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Abstract

We propose a framework for a new type of finite field theories based on a hidden

duality between an ultra-violet and an infra-red region. Physical quantities do not

receive radiative corrections at a fundamental scale or the fixed point of the dual-

ity transformation, and this feature is compatible with models possessing a specific

fermionic symmetry. Theories can be tested indirectly by relations among parame-

ters, reflecting underlying symmetries.

1 Introduction

Quantum field theory has perplexed physicists with the appearance of infinities on ra-

diative corrections of physical quantities, but the problem has offered useful hints for

a fundamental theory. In well-behaved theories such as the quantum electrodynamics

(QED) and the standard model (SM), infinities are removed by the regularization and the

renormalization procedure. There, however, exists a non-renormalizable theory such as

the quantum version of Einstein gravity, and it suggests the idea that an underlying the-

ory must own a finiteness.

Typical examples are superstring theories (SSTs) [1] and finite field theories (FFTs) [2].

The finiteness comes from the world-sheet modular invariance in SSTs and the vanish-

ing of β-functions in FFTs.

Both have a feature that a fundamental energy scale Λ exists, but its origin is differ-

ent from each other. In SSTs, Λ is the string scale defined by the string tension. The

world-sheet modular invariance implies that radiative corrections from the contribu-

tions below Λ are equivalent to those above Λ and are given by the integration of an in-

dependent region called “the fundamental region”. There, Λ plays the role of cut-off pa-

rameter or the ultra-violet (UV) divergences are identified with unphysical infra-red (IR)

ones. In FFTs, the theory becomes scale invariant with the vanishing of β-functions at

Λ. Then, physical parameters do not run beyond the scale, and the concept of scale be-

comes vague. Models have a high calculability and predictability, because the reduction
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of coupling constants is realized and the particle contents are tightly restricted, com-

bined with the grand unification [3].

Both theories are powerful candidates for the physics at Λ. However, any evidences

for new physics beyond the SM, e.g., supersymmetry (SUSY), compositeness and extra

dimensions, have not been discovered. Hence, it would be meaningful to pursue other

possibilities.

In this paper, we use the secret of finiteness in SSTs as a guide for constructing a new

type of FFTs, and propose a framework of theories based on a hidden duality between

an UV and an IR region. Physical quantities do not receive radiative corrections at the

fixed point of the duality transformation, and this feature is compatible with models

possessing a specific fermionic symmetry. Theories can be tested indirectly by relations

among parameters, reflecting underlying symmetries, in case that the system has a large

symmetry at a fundamental level.

The contents of this paper are as follows. We present novel FFTs based on a duality

relating world lines in Sect. II. We explain that the finiteness can be assisted by an exotic

symmetry concerning abnormal particles and theories can be tested indirectly in Sect.

III. Section IV is devoted to conclusions and discussions.

2 Finiteness based on world-line duality

We take the standpoint that quantum field theory is an effective description of an un-

known underlying theory, and FFTs can be constructed by bringing in features of the

fundamental theory.

First, we list the assumptions relating features of the ultimate theory.1

(a) There is an energy scale Λ that associated with a property of fundamental objects

such as the string scale. The fundamental objects possess various states that identified

with elementary particles. The ground states are regarded as massless particles, and

some of them acquire small masses mk(≪ Λ) through a low-energy dynamics. The ex-

cited states are particles with masses of O(Λ).

(b) There is a duality between the physics at a higher-energy scale (µ& Λ) and that at a

lower-energy scale (µ.Λ). Physical quantities are invariant under the duality transfor-

mation, and are estimated as finite values using one of the energy regions.

(c) A remnant of the duality is hidden in quantities of the low-energy physics involved

with Λ, e.g., radiative corrections on parameters [5]. Finite corrections can be incorpo-

rated in our formulation with a slight modification of the duality transformation, in the

presence of low-energy parameters such as mk .

