.

Proposition 1 [15]. If there exists the unique ug € [1,m] NN
such that I,,Is = I for all s =m+1,...,n, then the associativity
condition (A 2) is satisfied.

Thus, under the conditions of Proposition 1, the associativity
condition (A1) is only required. It means that the nilpotent subal-
gebra of A" with the basis {/,}_,,., can be an arbitrary commuta-
tive associative nilpotent algebra of dimension n —m. We note that
such nilpotent algebras are fully described for the dimensions 1, 2,3
in the paper [12], and some four-dimensional nilpotent algebras can
be found in the papers [13], [14].

Proposition 2 [15]. If all u, are different in the multiplication
rule 3, then I,1, =0 for all s,p=m+1,...,n.

Thus, under the conditions of Proposition 2, the multiplication
table of the nilpotent subalgebra of A7" with the basis {I,};_,, 11
consists only of zeros, and all associativity conditions are satisfied.

The algebra A]" contains m maximal ideals

Iu::{ Z )\k[ki)\kEC}, u=12....m,

k=1, ku
the intersection of which is the radical

R ::{ Xn: Nl - Mi € c}.

k=m+1



We define m linear functionals f, : A7 — C by put
fully) =1, fulw)=0 YweZ,, u=12,...,m.

Since the kernels of functionals f, are, respectively, the maximal ide-
als Z,,, then these functionals are also continuous and multiplicative
(see [16] p. 147]).

3 Monogenic functions.

We consider the vectors e; = 1, e9,e3 in A" which are linearly inde-
pendent over the field of real number R. It means that the equality

11 + (oeg + Qizes = 0, o1, 09, 03 € R,

holds if and only if a; = ay = a3 = 0.
Let the vectors e; = 1, e5, e3 have the following decompositions
with respect to the basis {/}7_;:

er=1, e=> arly, es=Y bly, (2)
k=1 k=1

where ag, b, € C.

Let ¢ := xey + yes + ze3, where z,y,2z € R. It is also obvious
that &, = fu({) = v 4+ ya, + 2b,, v = 1,2,...,m. Let E3 :=
{C = xe; + yes + ze3 : x,y,z € R} be the linear span of vectors
e1, es,e3 over the field of real numbers R. We note that in the
further investigations, it is essential assumption: f,(F3) = C for all
u=1,2,...,m, where f,(F3) is the image of E5 under the mapping
fu. Obviously, it holds if and only if for every fixed u =1,2,...,m
at least one of the numbers a, or b, belongs to C\ R.

With a set @ C R? we associate the set Q. := {¢ = ze; + yes +
zeg : (x,y,2z) € Q} in E3. We also note that the topological prop-
erties of a set ()¢ in E3 understood as a corresponding topological
properties of a set @ in R3. For example, a homotopicity of a curve
vc C Ej to the zero means a homotopicity of v C R?® to the zero,
ete.

Let Q be a domain in R3.

A continuous function ® : Q- — A" is monogenic in Q. if ® is
differentiable in the sense of Gateaux in every point of {2, i. e. if



for every ¢ € ¢ there exists an element ®'({) € A" such that

Jim (@(C+eh) -~ @(Q)T =hP(Q) VhEE. (3

d'(() is the Gateaux derivative of the function ® in the point .
Consider the decomposition of a function ® : , — A" with
respect to the basis {/}7_;:

k=1

In the case where the functions U, : €2 — C are R-differentiable
in Q, i. e. for every (z,y, 2) € Q,

Ur(z+Azx, y+Ay, 2+A2)—Uk(z,y, 2) = e Ax+8—y Ay+§ Az+

+o (VAP Ty + (A7), (A2)+ (AP + (A2 -0,

the function ® is monogenic in the domain ) if and only if the
following Cauchy — Riemann conditions are satisfied in (2¢:

oe 09 oe 09

8—y:%€2, 52%63. (5)

Expansion of the resolvent is of the form
m 1 n s—m—+1 Q
_ k,s
TR SN S Dl A
u=1 t—& s=m+1 k=2 (t - 5'“43)
VteC:t#¢&, u=12...,m,

where @)y s are determined by the following recurrence relations:

s—1
Q2,s ::Tsa Qk,s: Z Qk—l,T’Br,s> k::3,4,...,s—m+1.
r=k+m—2
(7)

with

s—1
Ts::yas+zbsv Br,s:: Z Tka S:m+27”’7n7

7,8

k=m+1
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and natural numbers u, are defined in the rule 3 of the multiplication
table of the algebra A".

