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Pole mass of the W boson at two-loop order
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I provide a calculation at full two-loop order of the complex pole squared

mass of the W boson in the Standard Model in the pure MS renormalization

scheme, with Goldstone boson mass effects resummed. This approach is an

alternative to earlier ones that use on-shell or hybrid renormalization schemes.

The renormalization scale dependence of the real and imaginary parts of the

resulting pole mass are studied. Both deviate by about ±4 MeV from their

median values as the renormalization scale is varied from 50 GeV to 200 GeV,

but the theory error is likely larger. A surprising feature of this scheme is

that the 2-loop QCD correction has a larger scale-dependence, but a smaller

magnitude, than the 2-loop non-QCD correction, unless the renormalization

scale is chosen very far from the top-quark mass.
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I. INTRODUCTION

The discovery [1, 2] of the 125 GeV Higgs boson h at the Large Hadron Collider (LHC)

has completed the minimal Standard Model of electroweak symmetry breaking. Since the

LHC has also not discovered any superpartners or other new fundamental particles, it is

now more motivated than ever to perform precision analyses of the masses and interactions

of the known particles of the completed theory. This paper concerns the complex pole mass

[3–9] of the W boson,

sWpole ≡ M2
W − iΓWMW (1.1)

http://arxiv.org/abs/1503.03782v2
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calculated at 2-loop order.

There have already been many studies [11–37] that calculate contributions to the physical

W boson mass, including all 2-loop order contributions and some QCD-enhanced effects at

3- and 4-loop order besides. (These are reviewed in refs. [35, 36], for example.) Indeed, the

accuracy of the most advanced of these calculations exceeds that of the present paper when

it comes to predicting the W -boson mass in terms of other measured quantities. However,

the existing calculations have been done in on-shell or hybrid MS/on-shell schemes, or use

expansions in small squared mass ratios, as in the case of ref. [25, 26]. In this paper, I

will provide a calculation that does not employ mass ratio expansions and uses a “pure”

MS scheme, which means that the complete set of input parameters consists of only the

renormalized running MS quantities

v, g, g′, λ, yt, g3 (1.2)

at a given renormalization scale Q. Here, v(Q) is defined to be the minimum of the radia-

tively corrected effective potential in Landau gauge, which is now known to full 2-loop order

[38] with 3-loop contributions at leading order in g3 and yt [39], with Goldstone boson mass

contributions resummed [40, 41]. This allows v to be traded for the Higgs squared mass

parameter m2(Q). The normalizations of v,m2 and λ are such that the Higgs potential is

V = m2Φ†Φ + λ(Φ†Φ)2. (1.3)

and 〈Φ〉 = v/
√
2, with a canonically normalized Higgs doublet field Φ.

In principle, the input parameters should also include the other quark and lepton Yukawa

couplings, but these make only a very small difference in the present paper, as discussed be-

low. In the pure MS scheme approach, all of the complex pole masses and other observables,

such as the Fermi decays constant, are outputs, to be computed in terms of the quantities

in eq. (1.2). In practice, global fits to data may be used to obtain the relationship. In this

paper, the input parameters of eq. (1.2) are all understood to be in the full non-decoupled

(6-quark) Standard Model theory. Note that if the renormalization scale Q is chosen be-

tween MW and Mt, the largest logarithms encountered in calculations of the physical masses

of W,Z, h, t will be at most ln(M2
t /M

2
W ) ≈ 1.5.

It has been argued that the experimental vector boson masses MV,exp as measured at

colliders are related to the complex pole mass quantities by, approximately [42], [5, 6]:

M2
V,exp = M2

V + Γ2
V . (1.4)

Numerically, this amounts to MW,exp ≈ MW +27 MeV in the case of the W boson, assuming

the Standard Model prediction for the width. Here, M2
V is the the real part of the complex
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pole of the propagator, while M2
V,exp corresponds to what is sometimes called the “on-shell”

mass. In the following, I will refer to MW rather than MW,exp. The current experimental

value [43] is MW,exp = 80.385± 0.015 GeV.

