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Abstract: The ATLAS detector data on di-lepton production is used in order to impose

constraints on Z ′ boson masses associated with a variety of 3-3-1 and E6 motivated Z ′ models.

Lower mass bounds for the different models are established at 95% confidence level. Our

numerical analysis is extrapolated up to 14 TeV, and further to 30 TeV and 100 TeV, for a

broad range of luminosities. Some of our results can be compared with the ATLAS published

bounds, being, for those cases, in fairly good agreement. We also report the vector and axial

charges for all the 3-3-1-motivated Z ′ models without exotic electric charges for leptons, known

in the literature. To the best of our knowledge most of this charges were not reported before.

Keywords: Extra neutral gauge bosons, 3-3-1 models, E6, Z ′, LHC.ar
X

iv
:1

50
3.

03
51

9v
2 

 [
he

p-
ph

] 
 8

 S
ep

 2
01

5

mailto:camilo@gfif.udea.edu.co
mailto:richardbenavides@itm.edu.co
mailto:wponce@fisica.udea.edu.co
mailto:eduardo.rojas@cruzeirodosul.edu.br
http://jhep.sissa.it/stdsearch


Contents

1. Introduction 1

2. SU(3)c × SU(3)L × U(1)x Models 3

2.1 The Minimal Model 4

2.2 3-3-1 Models Without Exotic Electric Charges 4

3. Statistical Analysis and Results 6

4. Conclusions 11

A. Differential Cross-Section 11

B. The 3-3-1 Couplings 13

1. Introduction

The existence of new neutral vector bosons Z ′ beyond the one associated with the SU(3)c ⊗
SU(2)L ⊗ U(1)Y local gauge group of the Standard Model (SM)1, is a clear prediction of new

physics, related to extra U(1) factors appearing in every regular chain of the breaking of larger

gauge groups down to the SM one [2].

A systematic study of additional U(1) symmetries is possible just by restricting to the study

of the lowest dimensional representations of larger gauge groups and their branching rules [3].

As it is well known, a family non universal Z ′ coupling leads to Flavor-Changing Neutral

Currents (FCNC), and possibly to new CP-violating effects [4]. To avoid these inconveniences,

some of the first models with physics beyond the SM incorporate the assumption of family

universality, condition quite restrictive to such an extent that, it is not possible to construct a

minimal extension of the SM just by adding a U(1) factor to the SM local gauge group, without

the introduction of new fermion fields [2, 5, 6]; that is, it is not possible a Z ′ interaction just

with the current content of the particles in the SM.

The requirement of universality for the U(1) charges and, in consequence anomaly cancel-

lation in every family, leads in a natural way into E6 subgroups in most of the cases. As a

gauge group, E6 is the only exceptional group with complex representations that is anomaly

free in all its representations [7]. Some E6 subgroups, such as the original unification groups

1For an excellent compendium of the SM, see Ref. [1].
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SU(5), SO(10), and the Left-Right symmetric models SU(4) × SU(2)L × SU(2)R with their

corresponding supersymmetric realizations, are between the most widely known extensions of

the SM. For a classification of U(1)′ symmetries contained in E6 see references [8, 9].

Early in the nineties, some work pointed out to the conclusion that universality must not

be taken for granted for models with physics beyond the SM. In particular, under some suitable

assumptions, many non universal models were able to evade the FCNC constraints. Following

this trend of ideas, the SU(3)c ⊗ SU(3)L ⊗ U(1)x models (3-3-1 for short) were proposed by

allowing anomaly cancellation between fermions in different families [10, 11, 12, 13, 14, 15, 16,

17, 18].

For the most popular 3-3-1 models [11, 14, 16], three families is the simplest possible

choice of matter content in order to have anomaly cancellation. So, one of the most appealing

features of those models is to provide explanation for the family replication problem (also

known as the generation number problem), which is a long standing issue in particle physics;

furthermore, they provide some indications of why the top family is the heaviest one [19]. Also,

3-3-1 models are among the most interesting new physics scenarios with new sources of CP

and flavor violation [20], making them the most suitable ones for flavor studies [21, 22, 23, 24,

25, 26, 27, 28].

The first 3-3-1 model for three families was sketched originally in Ref. [10], where references

to previous SU(3)⊗U(1) models for one and two families can be found. Then, in Refs. [11, 12]

the so called minimal version of the model was introduced, minimal in the sense that it does

not contain lepton fields beyond the ones present in the SM. Next, came the 3-3-1 family

model with right handed neutrinos, rediscovered in Refs. [13, 14, 15] (the first 3-3-1 family

model with right handed neutrinos was introduced in Ref. [10]). The three family model with

exotic electrons was introduced in the literature in Ref. [16], a classification of 3-3-1 models

without exotic electric charges was done in Refs. [17]; and finally, the so called economical

3-3-1 model appeared in Ref. [18].