To illustrate our idea, let us consider quantum corrections on a quantity A at the

one-loop level given by,

δA(q) =

∫1

0
d s

∫∞

0
d t

∫∞

0

d 4p

(2π)4
f (p, q, gi ,mk , s, t )

1 Our idea is inspired by the world-sheet modular invariance in closed string theories, and the proposal

of solving the gauge hierarchy problem and the cosmological constant problem by Dienes [4].
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=

∫1

0
d s

∫∞

0
d t h(q, gi ,mk , s, t ), (1)

where s is an integration variable, t is the integration variable called a “proper time”, p is

an Euclidean momentum of a particle running in a loop, q is an Euclidean momentum of

a particle for an external line, gi are coupling constants, and h(q, gi ,mk , s, t ) is a function

of q , gi , mk , s and t .

In case that δA(q) diverges, the infinities come from t = 0 (corresponding the UV

divergences) and/or t =∞ (corresponding the IR ones), it can be regularized as

δA(q)reg =

∫1

0
d s

∫1/µ̃2

1/Λ̃2
d t h(q, gi ,mk , s, t ), (2)

where Λ̃ = Λ̃(Λ, s). In most cases, Λ̃ = x(s)Λ and µ̃ = y(s)q2 + yk(s)m2
k

where x(s), y(s)

and yk (s) are functions of s. Although these functions can vanish at some values of s,

we often substitute Λ̃ and µ̃ for Λ and q , respectively. For instance, Λ̃ and µ̃ are given by

Λ̃2 = sΛ2 and µ̃2 = s(1− s)q2 + sµ2
γ+ (1− s)m2

e for the self-energy of electron in QED [5].

Here, µγ is a fictitious photon mass for a regularization of IR divergences and me is the

electron mass.

We require that δA(q)reg should be invariant under the following duality transforma-

tion on the internal world-line,

t →
1

Λ̃4t
. (3)

Under the transformation (3), δA(q)reg transforms as

δA(q)reg →

∫1

0
d s

∫1/Λ̃2

µ̃2/Λ̃4
d t

h(q, gi ,mk , s,1/(Λ̃4t ))

Λ̃4t 2
. (4)

From the equality of the right-hand side of (2) and that of (4), the form of h(q, gi ,mk , s, t )

is fixed as h(q, gi ,mk , s, t )= c−1(q, gi ,mk , s)/t and then δA(q)reg is determined as

δA(q)reg =

∫1

0
d s c−1(q, gi ,mk , s) ln

Λ̃2

µ̃2
. (5)

The δA(q)reg contains a Λ-dependent logarithmic part and finite corrections.2 We find

that quantum corrections corresponding quadratic divergences are removed, and hence

the naturalness problem in the SM (the quadratic divergence problem relating the Higgs

boson mass) can be solved [5].

So far, we study corrections at the lower energy region (q2 <Λ2) by considering only

contributions from the ground states (corresponding massless particles at Λ). Beyond

Λ, threshold corrections due to excited states (corresponding massive particles of O(Λ))

appear, and following two problems occur.

(i) To examine whether physical quantities are formulated in a manner consistent with

2 It is not clear whether all corrections including higher loops are obtained in the duality invariant form.

If not, such corrections can be regarded as a tiny violation of the duality.
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the duality, for all energy regions.

(ii) To examine whether an effective field theory have a high calculability and predictabil-

ity, without knowing full spectrum of excited states.

The threshold corrections might be introduced, in the form that h contains Λ such

that

h(q, gi ,mk , s, t ) =
c̃−1(q, gi ,mk , s, t +1/(Λ̃4t ))

t
. (6)

However, we have no method to determine the form of c̃−1 as a function of t , in the

framework of effective field theory, and hence we pursue an alternative.

Here, we give a bold conjecture that there are no threshold corrections due to excited

states. If it holds, the second problem can be solved, as will be explained in the next

section.