At the present time, the pure MS scheme is not quite competitive in numerical accuracy

with the on-shell or hybrid schemes for the W -boson mass calculation (although it is for

the Higgs boson mass, which has been obtained to 2-loop order with the leading 3-loop

corrections [44, 45]). However, as the technology for loop calculations improves, it is quite

possible that this will change. As a matter of opinion, I find the modular approach of

the pure MS scheme to be conceptually simpler, and it can be easily extended to include

contributions from new particles beyond the Standard Model, and the methods used can

even be applied to other vector bosons (such as a W ′) in different theories. In any case,

there is hopefully some value in being able to compare different schemes for the Standard

Model observables, given their importance.

II. W BOSON COMPLEX POLE MASS AT 2-LOOP ORDER

In this section, I describe the calculation of theW -boson complex pole mass. The calcula-

tion reported here is restricted to Landau gauge, because only in that gauge has the effective

potential been evaluated to full 2-loop order with leading 3-loop corrections, and this is nec-

essary to obtain the relationship between the Higgs vacuum expectation value (VEV) and

the Lagrangian squared mass parameter, used implicitly in the calculation below. However,

the complex pole mass [3–9] is a physical observable. It is therefore independent of the gauge

fixing parameters [10], as well as renormalization group invariant.

In order to obtain the W -boson complex pole mass, one first obtains, in terms of bare

parameters in the regulated theory in d = 4 − 2ǫ dimensions, the transverse self-energy

function

Π(s) =
1

16π2
Π(1)(s) +

1

(16π2)2
Π(2)(s). (2.1)

This is obtained by constructing the W -boson self-energy function ΠWW
µν (s) from the sum

of all 1-particle-irreducible 2-point Feynman diagrams, and then contracting with (ηµν −
pµpν/p2)/(d − 1), where pµ is the external momentum and s = −p2, using a metric with

Euclidean or (−,+,+,+) signature. Factors of 1/(16π2)ℓ are used to signify the loop order ℓ.

Rather than including counterterm diagrams separately, it is more convenient and efficient

to do the calculation in terms of the bare quantities: the VEV vB and the bare Higgs squared

mass parameter m2
B, and the couplings gB, g

′
B, and λB, ytB, g3B, and then rewrite the results

in terms of the MS quantities.

The finite, renormalization-group invariant, and gauge-fixing invariant complex pole
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squared mass can be written at 2-loop order:

sWpole = WB +
1

16π2
Π(1)(WB) +

1

(16π2)2
[

Π(2)(WB) + Π(1)′(WB)Π
(1)(WB)

]

, (2.2)

where WB = g2Bv
2
B/4. The bare quantities are then eliminated in favor of the MS renormal-

ized parameters using:

v2B = µ−2ǫv2
[

1 +
1

16π2

cφ1,1
ǫ

+
1

(16π2)2

(cφ2,2
ǫ2

+
cφ2,1
ǫ

)

+ . . .
]

, (2.3)

gB = µǫ
[

g +
1

16π2

cg1,1
ǫ

+
1

(16π2)2

(cg2,2
ǫ2

+
cg2,1
ǫ

)

+ . . .
]

, (2.4)

g′B = µǫ
[

g′ +
1

16π2

cg
′

1,1

ǫ
+ . . .

]

, (2.5)

λB = µ2ǫ
[

λ+
1

16π2

cλ1,1
ǫ

+ . . .
]

, (2.6)

m2
B = m2 +

1

16π2

cm
2

1,1

ǫ
+ . . . , (2.7)

ytB = µǫ
[

yt +
1

16π2

cyt1,1
ǫ

+ . . .
]

, (2.8)

g3B = µǫ [g3 + . . .] , (2.9)

to obtain sWpole in terms of the renormalized parameters. Here µ is the dimensional regular-

ization scale. The MS renormalization scale Q is related to it by

Q2 = 4πe−γEµ2, (2.10)

where γE is the Euler-Mascheroni constant. The counterterm coefficients were listed, in

exactly the same conventions as in this paper, in ref. [44], except for:

cg2,1 =
35

24
g5 + 3g3g23 +

3

8
g3g′2 − 3

8
g3y2t , (2.11)

cg2,2 =
361

96
g5. (2.12)

All of these counterterm coefficients can be obtained from the 2-loop beta functions and

scalar anomalous dimension found in refs. [47–50], [38]; see for example the discussion sur-

rounding eqs. (4.5)-(4.14) of ref. [39].