Since the gauge group for the 3-3-1 models is not simple, neither semi-simple, there is

not a neat prediction of the electroweak mixing angle, neither there is an explanation for

the quantization of the electric charge using only the cancellation of anomalies (the quantum

constraints) 2; but, as in the SM, the inclusion of the classical constraints leads in a simple

way to the quantization of the electric charge [29], conclusion linked to the generation number

problem in Ref. [30]. As a last remark, it has been shown that the most general Yukawa

couplings in some 3-3-1 models, include in a natural way a Peccei-Quinn type symmetry that

can be extended to the entire Lagrangian in a very elegant way [31], and by using appropriate

extra fields, the resulting axion can be made invisible.

In the eventual discovery of a new neutral vector boson, it will be important the experimen-

tal determination of its coupling to the standard model fermions. However, the discrimination

between the possible Z ′ models could be challenging at the LHC, owing to the reduced number

of high resolution channels in hadron colliders. So, in order to carry out the statistical analysis,

2In grand unified theories with simple gauge groups, the electric charge is quantized because the charge

operator is a linear combination of generators of the unifying group.
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it is necessary to combine the LHC data with electroweak precision data. For 3-3-1 models,

the most important constraints come from the flavor changing neutral currents (FCNC); in

consequence, it is important to establish the models for which the LHC and/or the FCNC

constraints are dominant; that is, which kind of constraints exclude a wider region in the pa-

rameter space. It is also important to set the range of parameters and models for which the

LHC and the FCNC constraints are comparable to each other; in such a case, it is convenient

to combine both.

In order to set the present 95% confidence level (CL) limits and the projected ones, we

follow closely the CDF methods explained in Ref. [32]. For the exact expression of the χ2

function, the theoretical formulas of the SM expected values, and the statistical analysis, we

follow the work of the authors in Refs. [9, 33]. As an improvement, we update the program

used in [9] with the set CTQ10 of parton distribution functions [34] which allow us to reach

higher energies than previous releases.

In this paper we present the Z ′ charges for all the 3-3-1 models Without Exotic Electric

Charges for leptons, known in the literature, most of them new results. Then, using the recent

dilepton data reported by ATLAS in reference [35] we calculate the lower bounds for MZ′

at 95% CL, and project also at 95% CL for the LHC and VLHC3 forthcoming energies and

luminosities.

The paper is organized as follows: in section 2 we review the different 3-3-1 models present

in the literature; in section 3 we derive the present 95% CL limits and the projected ones on the

Z ′ mass for typical LHC energies and luminosities. The section 4 summarizes our conclusions.

Technical appendixes at the end present the differential cross-section formulas used in the

analysis and the charges of the SM fermions for the different 3-3-1 models Without exotic

electric charges for leptons, in the literature .

2. SU(3)c × SU(3)L × U(1)x Models

The different models based on a 3-3-1 gauge symmetry are classified according to the electric

charge operator which is given by

Q = aλ3 +
1√
3
bλ8 + xI3, (2.1)

where λα, α = 1, 2, . . . , 8 are the Gell-Mann matrices for SU(3)L normalized as Tr(λαλβ) =

2δαβ and I3 = Dg(1, 1, 1) is the diagonal 3 × 3 unit matrix. a = 1/2 if one assumes that the

isospin SU(2)L of the SM is entirely embedded in SU(3)L and b is a free parameter which

defines the different possible models. The x values must be obtained by anomaly cancellation.

The covariant derivative for the electroweak sector is given now by:

Dµ = ∂µ − i
g

2

8∑
α=1

λαA
α
µ − ig1xXµI3, (2.2)

3VLHC stands for Very Large Hadron Collider that would accelerate protons to energies of about 100

TeV [36, 37].
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where Aαµ and Xµ are the gauge fields of SU(3)L and U(1)x respectively, and g and g1 are the

coupling constants of the same gauge structures.

x = 0 for Aαµ, the 8 gauge fields of SU(3)L, and thus Eq. (2.1) implies:

∑
α

λαA
α
µ =
√

2

 D0
1µ W+

µ K
(b+1/2)
µ

W−
µ D0

2µ K
(b−1/2)
µ

K
−(b+1/2)
µ K

−(b−1/2)
µ D0

3µ

 , (2.3)

whereW±
µ = (A1

µ±iA2
µ)/
√

2, K
±(b+1/2)
µ = (A4

µ±iA5
µ)/
√

2, K
±(b−1/2)
µ = (A6

µ±iA7
µ)/
√

2, D0
1µ =

A3
µ/
√

2 + A8
µ/
√

6, D0
2µ = −A3

µ/
√

2 + A8
µ/
√

6, and D0
3µ = −2A8

µ/
√

6. The upper index on the

gauge bosons stand for the electric charge of the particles, some of them being functions of the

b parameter.

In this paper we consider all the 3-3-1 models which do not include leptons with exotic

electric charges; they correspond to the b parameter in equation (2.1) equal only to ±1/2

and 3/2. Recently, b has been used as a free parameter for doing FCNC phenomenology in

the context if 3-3-1 model [38, 39, 22, 24]; in some of those papers [22], fermion and gauge

bosons structures have been constructed for arbitrary b values, in particular, field structures

for b = ±1/2,±1, 3/2 are considered (for b±1, gauge and lepton fields with half integer electric

charges are present).