From the relations (@) follows that the points (z,y,2) € R? cor-
responding to the noninvertible elements ¢ € A" form the straight
lines

r+yRea, + zReb, =0,
L yIma, + 2zImb, =0

in the three-dimensional space R3.

Denote by D, C C the image of €} under the mapping f,, u
1,2,...,m. A constructive description of all monogenic functions in
the algebra A" by means of holomorphic functions of the complex
variable are obtained in the paper [I5]. Namely, it is proved the
theorem:

Let a domain 2 C R? be convex in the direction of the straight
lines L, and f,(E3) = Cforallu =1,2,...,m. Then any monogenic
function ® : 0 — A" can be expressed in the form

i / (t)(te;—C) " di+ Z I —/ )(te1—¢)

s=m+1
(8)
where F, is the certain holomorphic function in a domain D,; G,
is the certain holomorphic function in a domain D, ; I'; is a closed
Jordan rectifiable curve lying in the domain D, surround a point ,
and containing no points &, £,q =1,2,...,m,{ # q.

u

4 Cauchy integral theorem for a curvilinear in-
tegral.

Let v be a Jordan rectifiable curve in R3. For a continuous function
U ye — AT of the form

k=1 k=1

~Ldt,



where (z,y,z) € vy and Uy : v — R, Vi : v = R, we define an
integral along a Jordan rectifiable curve ~. by the equality:

/ Q)d¢ = ka/Uk Ty, 2 dx+Zeglk/Uk(z,y,z)dy+

¢ v

+Zeglk/Uk(x,y,z)dz+i2[k/vk(:c,y,z)dx+
k=1 ; k=1

Y

+iZe2Ik/Vk(x,y,z)dy +iZe3]k/Vk(:c,y,z)dz
k=1 ; k=1 ;

where d( := dx + exdy + ezdz.

Also we define a surface integral. Let 3 be a piece-smooth surface
in R?. For a continuous function ¥ : 3 — A™ of the form (), where
(x,y,2z) € Y and Uy, : ¥ — R, V; : ¥ — R, we define a surface
integral on ¥, with the differential form dzdy, by the equality

/ C)dady = ka/Uk Ty, 2 )dxdy—l—zZ[k/Vk(x,y,z)d:cdy.

¢ k=15

A similarly defined the integrals with the forms dydz and dzdzx.

If a function ® : 2, — AT is continuous together with partial
derivatives of the first order in a domain €2, and ¥ is a piece-smooth
surface in €2, and the edge 7y of surface X is a rectifiable Jordan curve,
then the following analogue of the Stokes formula is true:

/ Q)d¢ = / <—e2 — —) dxdy + <a—\1163 — 8_\1162) dydz+
dy 0z

ov oV
+ (a — %eg) dzdx. (10)

Now, the next theorem is a result of the formula (I0) and the equal-
ities ().

Theorem 1. Suppose that ® : Q — A" is a monogenic
function in a domain )¢, and X is a piece-smooth surface in 2, and



the edge v of surface ¥ is a rectifiable Jordan curve. Then

/cp(g)dg 0. (11)

¢

In the case where a domain ) is convex, then by the usual way
(see, e. g., [TIT]) the equality (II]) can be prove for an arbitrary closed
Jordan rectifiable curve ..

In the case where a domain ) is an arbitrary, then similarly to
the proof of Theorem 3.2 [2] we can prove the following

Theorem 2. Let @ : Q — A" be a monogenic function
in a domain dc. Then for every closed Jordan rectifiable curve ~y
homotopic to a point in 2, the equality () is true.