The procedure for the rest of the calculation is quite similar to that in ref. [44], to which

the reader is therefore referred for some more details, in a (perhaps futile) attempt to avoid

triggering the arXiv’s self-plagiarism detector. The Tarasov algorithm [51] is used to reduce
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the 2-loop integrals to a basis set. The program TARCER [52] that is often used for this

purpose was apparently unable to handle a few of the necessary reductions in a finite time,

so I wrote a new Mathematica program RedTint implementing the Tarasov algorithm. (This

program will be publicly released soon.) After expansion in ǫ = (4−d)/2, the Tarasov basis

integrals were then written in terms of a set of basis integrals defined and described in detail

in refs. [53, 54]. The 1-loop basis integrals are:

A(x), B(x, y) (2.13)

and the 2-loop basis integral list is

I(x, y, z), S(x, y, z), T (x, y, z), T (0, x, y), U(x, y, z, u), M(x, y, z, u, v). (2.14)

The arguments x, y, . . . are squared masses, and B, S, T, T , U,M also each have an implicit

dependence on the external momentum invariant s = −p2, while A,B, I, S, T, T , U have

an implicit dependence on the renormalization scale Q. The computer program TSIL [54]

can then be used for the efficient numerical evaluation of these basis integrals. TSIL uses

Runge-Kutta integration of differential equations similar to that suggested in ref. [55], and

also includes relevant analytical results found in refs. [53, 56–62].

After writing bare quantities in terms of MS quantities and expanding in ǫ, the tree-level

squared-mass arguments of the basis integrals used in the final result are:

W = g2v2/4, (2.15)

Z = (g2 + g′2)v2/4, (2.16)

t = y2t v
2/2, (2.17)

h = 2λv2 (2.18)

and 0 for photons and gluons. As in [44], the Goldstone boson squared masses are eliminated

by using the condition for the minimization of the effective potential after resummation,

m2 + λv2 =
1

16π2

{

2Ncy
2
tA(t)− 3λA(h)− g2

2
[3A(W ) + 2W ]

−g2 + g′2

4
[3A(Z) + 2Z]

}

+ . . . , (2.19)

as explained in section 4 of ref. [40] (see also [41] and [63]). The same relation is used to

eliminate m2 from the tree-level Higgs boson squared mass, which appears as h rather than

H = m2+3λv2. In a future 3-loop calculation of the W (or Z) pole mass, the 2-loop version

of eq. (2.19) should be used; this can be found in eqs. (4.18)-(4.20) of ref. [40].
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The 2-loop W boson squared pole mass is thus obtained, after finally taking ǫ → 0, as:

sWpole = M2
W − iΓWMW = W +

1

16π2
∆

(1)
W +

1

(16π2)2

[

∆
(2),QCD
W +∆

(2),non−QCD
W

]

, (2.20)

where the right-hand side is a function of v, g, g′, λ, yt, g3, Q, with all propagator masses

expressed as W,Z, h, t, or 0. The list of 1-loop basis integrals used is

I(1) =
{

A(h), A(t), A(W ), A(Z), B(0, 0), B(0, h), B(0, t),

B(0, Z), B(h, t), B(h,W ), B(t, Z), B(W,Z)
}

, (2.21)

while the list of necessary 2-loop basis integrals is:

I(2) =
{

I(0, 0, h), I(0, 0, t), I(0, 0,W ), I(0, 0, Z), I(0, h,W ), I(0, h, Z), I(0, t,W ),