2.1 The Minimal Model

In Refs. [11, 12, 19, 40, 41, 42] it was shown that, for b = 3/2 in Eq. (2.1), the following fermion

structure is free of all the gauge anomalies:

ψTlL = (l−, ν0
l , l

+)L ∼ (1, 3∗, 0), QT
iL = (ui, di, Xi)L ∼ (3, 3,−1/3), QT

3L = (d3, u3, Y ) ∼
(3, 3∗, 2/3), where l = e, µ, τ is a family lepton index, i = 1, 2 for the first two quark families,

and the numbers after the similarity sign means 3-3-1 representations. The right handed fields

are ucaL ∼ (3∗, 1,−2/3), dcaL ∼ (3∗, 1, 1/3), Xc
iL ∼ (3∗, 1, 4/3) and Y c

L ∼ (3∗, 1,−5/3), where

a = 1, 2, 3 is the quark family index and there are three exotic quarks, two with electric charge

−4/3 (Xi) and other with electric charge 5/3 (Y ). This version is called minimal in the

literature, because its lepton content is just the one present in the SM.

2.2 3-3-1 Models Without Exotic Electric Charges

If one wishes to avoid exotic electric charges as the ones present for the new quarks in the

minimal model, one must choose b = ±1/2, in Eq. (2.1). Following [18] we start with the

following six sets of fermions which are closed in the sense that they contain the antiparticles

of the charged particles:

• S1 = [(ν0
α, α

−, E−α );α+;E+
α ]L with quantum numbers (1, 3,−2/3); (1, 1, 1) and (1, 1, 1)

respectively.

• S2 = [(α−, να, N
0
α);α+]L with quantum numbers (1, 3∗,−1/3) and (1, 1, 1) respectively.
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• S3 = [(d, u, U);uc; dc;U c]L with quantum numbers (3, 3∗, 1/3); (3∗, 1,−2/3) (3∗, 1, 1/3)

and (3∗, 1,−2/3) respectively.

• S4 = [(u, d,D);uc; dc;Dc]L with quantum numbers (3, 3, 0); (3∗, 1,−2/3); (3∗, 1, 1/3)

and (3∗, 1, 1/3) respectively.

• S5 = [(e−, νe, N
0
1 ); (E−, N0

2 , N
0
3 ); (N0

4 , E
+, e+)]L with quantum numbers (1, 3∗,−1/3);

(1, 3∗,−1/3) and (1, 3∗, 2/3) respectively.

• S6 = [(νe, e
−, E−1 ); (E+

2 , N
0
1 , N

0
2 ); (N0

3 , E
−
2 , E

−
3 ); e+;E+

1 ;E+
3 ]L with quantum numbers

(1, 3,−2/3); (1, 3, 1/3); (1, 3,−2/3); (111), (111); and (111) respectively.

The different anomalies for these six sets are [18] found in Table 1. With this table, anomaly-

free models, without exotic electric charges can be constructed for one, two or more families.

As noted in Ref. [18], there are eight three-family models that are anomaly free, which are:

• Model A: named in the literature “model with right-handed neutrinos”. Its fermion

structure is given by 3S2 + S3 + 2S4. This model was introduced for first time in the

literature in Ref. [10], rediscovered in Refs. [13, 14, 15], with the weak charges presented

in Ref. [43].

• Model B: named in the literature “ Model with exotic electrons”. This model was

introduced in the literature in Ref. [16] and its lepton sector was studied in Ref. [44]. Its

fermion structure is given by 3S1 + 2S3 + S4.

• Model C: named in the literature “model with unique lepton generation one” (three

different lepton families). Introduced for the first time in Ref. [17] and its was partially

analyzed in Ref. [45], where the weak charges only for the leptons were calculated. Its

fermion structure is given by S1 + S2 + S3 + 2S4 + S5.

• Model D: named in the literature “model with unique lepton generation two”. Introduced

for the first time in Ref. [17] and it was partially analyzed in Ref. [45], where the weak

charges only for the leptons were calculated. Its fermion structure is given by S1 + S2 +

2S3 + S4 + S6.

• Model E: we name it as “model hybrid one” (two different lepton structures). Its fermion

structure is given by S3 + 2S4 + 2S5 + S6.

• Model F: we name it as “model hybrid two”. Its fermion structure is given by 2S3 +S4 +

S5 + 2S6.

• Model G: we name it as “ carbon copy one” (three identical families as in the SM).

The fermion structure is the same as the representation of the 27 of the E6 group i.e.,

3(S4 + S5). The fermion weak charges were presented in the literature in Ref. [46]
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Anomalies S1 S2 S3 S4 S5 S6

[SU(3)C ]2U(1)x 0 0 0 0 0 0

[SU(3)L]2U(1)x −2/3 −1/3 1 0 0 -1

[Grav]2U(1)x 0 0 0 0 0 0

[U(1)x]
3 10/9 8/9 −12/9 −6/9 6/9 12/9

[SU(3)L]3 1 −1 −3 3 −3 3
.