5 The Morera theorem.

To prove the analogue of Morera theorem in the algebra A", we
introduce auxiliary notions and prove some auxiliary statements.
Let us consider the algebra A™(R) with the basis { I, il }}_; over
the field R which is isomorphic to the algebra AT over the field C.
In the algebra A™(R) there exist another basis {e;}3",, where the

vectors ey, eo, eg are the same as in the Section 3.
2n

For the element a := arer, ar € R we define the Euclidian
k=1

2n
fall == | Y.
k=1
Accordingly, |IC|| = /22 + 3% + 22 and ||e1|| = |lea]| = |les]] = 1.

Using the Theorem on equivalents of norms, for the element b :=

norm

> (bik + ibog ) I, big, bay € R we have the following inequalities
k=1

2n

(i, + ibar| < 4| > (B2 +b3) < cllbl, (12)
k=1

where ¢ is a positive constant does not depend on b.



Lemma 1. If v is a closed Jordan rectifiable curve in R® and
unction U : v — A™ is continuous, then
¢ n

JRIGKS

¢

< / 1w ()] lde]) (13)

where ¢ is a positive absolutely constant.

Proof. Using the representation of function ¥ in the form ({3
for (z,y, z) € 7, we obtain

JRIGLS

RS

k=1
y

3 lealall [Un(e.9,2) + Vil )| dy+
k=1
Y

+ Z H€3]k|| /‘Uk(xvyv Z) + ka(xvyv Z)‘ dz.
k=1
v

Now, taking into account the inequality (I2]) for b = ¥(() and the
inequalities ||es Iy || < ¢5, s =1,2,3, where ¢, are positive absolutely
constants, we obtain the relation (I3). The lemma is proved.
Using Lemma [I], for functions taking values in the algebra A",
the following Morera theorem can be established in the usual way.

Theorem 3.  If a function ® : Q¢ — AT is continuous in a
domain Q¢ and satisfies the equality

/ ()d¢ = 0 (14)
PY%

for every triangle /\¢ such that closure N; C €, then the function
® is monogenic in the domain .



6 Cauchy integral formula for a curvilinear in-
tegral.

Let (o := xpe1 + yoez + 20e3 be a point in a domain ¢ C Ej. In a
neighborhood of (;, contained in €. let us take a circle C¢((p, ) of

radius € with the center at the point (5. By C'u(&so), ) C C we denote
the image of C¢((p, ) under the mapping f,, v = 1,2,...,m. We
assume that the circle C¢((o, ) embraces the set {(— (o : (z,y,2) €

U L.} It means that the curve C’u(&(lo),e) bounds some domain
u=1

D! and f,(G) =&Y e Dl w=1,2,...,m.
We say that the curve v, C Q¢ embraces once the set {¢ — (o :

(x,y,2) € | Ly}, if there exists a circle C¢((p, ) which embraces
u=1

the mentioned set and is homotopic to 7, in the domain Q- \ {¢— (o :
(z,y,2) € U Lu}.

Since the function (™' is continuous on the curve C¢(0,¢), then
there exist the integral

A= / ¢l (15)
Ce¢ (0,e)
The following theorem is an analogue of Cauchy integral theorem

for monogenic function ® : 2, — AT,

Theorem 4. Suppose that a domain Q@ C R3 is conver in
the direction of the straight lines L, and f,(E3) = C for all u =
1,2,...,m. Suppose also that ® : Q — A" is a monogenic func-
tion in Q¢. Then for every point (y € §X¢ the following equality is
true:

AD(G) = / B(C) (¢ — Co) L dC, (16)

where ¢ is an arbitrary closed Jordan rectifiable curve in Q¢, that

embraces once the set {C — (o : (x,y,2) € U L.}
u=1

Proof. Inasmuch as 7, is homotopic to C¢(p, €) in the domain

10



Q\{C—Co: (z,y,2) € U Ly}, it follows from Theorem 2] that

u=1

/ww@—w*M= / SO (C— @)t (17)

e C¢(Cose)

Taking into account the equality (I7]) we represent the integral
on the right-hand side of equality (I6]) as the sum of the following
two integrals:

/@«mc—@r%mz /“«wo—®«wmc—@rhx+

¢ CC (CO 75)

*@%)/‘@—®4%:L+b.
C¢(Cose)

Let us note that from the relation (I7)) follows that if there exist
the integral in the equality (IH]) then it does not depend on e. As
a consequence of the equalities (I5)), (I7), we have the following
relation

B=o) [ rlar=2e(), (18)
C((O,&)
where 7 := ( — (p.