For the first problem, let us make an adventurous attempt that the duality can be

also applied to the external lines. We require that δA(q)reg should be invariant under the

duality transformation q → q ′ that corresponds to

µ̃2
→ µ̃′2

=
Λ̃4

µ̃2
. (7)

The invariance is written as

δA(q)reg = δA(q ′)reg. (8)

From (5), (7) and (8), we obtain the expressions,

δA(q)reg =

∫1

0
d s

∫1/µ̃2

1/Λ̃2
d t h(q, gi ,mk , s, t ) (for µ̃≤ Λ̃) (9)

and

δA(q ′)reg =

∫1

0
d s

∫1/Λ̃2

1/µ̃′2
d t h(q ′, gi ,mk , s, t ) (for µ̃′

≥ Λ̃). (10)

Under the transformation (3), δA(q)reg transforms intoδA(q ′)reg and vice versa, and they

take a same value with h(q, gi ,mk , s, t ) = c−1(q, gi ,mk , s)/t . The equality (8) comes from

the fact that the distance between 1/Λ̃2 and 1/µ̃2 equals to that between 1/µ̃′2(= µ̃2/Λ̃4)

and 1/Λ̃2 at the logarithmic scale.

We find that Λ̃ is the fixed point under the transformation (7). The relation (10) sug-

gests a strange feature that the value obtained by integrating out the degrees from Λ̃

to µ̃′(> Λ̃) is not the value at Λ̃ but that at µ̃′ (or q ′), and the quantity does not receive

radiative corrections at Λ̃, i.e., δA(q)reg|µ̃=Λ̃ = 0. We give a speculation of such an op-

posite running of physical quantities beyond Λ̃. If the role of energy and momentum

is exchanged in the region beyond Λ̃, as is the case that the role of time and space is ex-

changed inside a black hole, p2 and m2
k

in f (p, q, gi ,mk , s, t ) can change its sign. Eventu-

ally, it can induce the exchange of integration region. Then, Λ might be the Planck scale

MPl.
3

3 As another work to show the importance of the trans-Planckian physics, Volovik gave the observa-

tion that the sub-Planckian and trans-Planckian contributions to the vacuum energy are canceled by the

thermodynamical argument [6].
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Our procedure is regarded as not a mere regularization but a recipe to obtain finite

physical values, because Λ̃ is (big but) finite and infinities are taken away by the sym-

metry relating integration variables, like closed string theories. It is also regarded as the

operation to pick out duality invariant parts. In case that h(q, gi ,mk , s, t ) does not con-

tain Λ, it is simply denoted by

δA(q)reg = Du

[
∫1

0
d s

∫∞

0
d t h(q, gi ,mk , s, t )

]

= Du

[
∫1

0
d s

∫∞

0
d t

∑

n

cn(q, gi ,mk , s)t n

]

= c−1(q, gi ,mk , s) ln
Λ̃2

µ̃2
, (11)

where Du[∗] represents the operation, and h(q, gi ,mk , s, t ) is expanded in a series of t .

3 Fermionic symmetry

3.1 Calculability

Let us construct a theory with a high calculability 4, based on the feature that any thresh-

old corrections do not appear around Λ.

We assume that fundamental objects have a specific fermionic symmetry and most

states become unphysical by a counterpart of the quartet mechanism [7, 8] in a system

with the BRST symmetry.

Concretely, all excited states form the quartets such as (ϕa ,ca ,ca ,ϕa), and they trans-

form as

δfϕa = (±)ca , δfca = 0, δfca = (±)ϕa , δfϕa = 0, (12)

where (±) represents +1 or −1. The transformation is generated by a fermionic con-

served charge Qf with the nilpotency, i.e., Qf
2 = 0. If we impose suitable subsidiary con-

ditions containing the following one on states in order to select physical states,

Qf|phys〉 = 0, (13)

all Qf-quartets (or two sets of Qf-doublets) become unphysical. Hereafter, we denote the

set of Qf-quartets as ({ϕq}, {cq}) and refer to particles belonging in {cq} as ghosts.

As a possible candidate of fermionic symmetry, symmetries between ordinary parti-

cles and their ghost counterparts obeying opposite statistics have been proposed [9, 10,

11, 12]. In this case, ca and ϕa are the hermitian conjugates of ca and ϕa , respectively.