Table 1: Anomalies for 3-3-1 fermion fields structures

Z ′ µ−µ+ e−e+ l−l+ intersection

Z331A 2.36 2.48 2.65 2.60

Z331B 2.66 2.72 2.89 2.88

Z331C 2.34 2.45 2.57 2.59

Z331D 2.68 2.73 2.91 2.91

Z331E 2.71 2.71 2.89 2.87

Z331F 2.67 2.73 2.90 2.88

Z331G 2.74 2.71 2.92 2.91

Z331H 2.65 2.71 2.88 2.87

Z331minimal 2.68 2.65 2.94 2.93

Table 2: 95% CL lower mass limits (in TeV) for some 3-3-1 Z ′ models. The second and third

columns contain the 95% CL lower mass limits obtained from the dimuon and dielectron data in [35]

respectively (see the text for details). In the fourth column appears the 95% CL lower mass limits for

the combined dielectron and dimuon channels. Given in the fifth column are the lower mass limits

obtained by finding the intersection of the total cross-section σNLO Eq. A.1 with the ATLAS 95%

CL upper limit on the total cross-section of the ZSSM.

• Model H: We name it as “ carbon copy two”. The fermion weak charges for this model

were presented in the literature in Ref. [47]. Its fermion structure is given by 3(S3 +S6).

3. Statistical Analysis and Results

In reference [35] the ATLAS detector at the Large Hadron Collider was used to search for

high-mass resonances decaying to dielectron or dimuon final states. The experiment analyze

proton-proton collisions at a center of mass energy of 8 TeV and a integrated luminosity of

20.3 fb−1 in the dielectron channel and 20.5 fb−1 in the dimuon channel. From this data they

report 95% CL upper limits on the total cross-section of Z ′ decaying to dilepton final states in

pp collisions. In the aforementioned work the ATLAS collaboration reported limits for Zχ and

Zψ, which are E6-motivated Z ′ models, and for the Sequential Standard Model (SSM) Z ′SSM,
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Z ′ µ−µ+ e−e+ l−l+ intersection ATLAS

Zχ [8] 2.42 2.48 2.66 2.59 2.62

Zψ [8] 2.20 2.35 2.51 2.42 2.51

Zη [48] 2.31 2.38 2.56 2.47 —

ZLR [49, 50, 51] 2.44 2.54 2.68 2.71 —

ZR [8] 2.56 2.68 2.87 2.80 —

ZN [52, 53] 2.20 2.36 2.51 2.44 —

ZS [54, 55] 2.36 2.42 2.54 2.53 —

ZI [8] 2.31 2.37 2.52 2.48 —

ZB−L [49] 2.57 2.68 2.84 2.81 —

Z6d [9] 2.75 2.84 2.97 2.94 —

ZSSM 2.57 2.80 2.92 2.91 2.90

Table 3: 95% CL lower mass limits (in TeV) for various E6-motivated Z ′ models and the SSM.

The second and third columns contain the 95% CL lower mass limits obtained from the dimuon and

dielectron data in [35] respectively (see the text for details). In the fourth column appears the 95%

CL lower mass limits for the combined dielectron and dimuon channels. Given in the fifth column

are the lower mass limits obtained by finding the intersection of the total cross-section σNLO Eq. A.1

with the ATLAS 95% CL upper limit on the total cross-section of the ZSSM. In the sixth column are

the ATLAS published constraints on the respective model.

which is a model with couplings to the SM fermions identical to the Z. Part of the purpose of

this work is to extend this analysis to 3-3-1 models and also to the remaining E6 models which

were not considered by ATLAS. In this vein we also carry out our own statistical analysis by

using a binned likelihood function. The likelihood function is defined as the product of the

Poisson probabilities over all the dilepton invariant mass bins, i.e.,

L(~n|~µ) ≡
∏ e−µiµni

i

ni!
. (3.1)

The confidence levels limits correspond to contours of constant Log-Likelihood Ratio LLR(MZ′),

with

LLR(MZ′) = −2 log
L(~n|~µ′)
L(~n|~µ)

= 2
∑
i

(
µ′i − µi + ni ln

µi
µ′i

)
, (3.2)

where ni is the observed number of events in every bin, µi and µ′i are the expected number

of events in every bin for the SM and the SM extended by a Z ′ respectively. The explicit

expression for the expected number of events is given by

µi = Ki

∫
bin

dσNLO

dMl+l−
, (3.3)

where Ki stand for all the correction factors necessary to get the expected number of events

in every bin. This corrections include final state radiation corrections, dilepton invariant mass
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resolution effects, NNLO QCD, acceptance and efficiency correction factors. We got the Ki

from the ratio between the published SM values for µi from Fig. 2 in [35] over the NLO cross-

section in the SM, σNLO from Eq. A.1, in every bin. In the calculation of the expected number

of events we only took into account the couplings of the Z ′ to the SM fermions. In order

to find the 95% CL limits on the masses for E6-motivated Z ′ models we fix the Z ′ coupling

strength to g2 = 0.4615 (see Eq. B.1 for the g2 definition) and g2 = 0.7433 for 3-3-1 models

and the sequential standard model ZSSM. In our calculation we fix to zero the mixing angle

between the Z and the Z ′ in agreement with the most recent constraints [56, 57, 58, 59]. It is

important to notice that despite the fact that the number of observed events in every bin is