The integrand in the integral J; is bounded by a constant which
does not depend on e: when ¢ — 0 the integrand tends to ®'((p)
(see Lemma 5 [15]). Therefore, using the Lemma [I] the integral .J;
tends to zero as € — 0. The theorem is proved.

Below, it will be shown that the constant A is an invertible ele-
ment in A"

7 A constant ).

In some special algebras (see [3, 4] B]) the Cauchy integral formula
(I6) has the form

1

D(¢o) = o

/¢KMC—®Y%K, (19)

"¢

11



A\ = 2mi. (20)

In this Section we indicate a set of algebras AT for which (20)
holds. In this a way we first consider some auxiliary statements.

As a consequence of the expansion (@), we obtain the following
equality:

=D A (21)
k=1

with the coefficients A, determined by the following relations:

(22)

s—m+1
Z ka, s=m+1m+2,....n

u

where @k,s are determined by the following recurrence relations:

é2,s = _Ts 5 ék,s = - Z @k—l,r Br,s > k= 37 4a ) s—m+1.

(23)
where T, and B, s are the same as in the equalities (), and natural
numbers u, are defined in the rule 3 of the multiplication table of
the algebra A"

Taking into account the equality (2I]) and the relation

d¢ = dxey + dyey + dzes = Z <da: +dya, +dz bu> I+

u=1

s (aya, +dzb,)1, _ngul £y an,

r=m+1 r=m+1
we have the following equality

¢ = ZA dé, I, + Z A, dT, I+

r=m+1

+ Z A, de,, I, + Z Z A, dT, 1,1, = Zaklk. (24)

s=m+1 s=m+1r=m+1

12



Now, taking into account the denotation (24]) and the equality
[22), we calculate:

/ZO’UI—ZI / dgu—2zZI—2m

ce(o,r) "=t Cu(€u,R)

Therefore,

A=2mi+ Y I / Ok . (25)

k=m+l " o (0,R)

We note that form the relations ([28), (2I), and (22) that A is an
invertible element.

Thus, the equality (20) holds if and only if

/ o, =0 VkE=m+1,...,n. (26)

C¢(0,R)

But, for satisfying the equality (26]) the differential form o} must be
a total differential of some function. We note that the property of
being a total differential is invariant under admissible transforma-
tions of coordinates [I8, Theorem 2, p. 328]. In our situation, if we
show that o is a total differential of some function depend of the
variables T”é“, e 5 , then it means that o, is a total differential

of some function depending on x,y, 2.

7.1

In this subsection we indicate a set of algebras in which the vectors
(@) chosen arbitrarily and the equality (20) holds. We remind that
an arbitrary commutative associative algebra, A", with unit over
the field of complex number C can be represented as A" = S &, N
where S is m-dimensional semi-simple subalgebra and N is (n—m)-
dimensional nilpotent subalgebra (see Section 2).

Theorem 5. If A" =S, then the equality (20) holds.

The proof immediately follows from the conditions o, = 0 for
k=m+1,...,n and (25). This theorem is obtained in the paper

[5].

13



Theorem 6. If A" =S @&, N and N is a zero nilpotent subal-
gebra, then the equality (20) holds.

Proof. From the condition of theorem follows that in the rela-
tions (22) all By, = 0. Therefore, (22)) takes the form

~ 1
A, ==L Ek=m+1,...,n. (27)

2?
Uk

Since I, I, = 0 for r,s = m + 1,...,n, then form the denotation
[4) and the identity (27), we obtain

dT}, di
+ A de,, = S
&, T =

Under the transformation (z,y,z) — 74 the circle C¢(0, R) maps

into a closed smooth curve C' (Jordan or not) and the singularity
&u, = 0 maps on 7; = co. Consequently, in an interior of the curve

Ok =

C does not exist singular points. By the Cauchy theorem in complex
plane [I8, p. 90], we have:

/ O'k—/di—O

C¢(0,R)

So, the equality (20) is a consequence of the last relation and (25]).
The theorem is proved.