I(0,W, Z), I(h, h, h), I(h, t, t), I(h,W,W ), I(h, Z, Z), I(t, t, Z), I(W,W,Z),

S(h, h,W ), S(h,W,Z), S(t, t,W ), S(W,Z, Z), T (h, 0, 0), T (h, 0, t),

T (h, 0,W ), T (h,W,Z), T (t, 0, 0), T (t, 0, h), T (t, 0, Z), T (W, 0, 0),

T (Z, 0, 0), T (Z, 0, t), T (Z, 0,W ), T (Z, h,W ), T (0, h,W ), T (0,W, Z),

U(0, t, 0,W ), U(0, t, h, t), U(0, t, t, Z), U(h,W, 0, 0), U(h,W, 0, t),

U(h,W, h,W ), U(h,W,W,Z), U(W, 0, t, t), U(W,h, h, h), U(W,h, t, t),

U(W,h,W,W ), U(W,h, Z, Z), U(W,Z, 0, 0), U(W,Z, h, Z), U(W,Z, t, t),

U(W,Z,W,W ), U(Z,W, 0, 0), U(Z,W, 0, t), U(Z,W, h,W ), U(Z,W,W,Z),

M(0, 0, 0, 0, 0), M(0, 0, 0, 0, Z), M(0, 0, 0,W, 0), M(0, 0, t, t, 0), M(0, 0, t, t, Z),

M(0, 0, t,W, 0), M(0, t,W, 0, t), M(0,W, 0, Z, 0), M(0,W, t, h, t),

M(0,W, t, Z, t), M(0,W,W, 0,W ), M(0,W,W, h,W ), M(0,W,W,Z,W ),

M(0, Z, t,W, 0), M(h, h,W,W, h), M(h,W,W, h,W ), M(h,W,W,Z,W ),

M(h, Z,W,W,Z), M(W,W,Z, Z, h), M(W,Z, Z,W,W )
}

. (2.22)

In each of the B, S, T , T , U , and M integrals, the external momentum invariant is the

tree-level squared mass, s = W .

The 1-loop contribution to the pole mass is:

∆
(1)
W = g2

{

Nc|Vtb|2f(b, t,W ) +
[

Nc(nQ − |Vtb|2) + nL

]

f(0, 0,W ) +

(

1

4
− h

12W

)

A(h)

+

(

4W

Z
+

h + Z

12W
− 3

)

A(W ) +

(

2W

Z
− 2

3
− Z

12W

)

A(Z)
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+

(

4W 2

Z
+

17W − 4Z

3
− Z2

12W

)

B(W,Z) +

(

h

3
− h2

12W
−W

)

B(h,W )

−4W 2

Z
+

64W

9
+

h+ Z

6

}

, (2.23)

where

Nc = nQ = nL = 3 (2.24)

are the numbers of colors, quark doublets, and lepton doublets in the Standard Model,

respectively, and the fermion-loop function is

f(x, y, s) =
1

6s

{

[

(x− y)2 + s(x+ y)− 2s2
]

B(x, y) + (x− y − 2s)A(x)

+(y − x− 2s)A(y)
}

+ (s− 3x− 3y)/9, (2.25)

and the bottom quark mass and |Vtb|2 dependence has been included. The lighter quark and

lepton masses can also be restored in the obvious way, by changing the 0 arguments of the

function f in eq. (2.23) and introducing additional Cabibbo-Kobayashi-Maskawa (CKM)

mixing factors. Fortunately, however, the difference made by non-zero masses of b, τ, c, . . .

and the presence of CKM mixing (assuming CKM unitarity and Vtb = 0.99914 [43]) is less

than about 1 MeV in both MW and ΓW for 50 GeV < Q < 200 GeV, and is much less for

Q in the middle of that range, so those effects will be neglected for simplicity below.

Note that 1-loop contributions involving B(0, 0), B(0, Z) and B(0, h) cancel, when the

0 arguments correspond to Goldstone bosons and unphysical modes of the vector bosons in

Landau gauge. This and similar cancellations in the 2-loop order part (mentioned below)

are useful checks, as non-cancellation of such terms would have implied imaginary parts of

the complex pole squared mass that do not correspond to any real decay mode of the W

boson.