Poisson distributed, according with the Wilks’s theorem the minimum of the likelihood ratio

as a function of the Z ′ mass, follows a χ2 distribution with degrees of freedom equal to the

difference of the number of parameters between the two models4 [60]. So, the one-parameter

95% CL limits correspond to LLR−LLRmin = 3.84, where LLRmin is the minimum of the LLR

as a function of the Z ′ mass. For this analysis we used the thirty five high-invariant-mass

bins for which the statistical errors are dominant, we did not include low-invariant-mass bins

because other uncertainties become important5. Following ATLAS, the bin width is constant

in logMl+l− ; i.e., the border between two adjacent bins, M i
l+l− , is given by an exponential

function M i
l+l− = M1

l+l− exp[(i − 1) × constant], where M1
l+l− is the leftmost invariant mass

value and i = 1, 2, · · · . We fit the ATLAS invariant mass coordinates to this functional form,

getting a good agreement.

The results of this analysis are shown in Table 2 and Table 3 where the 95% CL lower mass

limits for some 3-3-1 models and various E6-motivated Z ′ models are shown. The second and

third columns contain the 95% CL lower mass limits obtained from the dimuon and dielectron

data. In our analysis the lower bounds for the Z ′ mass of the SSM are 2.57 TeV in the

dimuon channel and 2.80 TeV in the dielectron channel, which are in good agreement with the

quoted limits by ATLAS for this model i.e., 2.53 TeV in the dimuon channel and 2.79 TeV in

the dielectron channel. In the fourth column appears the 95% CL lower mass limits for the

combined channels. In order to combine the dielectron and dimuon data we add the respective

LLR, neglecting systematic uncertainties and correlations. The validity of this procedure only

depends on the validity of the results. As we can see in Table 3 for the models Zχ, Zψ and ZSSM

we obtain 2.66 TeV, 2.51 TeV and 2.92 TeV which differs at most 1.5% with the corresponding

ATLAS results 2.62 TeV, 2.51 TeV and 2.90 TeV respectively.

In order to make a cross-check of our analysis we make an alternative calculation of the

lower bounds. As can be seen from Fig. 5 in Ref. [35], for narrow width resonances the

95% CL upper limits on the total cross-section of signal events is almost model independent

for Z ′ masses below 2 TeV. For larger masses, the constraints are model dependent. Since

ATLAS does not report upper limits for all the models, a useful approximation in the 2-

3 TeV range is to read the Z ′ mass lower limit at the intersection of the theoretical total

4provided that certain regularity conditions are met.
5For example at low-invariant-mass the theoretical uncertainties become larger than the statistical ones.
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Zχ

1 2 3 4 5 6 7 8 910 20 30 40
100TeV (3000/fb)

100TeV (3/fb)

30TeV (1000/fb)

30TeV (3/fb)

14TeV (3000/fb)

14TeV (1000/fb)

14TeV (300/fb)

14TeV (100/fb)

14TeV (20/fb)

14TeV (8/fb)

14TeV (3/fb)

8TeV (20/fb)

8TeV (8/fb)

8TeV (3/fb)

TeV

Figure 1: Projected 95% CL exclusion limits on MZ′ for several 3-3-1 models by using our statistical

methods. We obtain this limits by assuming that the number of observed events ni is equal to the

SM expectation µi in every bin. We have assumed for the product acceptance×efficiency the ATLAS

result for the dimuon channel as is shown in Fig. 1 in Ref. [35].

cross-section6 σNLO(pp→ Z ′ → l+l−) Eq. A.1 with the 95% CL upper limit on the total cross-

section of a narrow width resonance. Here, we use the upper limit on the total cross-section

of the ZSSM model in Fig. 5 of [35] which was the usual choice in earlier literature (see for

example [61]). This approximation allows to estimate the 95% CL lower mass limits differing

6In order to obtain σNLO it is necessary to integrate Eq. A.1
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100TeV (3000/fb)

100TeV (3/fb)

30TeV (1000/fb)

30TeV (3/fb)

14TeV (3000/fb)

14TeV (1000/fb)

14TeV (300/fb)

14TeV (100/fb)

14TeV (20/fb)

14TeV (8/fb)

14TeV (3/fb)

8TeV (20/fb)

8TeV (8/fb)

8TeV (3/fb)
Zχ
Zψ
Zη
ZL R
ZSSM
ZR
ZN
ZS
ZI
ZB−L
Zd

1 2 3 4 5 6 7 8 910 20 30 40 TeV

Figure 2: Projected 95% CL exclusion limits on MZ′ for several E6-motivated Z ′ models and

the SSM by using our statistical methods. We obtain this limits by assuming that the number of

observed events ni is equal to the SM expectation µi in every bin. We have assumed for the product

acceptance×efficiency the ATLAS result for the dimuon channel as is shown in Fig. 1 in Ref. [35].

from the corresponding LHC ones in at most a few percent as can be seen in the fifth column

in Table 3.