The algebraic relations among relevant conserved charges are given by

QF
2
= 0, Q†

F

2
= 0, {QF,Q†

F
} = ND, (14)

4 In this paper, a “calculability” means that physical quantities can be calculated in terms of free pa-

rameters by a theory, and a “predictability” means that some features beyond the theory, such as relations

among parameters, can be predicted.
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where QF and Q†
F

are a fermionic charge and its hermitian conjugate, respectively, and

ND is an U (1) charge. The physical state conditions are imposed as

QF|phys〉 = 0, Q†
F
|phys〉 = 0, ND|phys〉 = 0. (15)

In case that parts of massless states are Qf-singlets (whose set is denoted by {ϕs}) and

are physical, the system can be, in general, described by

Ltotal =Ls({ϕs})+Lq({ϕq}, {cq})+Lmix({ϕs}, {ϕq}, {cq}) =Ls({ϕs})+δfR, (16)

where Ls, Lq and Lmix are the Lagrangian density for Qf-singlets, Qf-quartets and in-

teractions between Qf-singlets and Qf-quartets. Under suitable subsidiary conditions

including Qf|phys〉 = 0 on states, all Qf-quartets become unphysical and would not give

any physical effects on Qf-singlets, that is, Qf-singlets do not receive any radiative correc-

tions from Qf-quartets. Hence, the theory is free from the gauge hierarchy problem [9].5

Let us discuss the calculability in our formulation. If all massive modes with masses

of O(Λ) are Qf-quartets and unphysical, there are no threshold corrections at Λ and all

physical quantities can be calculable using Ls({ϕs}) alone. That is, if values of coupling

constants gi and masses mk are determined by precision measurements, we can obtain

values of physical quantities accurately. Note that gi and mk are free parameters and

their values are not determined theoretically, in the framework of a low-energy effective

theory.

Ordinarily, non-renormalizable interactions are generated as a result that heavy par-

ticles are integrated out. In our system, heavy particles with masses of O(Λ) appear by

pairs in the interaction terms because of the Qf invariance. In the process with ordi-

nary physical particles alone in the external lines, heavy particles appear in loops and

the sum of contributions can be canceled out by the fermionic symmetry. That is, non-

renormalizable interactions are not induced due to the excited states at O(Λ). Then,

there is a possibility that Ls({ϕs}) is renormalizable at Λ, neglecting the effect of gravity.

In this case, we have an interesting expectation that the system of visible fields is described

by the Lagrangian density containing renormalizable terms alone. Because visible fields

come from the massless states at Λ, the effective Lagrangian density must have symme-

tries such as gauge symmetry, chiral symmetry and/or conformal symmetry to guarantee

the masslessness.

After integrating out extra particles in {ϕs} other than the SM ones, we arrive at the

system described by

LSM +∆LSM, (17)

where LSM stands for the renormalizable Lagrangian density for the SM particles and

and ∆LSM is the non-renormalizable one generated by contributions from heavy parti-

cles in {ϕs} beyond the weak scale. A dark matter and massive right-handed neutrinos

are included as candidates of extra ones. The exploration of ∆LSM is important to probe

the physics (at the terascale) beyond the SM and to determine Ls({ϕs}) indirectly.

5 Other type of fermionic symmetry called “misaligned supersymmetry” has been proposed to solve

the gauge hierarchy problem and to realize the finiteness, in the absence of space-time SUSY [4, 13, 14].
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The system above Λ can be also described by Ltotal (essentially Ls({ϕs})), and has a

grounding that the duality introduced in the previous section holds for physical quanti-

ties.

3.2 Predictability

Next, we discuss the predictability in our formulation based on Ltotal. It is needed to

specify a structure of system at Λ.

Let us take a reasonable conjecture that fundamental objects have a large symmetry

intrinsically and the symmetry is realized in an unbroken phase at Λ. Concretely, the

system has the symmetry whose transformation group is GU in the unbroken phase. By

some mechanism, GU is broken down to the subgroup G and the system is described by

Ltotal, where {ϕs} are multiplets of G .