The 2-loop QCD contribution is also simple enough to be written on a few lines in terms

of the basis functions:

∆
(2),QCD
W = g23g

2
(N2

c − 1

24

)

[

−4(t−W )2(2 + t/W )M(0, 0, t, t, 0)

+8(t− 2W )(1 + t/W )T (t, 0, 0)− (10t+ 8W )B(0, t)2

−(36t/W + 56 + 16W/t)A(t)B(0, t) + (30t2/W + 42t− 12W )B(0, t)

−(40/W + 24/t)A(t)2 + (30t/W + 84)A(t)− 39W + 17t/2

−(nQ − 1)W
{

31 + 12B(0, 0) + 8WM(0, 0, 0, 0, 0)
}

]

. (2.26)
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The remaining, non-QCD, 2-loop contributions, are much more complicated, involving a

large number of terms. The form of the result is†

∆
(2),non−QCD
W =

∑

i

c
(2)
i I

(2)
i +

∑

j≤k

c
(1,1)
j,k I

(1)
j I

(1)
k +

∑

j

c
(1)
j I

(1)
j + c(0). (2.27)

The coefficients c
(2)
i and c

(1,1)
j,k and c

(1)
j and c(0) are given in electronic form in an ancillary

file coefficients.txt provided with the arXiv source for this article. These coefficients

are written exclusively in terms of the quantities W,Z, t, h, v2 [by using eqs. (2.15)-(2.18) to

eliminate g, g′, yt, and λ], as well as the fixed parameters Nc, nQ, and nL. The latter can

each be set equal to 3 in the Standard Model, but are kept general for checking purposes,

and to tag the fermion loop contributions.

It should be noted that the coefficients in the expression of the pole mass in terms of the

basis integrals are not unique. This is because different basis integrals are related by special

identities that hold when the squared mass arguments are not generic. These identities

include eqs. (A.15)-(A.21) of ref. [44], and eqs. (A.14), (A.15), and (A.17)-(A.20) in ref. [64].

When setting s → W in eq. (2.20), one encounters singular behavior in individual terms,

associated with photon lines attached to a W boson propagator. In general, such potentially

singular terms should cancel in the complex pole mass [24]. They are dealt with here by

using expansions such as‡

B(0,W ) = 1− A(W )/W + (s−W )[1 + A(W )/W − ln(W − s)]/W

+(s−W )2[−1− A(W )/W + ln(W − s)]/W 2 +O(s−W )3 (2.28)

with ln(x) ≡ ln(x/Q2). Similar expansions of 2-loop basis functions that have thresholds or

pseudo-thresholds at s = W are carried out using the differential equations listed in section

IV of ref. [53], using methods similar to those found in [46]. After doing so, all pole and

logarithmic singularities in s−W that are found in individual Feynman diagrams cancel in

the total eq. (2.20), an important check.

Several other helpful checks were performed on the calculation. First, single and double

poles in ǫ cancel in sWpole. This cancellation relies on agreement between the counter-terms

cXℓ,n (for X = v, g, g′, λ, yt, g3) as extracted from the β functions and Higgs scalar anomalous

dimension in the literature, and the coefficients of divergent parts of the loop integrations

performed here. Second, I checked that logarithms of G = m2+λ2v2 cancel. This is required

for the absence of spurious imaginary parts that could occur when the renormalization scale

is chosen so that G < 0, and spurious divergences that could occur for G = 0. Third, I

† Of the 78 coefficients c
(1,1)
j,k for products of 1-loop integrals, 42 vanish.

‡ Eq. (2.28) is used to eliminate B(0,W ) everywhere, explaining its absence in eqs. (2.21) and (2.23).
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checked the absence of spurious imaginary parts of sWpole; note that ΓW must be identically 0

in the case nQ = 1, nL = 0, because in the Standard Model the W boson can only decay to

lighter fermion doublets. This checks cancellations between diagrams with Goldstone boson

propagators and the corresponding Landau gauge vector propagator parts with poles at 0

squared mass. Fourth, I checked that in each of the formal§ limits that the quantities W , Z,

t, h, 4W − h, 4Z − h, 4t−Z, t−W , t+W −Z, or t+W − h vanish, the whole expression

for sWpole is finite and well-behaved, even though many of the individual 2-loop coefficients

in eqs. (2.23), (2.26), and (2.27) are singular in one or more of those limits. This again

reflects non-trivial relations between different basis integrals when squared mass arguments

are not generic. Finally, the result for sWpole was analytically checked to be renormalization

group invariant through terms of 2-loop order. In principle, this should be equivalent to the

check of cancellation of 1/ǫ poles, but in practice it tests many intermediate steps of the

calculation. This check is written as:

0 = Q
d

dQ
sWpole =

[

Q
∂

∂Q
− γφv

∂

∂v
+
∑

X

βX

∂

∂X

]

sWpole, (2.29)

where X = {g, g′, λ, yt, g3}, and γφ is the anomalous dimension of the Higgs field. It uses the

derivatives of basis integrals with respect to the implicit argument Q, given in eqs. (4.7)-

(4.13) of ref. [53], and derivatives of the 1-loop basis integrals with respect to squared mass

arguments, given for example in eqs. (A.5) and (A.6) of ref. [44]. It also uses the beta

functions and scalar anomalous dimension given in refs. [47–50], [38]. A corresponding

numerical check of renormalization scale invariance is performed in the next section.

III. NUMERICAL RESULTS

The numerical computation of sWpole given by eqs. (2.20)-(2.27) is accomplished using

the program TSIL [54]. This requires only 13 calls of the function TSIL_Evaluate (which

uses Runge-Kutta solution of coupled differential equations to obtain multiple basis integral

functions simultaneously) as well as relatively fast evaluations of the integrals for which

analytic formulas in terms of polylogarithms are known and incorporated in TSIL.

For purposes of illustration, consider a benchmark set of input data:

v(Mt) = 246.647 GeV, (3.1)

g(Mt) = 0.647550, (3.2)

g′(Mt) = 0.358521, (3.3)

§ None of these limits are close to being realized in the real world.
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λ(Mt) = 0.12597, (3.4)

yt(Mt) = 0.93690, (3.5)

g3(Mt) = 1.1666, (3.6)

where Q = Mt = 173.34 GeV is the input renormalization scale. The top Yukawa coupling

and strong coupling constant were taken from ref. [65] version 4, and the electroweak gauge

couplings were taken from ref. [36]. The VEV v(Mt), which should minimize the radiatively

corrected effective potential in the scheme used here, has also been chosen to approximately

reproduce the experimental value of the Z boson physical mass, using a separate calculation

(similar to the present one, and also in the pure MS scheme) that I plan to report on soon.

The Higgs self-coupling λ was simultaneously chosen so as to also obtain a Higgs pole mass

of Mh = 125.09 GeV, using the calculation of [44] as implemented in the program SMH [45],

at an optimal renormalization scale Q = 160 GeV. However, in the absence of a true global

fit to available data, it is important to emphasize that the benchmark parameters chosen

here should be viewed as illustrative, rather than as a prediction of MW .

The results for the renormalization scale dependences of MW and ΓW obtained from

sWpole = M2
W − iΓWMW , in various approximations, are shown in Figures 3.1 and 3.2. To

make the graphs, the input parameters v, g, g′, λ, yt, g3 are run, using 3-loop beta functions

[66, 67], from the input scale Mt to the scale Q on the horizontal axis, and sWpole is re-

computed at that scale. In the idealized case, MW and ΓW would be independent of Q if

computed to sufficiently high order in perturbation theory.

In Figure 3.1, the (green) dotted line is the tree-level result W , which shows a severe scale

dependence, due to the running of g and v. This is still large, but reduced, in the 1-loop

result, given by the (red) short-dashed line. The majority of the remaining scale dependence

is eliminated by including the QCD part of the 2-loop result from eq. (2.26) as shown in

the (blue) long-dashed line. The (black) solid line shows the full 2-loop result. Note that

despite the large scale dependence of the 2-loop QCD correction, it is actually smaller than

the 2-loop non-QCD correction in magnitude except for Q ∼< 85 GeV, where the effect of

ln(t) starts to become large. The 2-loop non-QCD correction is of order 40 MeV, but is seen

to have a quite mild scale dependence.