In Fig. 1 the projected 95% CL exclusion limits on MZ′ for several 3-3-1 models are shown.

We obtain this limits by assuming that the number of observed events ni is equal to the SM

expectation µi in every bin. In order to obtain the bin size for every center of mass energy
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and luminosity in Fig. 1, we took ten high-invariant-mass bins and varied the bin size until the

mass limit reaches a maximum. To obtain the limits listed there we use 30 bins. We also have

assumed for the product acceptance×efficiency the ATLAS result for the dimuon channel as is

shown in Fig. 1 in [35]. The limits in Fig. 2 are comparable with the limits published in [36].

4. Conclusions

In the present work we have reported the vector and axial charges for all 3-3-1 models without

exotic electric charges for leptons, known in the literature. To the best of our knowledge most

of this charges were not reported before and represent a original contribution to the field.

By using ATLAS data from the Drell-Yang process pp → Z, γ → l+l− we set 95% CL lower

limits for the Z ′ mass in every one of this models. We calculated this limits for the dimuon

and the dielectron channels. Our results are in accordance with the ATLAS reported lower

mass limits for the SSM, ZSSM in every channel. By neglecting systematic uncertainties we

were able to combine the two channels finding good agreement with the ATLAS published

results. As far as we know this is the first time that 3-3-1 models have been constrained with

LHC data from ATLAS. In addition we also calculated 95% projected exclusion limits for the

forthcoming LHC and VLHC energies and luminosities. As we already mentioned in the text,

this projected limits are comparable with previous calculations, in particular we find that for

a center of mass energy of 14 TeV and a integrated luminosity of 100fb−1 the projected 95%

CL exclusion limits for 3-3-1 models are between 4 TeV and 5 TeV. Part of our long term

goal is to present a unified phenomenological analysis for the 3-3-1 models in oder to set the

relevance of the forthcoming experiments for every point in the parameter space g2 Vs MZ′ .

We postpone to a future work a comparative study between FCNC against those coming of

direct searches at hadron colliders.
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A. Differential Cross-Section

The NLO differential cross-section for the DY process with a neutral gauge boson G as the
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mediator, pp→ GX → l+l−X, is given as [33, 62]7,

dσNLO

dMl+l−
=

2

Ncs
Ml+l−

∫
dzdx1

1

x1z
θ

(
1− 1

x1zr2
z

)∑
q

σ̂qq̄→`+`−(M2
l+l−) (A.1)

×
[{
fAq (x1,M

2
l+l−)fBq̄ (x2,M

2
l+l−) + fAq̄ (x1,M

2)fBq (x2,M
2
l+l−)

}
×
{
δ(1− z) +

αs(M
2
l+l−)

2π
Dq(z)

}
+
{
fAg (x1,M

2
l+l−)[fBq (x2,M

2
l+l−) + fBq̄ (x2,M

2
l+l−)]

+ fBg (x2,M
2)[fAq (x1,M

2
l+l−) + fAq̄ (x1,M

2
l+l−)]

}
×
αs(M

2
l+l−)

2π
Dg(z)

]
,

where Nc = 3 is the color factor, Ml+l− is the invariant mass of the observed lepton pair and√
s is the energy of the pp̄ collision in the CM frame, rz ≡

√
s/Ml+l− , and x−1

2 ≡ x1zr
2
z . f

A
q/g are

the PDFs of the quarks and gluons coming from hadron A. αs is the strong coupling constant,

and

Dq(z) = CF

[
4(1 + z2)

{ log(1− z)

1− z

}
+
− 2

1 + z2

1− z
log z + δ(1− z)

{2π2

3
− 8
}]
, (A.2)

Dg(z) = TR

[{
z2 + (1− z)2

}
log

(1− z)2

z
+

1

2
+ 3z − 7

2
z2
]
,

with CF = 4/3 and TR = 1/2, and the ‘+’ distribution defined as∫ 1

0

dzg(z)
{ log(1− z)

1− z

}
+
≡
∫ 1

0

dz
{
g(z)− g(1)

}{ log(1− z)

1− z

}
. (A.3)

At parton level, the expression for the hard scattering cross-section of the process qq̄ → `+`−,

is

σ̂qq̄→`+`−(M2) =

∫ 1

−1

dσ̂

d cos θ∗
d cos θ∗ (A.4)

=

∫ 1

−1

d cos θ∗

128πM2

{(
|ALL|2 + |ARR|2

)
(1 + cos θ∗)2 +

(
|ALR|2 + |ARL|2

)
(1− cos θ∗)2

}
,

where θ∗ is the polar angle in the CM frame, and

Aij = −Q(q)e2 +
g2

1 ε1i(q)ε1j(`)M
2

M2 −M2
Z + iMZΓZ

+
g2

2 ε2i(q)ε2j(`)M
2

M2 −M2
Z′ + iMZ′ΓZ′

, (A.5)

where i, j run over L,R. Q(q) is the electric charge of the quark and e = g sin θW . MZ,Z′ and

ΓZ,Z′ are the masses and total decay widths of the Z and Z ′ bosons.