The Theorem [6limplies the formula (I9) for monogenic functions
in the three-dimensional algebra A, which investigated in the paper
[19].

Further we consider the case where /N in non-zero nilpotent subal-

gebra. For this goal we establish an explicitly form of 0,11, 012, Opmas

and 0,,44.
From the relation (24]) follows the equalities

dTm—l—l

gUer 1

Om+1 = + Am—i—l dgum 19
+

T
ug

r,s=m+1

(28)

14

dfuk_d(g ) =:dr,, k=m+1,...
uk Uk



Now, the equalities (22)) and (23) implies the following equalities:

i __ Tt i Tnve T4 ymtl
m+1 — 2 ) m+2 — 2 3 m+1,m+2>
Um+1 Um+2 Um+2

2
~ Tm+3 T m+1 Tm+1Tm+2 ymtl

_ m+1
Amis = —5 Tt mes T 2 m+2,m+3"
Um+3 um+3 Um+3
3 2
T m+1 Tm—i—l Tm + 1, m+2 Tm+2 Tm+1Tm+2 Tm+2 Tm-l—l
m+1,m+2 -~ m+2,m+3 3 m+2,m+3" 4 m+2,m+3 - m+1m+2>
um+3 Um+3 Um+3

2
;{ _ Tm+4 T m+1 Tl + 2Tm+1Tm+3 T+l +
m+4 — 2 m+1,m+4 m+3,m-+4
Um+4 Um+4 um+4
2
+2Tm+1Tm+2 Tm+1 4 2Tm+2Tm+3 Tm + Tm+2 Tm+2 -
3 m~+2,m+4 m~+3,m+4 m—+2,m+4
Um+4 Um+4 Um+4
3
T m+1 rrtl Tl Tm+1Tm+2 ymtl Y2 _
m+1m+2 - m+2,m+4 4 m+1m+2 - m+2,m+4
Um+4 Um+4
2 3
Tm+1Tm+3 Tm—f—l Tm + Tm+3 m+3 1, m+1 Tm—f—l Tm-i—l .
4 m+1,m+2 +- m+3,m+4 m+3,m+4"- #4 m—+1,m+3 ~ m+3,m+4
Um+4 um+4 Um—+4
Tm+1Tm+2 Tm—l—l Tm+2 Tm+1Tm+3 Tm—l—l Tm+3 .
4 m+1,m+3 - m+3,m+4 4 m—+1,m+3 - m+3,m+4
Um+4 Um+4
2
—9 Tm—l—le-i-2 Tl Tl _9 Tm+1T +2 pmtl Ymt2 _
m+2,m+3 - m+3,m+4 4 m+2,m+3 - m+3,m+4
Um+4 Um+4

4

Tm+1Tm+2Tm+3 Tm+1 Tm pmtl Tm+1 Tm+1 Tm—f—l Tm +
4 m+2,m+3 — m+3,m+4 m+1,m+2 - m+2m+3 - m+3,m+4

Um+4 um+4

T3 T 3 .T
m+1+ m+2 Tm—l—l Tm-l—l Tm m+14m+3 Tm—l—l Tm-l—l Tm+3
m—+3,m—+4

5 m+1,m+2 ~ m+2,m+3 5 m+1,m+2 ~ m+2,m+3
Um+4 Um+4
2 3
T 1540 m+2 m+1 T m+2 ~~m4-2 m+2
- T T T —
4 m+2,m+3 - m+3,m+4 m+2,m+3 - m+3,m+4
Um+4 um+4
2
_ Tm+2Tm+3 Y2 T3 + T, —i—lT;n‘f‘2 T2 rrtl rmtl +
4 m+2,m+3 - m+3,m+4 5 m+2,m+3 - m+1,m+2 - m+3,m+4