In Figure 3.2 the (red) short-dashed line shows the running of ΓW computed at 1-loop

order. Adding in the 2-loop QCD contribution, as shown by the (blue) long-dashed line, is

a significant effect, but does not eliminate the scale dependence, which is mostly due to the

electroweak 1-loop renormalization group running of g and v. However, including the 2-loop

non-QCD corrections to sWpole greatly ameliorates the scale dependence, as it captures and

compensates for most of the effect of running of g and v.

For the range 50 GeV < Q < 200 GeV, the deviations of MW and ΓW from their median

values are both about ±4 MeV. For MW , this is shown in close-up as the solid line in Figure
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FIG. 3.1: The mass MW of the W boson, obtained from the complex pole squared mass

sWpole = M2
W−iΓWMW , as a function of the renormalization scale Q at which sWpole is computed,

in various approximations. The (green) dotted line is the tree-level result W , the (red) short-

dashed line is the 1-loop result, the (blue) long-dashed line is the result from the 1-loop

and 2-loop QCD contribution, and the (black) solid line is the full 2-loop order result. The

input parameters v, g, g′, λ, yt, g3 are obtained at the scale Q by 3-loop renormalization group

running, starting from eqs. (3.1)-(3.6). Note that the usual Breit-Wigner mass MW,exp is

about 27 MeV larger than MW .
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FIG. 3.2: The width ΓW of the W boson, obtained from the complex pole squared mass

sWpole = M2
W − iΓWMW , as in Figure 3.1. The (red) short-dashed line is the 1-loop result, the

(blue) long-dashed line is the result from the 1-loop and 2-loop QCD contribution, and the

(black) solid line is the full 2-loop order result.
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g = 0.647550,
g’= 0.358521,
v = 246.647 GeV,

FIG. 3.3: Close-up of the scale dependence of the mass MW of the W boson, obtained from

the complex pole squared mass sWpole = M2
W − iΓWMW , as in Figure 3.1. The solid line is the

full 2-loop order result, while the dashed line is the same, but after expanding the MS mass t

(in the 1-loop part only) about T = (173.34 GeV)2 to first order, using eq. (3.7).

3.3. While this gives some lower bound on the remaining theory error (not counting the

parametric errors in the inputs v, g, g′, λ, yt, g3), it is always questionable to assume a direct

relationship between scale dependence and theory error. For another handle on the theory

error, consider the following exercise. In the top/bottom 1-loop contribution, the running

top mass t is used in propagators in the pure MS scheme. However, once the result has been

obtained, one can expand t about any other value, for example the top-quark pole mass T .

Doing so for the 1-loop contribution only is sensible, since t only appears in propagators,

not vertex couplings, in the 1-loop order W boson self-energy. The relevant expansion is:

f(0, t,W ) = f(0, T,W ) + (t− T )
[

A(T )− 2W + (T +W )B(0, T )
]

/2W +O(t− T )2. (3.7)

If this expansion is extended to, say, 4th order in t− T , then the results are easily checked

to be nearly indistinguishable from the original f(0, t,W ) without expansion. However,

terminating the expansion at linear order in t − T , as in eq. (3.7), can be considered an

alternative consistent 2-loop order result, if t − T is treated as formally of 1-loop order.

This version of MW is shown as the dashed line in Figure 3.3. It clearly has a worse scale

dependence, particularly at larger Q, where T − t becomes large. This suggests that the ±4

MeV scale dependence of the original (solid line) pure MS calculation may be at least partly

a fortunate accident. The two curves agree near Q = 77 GeV, where the running top-quark

mass t equals the physical mass T .
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IV. OUTLOOK

In this paper I have reported the results for the complex pole mass of the W boson in the

Standard Model in the pure MS scheme, with the vacuum expectation value, defined as the

minimum of the Landau gauge effective potential, taken as one of the input parameters. The

organization of input and output parameters is quite different from previous works that use

the on-shell scheme or hybrid MS/on-shell schemes. The state-of-the art computations in

these schemes, see respectively e.g. [31] and [36] and references therein, probably both attain

a better theory error than the pure MS scheme, for now. Moreover, a direct comparison of

numerical results will need at least the corresponding results for the Z boson, which I hope

to report on soon. Both results will then be incorporated into a publicly available computer

code together with the Higgs boson mass code from [44, 45].