ε1L(f) = T3(f)−Q(f) sin2 θW , ε1R(f) = −Q(f) sin2 θW , (A.6)

7The integration over z is carried out as
∫ (1+ε)

0
dzδ(1− z) = 1.
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are the effective couplings of the ordinary Z to fermion f entering with coupling strength,

g1 = g/ cos θW = 0.7433. As for the Z ′ coupling strength, for E6 we employ the (one-loop)

unification value [8], g2 =
√

5/3 sin θWg1 = 0.4615; for 3-3-1 models see appendix B. The

decay width, ΓZ′ , given in eq. (A.5), is the sum of the partial decay widths of the Z ′ boson

into all the fermions it couples to. The partial decay width into a Dirac fermion pair is written

as [63]

ΓZ′→ff̄ (M
2
l+l−) =

g22MZ′
24π

√
1− 4M2

f

M2
Z′

[(
1− M2

f

M2
Z′

)
(ε22L(f) + ε22R(f))− 6M2

f

M2
l+l−

ε2L(f)ε2R(f)
]

M2
l+l−

M2
Z′

,

where Mf is the mass of the final-state fermion. We add the factor M2/M2
Z′ to get an ‘ŝ’-

dependent Z ′-width [64]. For the range of MZ′ of interest here, Mf � MZ′ for SM fermions,

and the above expression becomes independent of the fermion masses.

B. The 3-3-1 Couplings

For the SM extended by a U(1)′ extra factor, the neutral current interactions of the fermions

are described by the Hamiltonian

HNC =
2∑
i=1

giZ
0
iµ

∑
f

f̄γµ (εiL(f)PL + εiR(f)PR) f, (B.1)

where f runs over all the SM fermions in the low energy Neutral Current (NC) effective

Hamiltonian HNC , and PL = (1−γ5)/2 and PR = (1+γ5)/2. For 3-3-1 models, the ralationship

between g1 and g2 is model dependent, but for all the cases we can write

HNC =
g

2 cos θW

2∑
i=1

Z0
iµ

∑
f

f̄γµ (giV (f)− giA(f)γ5) f, (B.2)

where the chiral couplings εiL(f) and εiR(f) are linear combinations of the vector giV (f) and

axial giA(f) charges given by εiL(f) = [giV (f) + giA(f)]/2 and εiR(f) = [giV (f)− giA(f)]/2.

The physical fields in the former expressions are:

Zµ
1 = Zµ cos θ + Z ′µ sin θ,

Zµ
2 = −Zµ sin θ + Z ′µ cos θ,

where Zµ and Z ′µ are the weak basis states such that Zµ is identified with the neutral gauge

boson of the SM. At a first approximation we have taken θ = 0.

For the numerical calculations we use the expressions in Tables 4 to 12, where most of

the values in the Tables are being presented for the first time in the literature. We have also

used: MW = 80.401 GeV, MZ = 91.188 GeV, cos θW = MW/MZ , δ =
√

4 cos2 θW − 1 and

g1 ≡ g/ cos θW = 0.7433.
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Field g2V (f) g2A(f)

να (1
2
− sin2 θW )1

δ
(1

2
− sin2 θW )1

δ

eα −(−1
2

+ 2 sin2 θW )1
δ

1
2

1
δ

ui (−1
2

+ 4
3

sin2 θW )1
δ

−1
2

1
δ

u3 (1
2

+ 1
3

sin2 θW )1
δ

−(−1
2

+ sin2 θW )1
δ

di −(1
2
− 1

3
sin2 θW )1

δ
−(1

2
− sin2 θW )1

δ

d3 −(−1
2

+ 2
3

sin2 θW )1
δ

1
2

1
δ

Table 4: Model A, α = 1, 2, 3, and i = 1, 2

Field g2V (f) g2A(f)

να −1
2

1
δ

−1
2

1
δ

eα −(1
2

+ sin2 θW )1
δ

−(1
2
− sin2 θW )1

δ

ui (1
2

+ 1
3

sin2 θW )1
δ
−(−1

2
+ sin2 θW )1

δ

u3 (−1
2

+ 4
3

sin2 θW )1
δ

−1
2

1
δ

di (1
2
− 2

3
sin2 θW )1

δ
1
2

1
δ

d3 (−1
2

+ 1
3

sin2 θW )1
δ
−(1

2
− sin2 θW )1

δ

Table 5: Model B, α = 1, 2, 3, and i = 1, 2.