Um+4 Um+4

15
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2 2
T T m+2 Tm+2 Tm—i—l Tm+2 Tm+1Tm+2Tm+3 Tm+2 Tm—i—l Tm+3
5 m+2,m+3 - m+1m+2 - m+3,m+4 5 m+2,m+3 - m+1m+2 - m+3,m+4 -
Um+4 Um+4
Finally, a consequence of the previous equalities and the relations
([2]) is the following differential representation of 0,11, Opmio, Omas
and 0,,44:

T,
0m+1:d( +1)7 Omt2 = d

gUerl

2
Tm+2 1 m~+1 T
2 m+1m+2¢9 |

£U7n+2

Um+2
(29)
2
—d Tonts - leJrl T Zmil  ypmtl Tm+1Tm+2_
Om+3 = 5 2 m+1,m+3 m+2,m+3 2
Um+3 um+3 Um+3
2 3
_le+2 T Tm+2 4= Tm—i—l Tl Tm—l—l +
m+2,m—+3 3 m+1,m+2 - m4+2,m+3 ¢3
Um+3 Um+3
m+1 m+ (1)
+ T iime2 T +2 m+3 Tm3 > (30)
2
4 Tinya _Tm+1 Thp ymtl Tiny1Timys
Om+4 = 2 m+1,m+4 m+3,m+4 2
gum+4 Um+4 Um+4

TniiTve Lo This 2 Tny2Tins n

—_ym+l _Z
m+2,m+4 2 2 m+2,m+4 ¢9 m+3,m-+4 2
Um+4 Um+4 Um+3
3 2 3
Tm—i—l Tm—i—l Tm+ 1 m+3 T Tm—i—l Tm—i—l Tm+1 o
3 m4+1,m+2 + m+2m+4¢3 2 m+3,m+4 9 3 m+1,m+3 - m+4+3,m+4 3
Um+4 Um+4 Um+4
4 3
_le-i-l T+l ymtl Tm+1 1 m+2 Y2 Tm+2 +
4 m+1,m+2 - m+2,m+3 - m+3m+4 4 3 m+2,m+3 - m+3,m+4
Um+4 Um+4
m—+1 m—+ (1,2) m—+1 m+ (2,2) m—+1 m4+ (3,2)
+Tm+1,m+2T +2 m—+4 am+4+Tm+1,m+2T +3 m-+4 am+4+Tm+1,m+3T +3 m-+4 am+4+
m+3 m+1 (4,3) m41 m+1 (5,1) m+1 m+ (6,2)
+ s mea Lot 1mts m+4+Tm+2,m+3Tm+3 m+4 m+4+Tm+2,m+3T +3 md Omat

m+1 m—+ (7,3) m—+1 m—+1 m—+ (8,2)
+Tm+2,m+3T +3 mad Omia — Loy m+2Tm+2,m+3T +3 md Oma™

m+1 m+1 m+ m+2 m+1 (10,1)
= ime2 Tomtames T +3 m+4 Um+4 + Va3 Lt s.mad Omrd T
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Ly pm3 (11,3) T2 rmtl Tt (12,1)

m+2,m+3 + m+3,m+4 Om-+4 m+2,m+3 L m+1,m+2 L m+3,m+4 Om+4 —
2 1 2 13,2 2 1 3 14,3
_Tzi2,m+3Tﬁil,m+2T$13,m+4 07(71+4) - Tgi2,m+3Tzil,m+2T213,m+4 Uﬁn+4) ,
(31)
where -
T,
1 2
olb, g = 2t (dTm+2 - gm—+ dguw) : (32)
Um+3 Um+3
and afﬁﬁ, ¢=1,2,...,14 are determined by the following relations:
2
(o= g(r) for  €=1,2,3,4,
Um+4-4
”’g{w g(r) for (£=25,6,7,
Um 44
(L) Tt g(r) for ¢=38,9
m+4 = 53m+4 7 (33)
T2
== g(r) for  ¢=10,11,
Um4-4
2
MR () for £ =12,13,14,
Um+4

\

where g(r) i= dTy, 4, — 22 dE,, .,

5“m+4=

Theorem 7. IfA” = S®,N and dimc N < 3, then the equality
Q) holds.