Refs. [25, 26] and the very recent ref. [37] (which appeared as the present paper was being

finished) also used the pure MS scheme to compute the complex pole mass of the W boson.

However, attempts at direct comparison are complicated† by the fact that these papers used

a different definition of the VEV, namely v2tree = −m2/λ, rather than v that minimizes the

full radiatively corrected effective potential as made here (and, for example, refs. [44] and‡

[36]). The choice of using vtree requires including non-trivial tadpole diagrams, unlike the

choice of expanding around v where the sum of Higgs tadpole diagrams (including the tree-

level tadpole) simply vanishes. This means that already at 1-loop order, the expressions

appear different. Compared to ∆
(1)
W /(16π2) in eq. (2.23) of the present paper, the sum of

the bosonic contributions in eq. (B.2) of ref. [25] and the fermionic contributions in (B.2) of

ref. [26] differs by:

g2

16π2h

[

−2NctA(t) +
3

4
hA(h) + 3WA(W ) + 2W 2 +

3

2
ZA(Z) + Z2

]

. (4.1)

This is simply because the tree-level terms are also different, namely g2v2/4 in the present

paper and g2v2tree/4 in refs. [25, 26, 37]. To 1-loop order accuracy, the two expressions for the

pole mass can easily be checked to be the same, by using eq. (2.19) above, but establishing

the connection at 2-loop order would require a somewhat non-trivial re-expansion using the

2-loop relation between v2tree and v2.

Note that, in general, expanding around vtree rather than v has the effect of making

† Also, refs. [25, 26] use expansions in 1/4−sin2 θW and Z/h and Z/t (in the notation of the present paper),

which further increases the difficulty in making a direct comparison.
‡ However, Ref. [36] uses Feynman gauge instead of Landau gauge, so the VEV referred to in that paper will

also not be the same thing as v in the present paper. Note that using v requires choosing a gauge-fixing

prescription; choosing Landau gauge has the advantage that the effective potential is much simpler.
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the perturbative expansion parameter be
Ncy

4
t

16π2λ
, rather than the usual

Ncy
2
t

16π2
, for the terms

leading in the top mass. This can be seen in the presence of the first term in eq. (4.1);

in contrast, there is no g2tA(t)/h term in eq. (2.23). As mentioned above as one of the

checks, at two-loop order there is also no behavior like t3/h2 or t2/h (or any other pole

singularity in h, or W or Z) in ∆
(2),non−QCD
W in eq. (2.27). As another example, see the

discussion surrounding eqs. (4.34)-(4.40) in ref. [40], where the terms of order

(

y4t
16π2λ

)ℓ

in the relation between vtree and v are explicitly identified for loop orders ℓ = 1, 2, 3 in the

limit y2t ≫ λ in the case g = g′ = 0. Not surprisingly, expanding around the radiatively

corrected VEV leads to faster convergence than expanding around the tree-level VEV, at

least formally, although both expansions should converge given enough loop orders, since
Ncy

4
t

16π2λ
is still numerically small.

It would clearly be useful to include the 3-loop contributions to W and Z complex pole

masses in the pure MS scheme, so that theory errors can be made unambiguously much

smaller than all relevant experimental errors. Here it should be remarked that it is not

at all obvious that the parametrically QCD-enhanced contributions at 3-loop order will be

the largest, especially considering that this was not the case at 2-loop order. A possible

scenario is that the QCD-enhanced contributions will have the largest renormalization scale

dependence, but not the largest magnitude, since this is what happened at 2-loop order. It

seems feasible to eventually include all 3-loop contributions to sWpole in the pure MS scheme,

although to do so without using mass expansions or approximations may require developing

new methods for treating 3-loop self-energy contributions.
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