Field g2V (f) g2A(f)

ν3 −1
2

1
δ

−1
2

1
δ

νi −(−1
2

+ sin2 θW )1
δ
−(−1

2
+ sin2 θW )1

δ

e1 −(1
2

+ sin2 θW )1
δ

−(1
2
− sin2 θW )1

δ

e2 −(−1
2

+ 2 sin2 θW )1
δ

1
2

1
δ

e3 −3(−1
2

+ sin2 θW )1
δ

(1
2
− cos2 θw)1

δ

ui −(1
2
− 4

3
sin2 θW )1

δ
−1

2
1
δ

u3 −(−1
2
− 1

3
sin2 θW )1

δ
−(−1

2
+ sin2 θW )1

δ

di −(1
2
− 1

3
sin2 θW )1

δ
−(1

2
− sin2 θW )1

δ

d3 −(−1
2

+ 2
3

sin2 θW )1
δ

1
2

1
δ

Table 6: Model C and i = 1, 2
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Field g2V (f) g2A(f)

νi −1
2

1
δ

−1
2

1
δ

ν3 (1
2
− sin2 θW )1

δ
(1

2
− sin2 θW )1

δ

ei −(1
2

+ sin2 θW )1
δ

−(1
2
− sin2 θW )1

δ

e3 −(−1
2

+ 2 sin2 θW )1
δ

1
2

1
δ

ui (1
2

+ 1
3

sin2 θW )1
δ

−(−1
2

+ sin2 θW )1
δ

u3 −(1
2
− 4

3
sin2 θW )1

δ
−1

2
1
δ

di −(−1
2

+ 2
3

sin2 θW )1
δ

1
2

1
δ

d3 −(1
2
− 1

3
sin2 θW )1

δ
−(1

2
− sin2 θW )1

δ

Table 7: Model D and i = 1, 2.

Field g2V (f) g2A(f)

νi (1
2
− sin2 θW )1

δ
(1

2
− sin2 θW )1

δ

ν3 −1
2

1
δ

−1
2

1
δ

ei (3
2
− 3 sin2 θW )1

δ
(1

2
− cos2 θW )1

δ

e3 −(1
2

+ sin2 θW )1
δ

(−1
2

+ sin2 θW )1
δ

ui (−1
2

+ 4
3

sin2 θW )1
δ

−1
2

1
δ

u3 (1
2

+ 1
3

sin2 θW )1
δ

(1
2
− sin2 θW )1

δ

di (−1
2

+ 1
3

sin2 θW )1
δ

(−1
2

+ sin2 θW )1
δ

d3 (1
2
− 2

3
sin2 θW )1

δ
1
2

1
δ

Table 8: Model E and i = 1, 2

Field g2V (f) g2A(f)

νi −1
2

1
δ

−1
2

1
δ

ν3 (1
2
− sin2 θW )1

δ
(1

2
− sin2 θW )1

δ

ei (−1
2
− sin2 θW )1

δ
(−1

2
+ sin2 θW )1

δ

e3 (3
2
− 3 sin2 θW )1

δ
(1

2
− cos2 θW )1

δ

ui (1
2

+ 1
3

sin2 θW )1
δ

(1
2
− sin2 θW )1

δ

u3 (−1
2

+ 4
3

sin2 θW )1
δ

−1
2

1
δ

di (1
2
− 2

3
sin2 θW )1

δ
1
2

1
δ

d3 (−1
2

+ 1
3

sin2 θW )1
δ

(−1
2

+ sin2 θW )1
δ

Table 9: Model F and i = 1, 2

Field g2V (f) g2A(f)

να (1
2
− sin2 θW )1

δ
(1

2
− sin2 θW )1

δ

eα 3(1
2
− sin2 θW )1

δ
(1

2
− cos2 θW )1

δ

uα −(1
2
− 4

3
sin2 θW )1

δ
−1

2
1
δ

dα −(1
2
− 1

3
sin2 θW )1

δ
−1

2
cos 2θW

1
δ

Table 10: Model G and α = 1, 2, 3,.
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Field g2V (f) g2A(f)

να −1
2

1
δ

−1
2

1
δ

eα −(1
2

+ sin2 θW )1
δ

(−1
2

+ sin2 θW )1
δ

uα (1
2

+ 1
3

sin2 θW )1
δ

(1
2
− sin2 θW )1

δ

dα (1
2
− 2

3
sin2 θW )1

δ
1
2

1
δ

Table 11: Model H and α = 1, 2, 3,.

Field g2V (f) g2A(f)

να −
√

1−4 sin2 θW

2
√

3
−
√

1−4 sin2 θW

2
√

3

eα −
√

3(1−4 sin2 θW )

2
+

√
1−4 sin2 θW

2
√

3

ui − −1+6 sin2 θW

2
√

3(1−4 sin2 θW )
+ 1+2 sin2 θW

2
√

3(1−4 sin2 θW )

t − 1+4 sin2 θW

2
√

3(1−4 sin2 θW )
− 1−4 sin2 θW√

3(1−4 sin2 θW )

di + 1

2
√

3(1−4 sin2 θW )
− −1+4 sin2 θW

2
√

3(1−4 sin2 θW )

b − 1−2 sin2 θW

2
√

3(1−4 sin2 θW )
− 1+2 sin2 θW

2
√

3(1−4 sin2 θW )

Table 12: Minimal Model: Pleitez-Frampton [65]. α = 1, 2, 3,, and i = 1, 2.
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