Proof. From the equality (29)) for 0,,,1, we have

T,
Oms1 =d ( +1) = dTmy1 -

guer 1

Now, the identity |, Ce(o,R) Tmtl = 0 proved as in Theorem [6l
Consider 0,42 from the equality (29), which is a total differential

of the certain function depending on the variables ngﬁ , g’i Un-
Um4-2 Um4-2

der the transformation (z,y, z) — (Zm—“ : Z’"—“) the circle C¢(0, R)
Um+4-2 Um 42

maps into a closed smooth curve C (Jordan or not) and the singular-
ity &u,.,. = 0 maps on oo. Consequently, in an interior of the curve

C' does not exist singular points. Then by the Cauchy theorem in
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the space C? [I8] p. 334], we have:

o Tm+1 Tm+2 o
0m+2($a Y, Z) - Om+2 5 ) é. = 0.
J Um+2 Um+2

Finally, we prove the equality (20) for £ = m + 3. In the paper
[12] is described all commutative associative nilpotent algebras over
the field C of dimensional 1,2,3. From results of the paper [12]
(Table 1) immediately follows that for all mentioned algebras the
relation Yty ,Tmt3 o = 0 is always satisfied. Therefore, the
equality (B0) implies that under the conditions of theorem o,, 3 is

always a total differential of the certain function depending on the
variables Tm+1 Ttz Tmis

5“erS ! 5“erS ! 5“erS ) .
Now as before, under the transformation

T T T
(l’,y,Z) N ( +1 +2 +3)

£Um+3 ’ £Um+3 ’ gum+3

the circle C¢(0, R) maps into a closed smooth curve C (Jordan or
not) and the singularity &,,,,, = 0 maps on co. Hence, in an interior

of the curve C' does not exist singular points. Then by the Cauchy
theorem in the space C? [I8, p. 334], we have:

o Tm+1 Tm+2 Tm+3 o
O'm+3(l', Y, Z) - Om+3 5 ) 5 ) é- = 0.
J_ Um+3 Um+3 Um+3

C¢(0,R) c

So, the equality (20) is a consequence of the last relation and (23]).
The theorem is proved.

Let us note that from the Theorem [7] follows the formula (19) for
monogenic functions in the three-dimensional algebra Aj (see [3])
and in the three-dimensional algebra A, which considered in the
paper [19].

Theorem 8. Let A7 = S @&, N and dim¢ N = 4. Then the

18



equality [20) holds if the following relations satisfied

Tmﬁ,mmTzig,mw = Tﬁﬂ,wﬂﬁiimﬂ = Tﬁiimmmii,mﬂ =

= Tmig,m+4frzi%,m+3 = Tzi%,m+3Tzié,m+4 = Tzi%,m+3ﬁrmi§,m+4 =

= Tmi%,m+3Tmi§,m+4 = Tmi%,m+2frmi%,m+3ﬁrmi§,m+4 =

= Tmii,m+2Tmi%,m+3Tmig,m+4 = Tmig,m+3ﬁrmié,m+4 = Tmig,m+3Tmi§,m+4 =
= szrg,mHTzﬂ,mHTﬁié,mH = Tzig,m+3TZIi,m+2T%I§,m+4 =

= T2137m+3T$i%,m+2Tzig,m+4 =0.
(34)
Proof. From the equalities (B0) and (31I) it obvious that under
conditions (B4]) expressions for 0,3 and 0,4 are total differentials.
Further proof is similar to proof of the Theorem [7l The theorem is
proved.

Further we consider some examples of algebras, which satisfy the
relations (34]).

Examples.

e Consider the algebra with the basis {I; := 1, I, I3, I4, Is} and
multiplication rules:

B=1I, LI =1

and other products are zeros (for nilpotent subalgebra see [14],
Table 21, algebra Jg9 and [13], page 590, algebra A; 4).

e Consider the algebra with the basis {I; := 1, I, I3, I4, I} and
multiplication rules:
=1

and other products are zeros (for nilpotent subalgebra see [13],
page 590, algebra A, @ A7 ).

e The algebra with the basis {I; := 1, I5, I3, I4, I5} and multipli-
cation rules:

[22213, 15215

and other products are zeros (for nilpotent subalgebra see [13],
page 590, algebra A;» & A 2).
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e The algebra with the basis {I; := 1, Is, I3, I4, I5} and multipli-
cation rules:
=1, LI;=1

and other products are zeros (for nilpotent subalgebra see [14],
Table 21, algebra Jr;).

Now we consider an example of algebra, which does not satisfy
the relations (B4]). Moreover, we choose the vectors eq, eg, €3 of the
form (2]) such that the equality ([20) is not true.

Example.

Consider the algebra As with the basis {1, p, p?, p3, p*}, where
p° =0 (see [4] and [10], par. 11). Here n = 5, m = 1. It is obvious
that 135,75, = 1 and the relations (34) are not true. Consider the
vectors:

. , 1 3.
er=1, ex=i+p’+p", es=(1—i)p+ (Z_Zz) P’

which are linearly independent over R and satisfy the equality
e} +es+e;=0.
Let ( = xe; + yes + zes. In the algebra Ay for given (, we have
uz = Gug = &uy = &us =T+ 1y =1 €.

The inverse element (! is of the form (21I), where

~ 1 ~ — 1 - 21_'2
Aoz Al:%, Az:_%+2<§731>,
~ - g 3(1 _ 1\3
A3:iz(322 1)+2yz(£13 z)_z(1£4 1)7

- 2 L 1,201 _ (1 _ 2 21 e g o
A4:—%+y + 32 (1532)(1 3i)  3yz (514 7) +Z(1€5 Z).

Let us set

Ce(0,R) == {¢ = we; +yey € By : 2% +y* = R*}. (35)
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On the circle of integration (B3], we obtain:

~ 1 ~ ~ ~ ~ 2
_ A=Ay =0, Ay— y_ Y

—%, Ai=-g+g 60

As a consequence of the equations (28)), ([36]) on the circle (B3] we
obtain the following expression

1 2

It is easy to calculate that

v
05 = ?
C¢(0,R)
and
d
/ o] = §:2m’, / or =0, k=234.
C¢(0,R) l€l=R C¢(0,R)

Hence, in this example

A= / Cld¢ = 2mi + %p‘*.
CC(OvR)

7.2

In this subsection we indicate sufficient conditions on a choose of
the vectors (2) for which the equality (20) is true. Let the algebra
A" be represented as A7 = S @4 N. Let us note that the condition
¢ € E3 C S means that in the decomposition ([2) ay = by = 0 for all
k=m+1,...,n.

Theorem 9. IfA' =S®;N and ( € E5 C S, then the equality
Q) holds.

Proof. Since ¢ € S, then T, = 0 for k = m + 1,...,n (see

denotation (7). From (23), (22)) follows that A; = 0, and now from
[28)) follows that o = 0 for k = m + 1,...,n. The equality (20)
is a consequence of the equality o = 0 and the relation (25]). The
theorem is proved.
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Let us note that by essentially the Theorem [9 generalizes the
Theorem 3 of the paper [20].

Now we consider a case where ( ¢ S. If AT = S &, N and
dime¢ N < 3, then by Theorem [1 the equality (20) holds for any
¢ € L.

Theorem 10. Let A" = S &3 N and dim¢ N = 4. Then the
equality ([2Q) holds if the following two conditions satisfied:

1. m+y1 = bm—i—l = O;.

2. at least one of the relations a,, 1o = bypio =0 07 Gpyg = bz =
0 are true.

Proof. It follows from the condition of theorem that 7,,,; = 0
and at least one of the equalities T,,.5 = 0 or T},,3 = 0 are true. To
prove (20) it is need to prove the equality ([28) for k = m+1,...,m+
4. The equality (25) is proved in Theorem [1 for k = m + 1, m + 2.
Under the condition T),+1 = 0 from (32), we have 0213 = 0. Since
now o,,,3 is a total differential, then similar to proof of Theorem [7]
can be proved the equality (28] for k =m + 3.

Moreover, under the conditions of theorem from the denotation
B3) follows the equalities o7} = 0 for all ¢ = 1,...,14. Therefore,
om+a 18 a total differential, then similar to proof of Theorem [7] can
be proved the equality (25) for k = m + 4.

The theorem is proved.
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