Here, we consider two scenarios that Ltotal is derived after the reduction of symme-

try, and find a prediction based on them.

(α) First one is that all particles belong to the members of Qf-quartets and are multiplets

of GU, in the unbroken phase. They are denoted by ({ϕU
q }, {cU

q }). The system is described

by

L
(α)

=L
(α)
U

({ϕU
q })+L

(α)
gh

({cU
q })+L

(α)
int

({ϕU
q }, {cU

q }) = δfR
(α)
U

, (18)

where L
(α)
U

, L
(α)
gh

and L
(α)
int

are the Lagrangian densities for ordinary particles {ϕU
q }, the

ghost counterparts {cU
q }, and interactions between ordinary particles and ghosts.

The multiplets of GU are decomposed into those of G such that

{ϕU
q } ⇒ {ϕq}0 + {ϕq}1, {cU

q } ⇒ {cq}0 + {cq}1. (19)

If some ghosts {cq}0 disappear, ordinary particles {ϕq}0 turn out to be Qf-singlets and the

reduction of symmetry occurs.6 Then, the system is described by

L
′(α)

=L
(α)
U

({ϕs}, {ϕq})+L
′(α)
gh ({cq})+L

′(α)
int ({ϕs}, {ϕq}, {cq}), (20)

where {ϕq}0, {ϕq}1 and {cq}1 are denoted by {ϕs}, {ϕq} and {cq}. In this scenario, L
′(α)

corresponds to Ltotal at Λ.

(β) Second one is that some massless ordinary particles belong to members of Qf-singlets

{ϕU
s } and others are Qf-quartets ({ϕ′U

q }, {c ′
U
q }). All particles form multiplets of GU, in the

unbroken phase. The system is described by

L
(β)

=L
(β)

U
({ϕU

s })+L
(β)
q ({ϕ′U

q }, {c ′
U
q })+L

(β)

int
({ϕU

s }, {ϕ′U
q }, {c ′

U
q })

=L
(β)

U
({ϕU

s })+δfR
(β)

U
, (21)

6 It has been reported that, in a system with complex scalar fields on a higher-dimensional space-time,

some physical modes are released from unphysical QF-doublets and the reduction of a large symmetry

occurs through the orbifold breaking mechanism [11].
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where L
(β)

U
, L

(β)
q and L

(β)

int
are the Lagrangian densities for {ϕU

s }, Qf-quartets, and inter-

actions among them. The Qf-singlets are decomposed into those of G such that

{ϕU
s } ⇒ {ϕs}0 + {ϕs}1. (22)

If some ghosts {cs}1 appear and they form Qf-quartets in company with {ϕs}1, the reduc-

tion of symmetry occurs. Then, the system is described by

L
′(β)

=L
(β)

U
({ϕs}, {ϕq}1)+L

′(β)

gh
({cq}1)+L

(β)
q ({ϕ′U

q }, {c ′
U
q })

+L
′(β)

int
({ϕs}, {ϕq}1, {cq}1, {ϕ′U

q }, {c ′
U
q }), (23)

where {ϕs}0, {ϕs}1 and {cs}1 are denoted by {ϕs}, {ϕq}1 and {cq}1, and {ϕ′U
q } and {c ′

U
q } are

also used in place of their decompositions under G , for simplicity. In this scenario, L ′(β)

corresponds to Ltotal at Λ.7

Unless extra contributions appear on the symmetry reduction, L ′(α)
and L

′(β)
must

fit closely with Ltotal at Λ from the matching condition. Because both L
(α)
U

({ϕs}, {ϕq})

and L
(β)

U
({ϕs}, {ϕq}1) respect the large symmetry GU, we expect that specific relations

among some parameters in Ls({ϕs}) hold at the tree level such that

g1 = g2 = ·· · = gl

∣

∣

Λ , (24)

reflecting the underlying symmetry. Note that the symmetry of the system enhances

from G to GU in the limit that all ghost fields go to zero, because other terms than L
(α)
U

and L
(β)

U
contain ghosts.

The relations (24) hold at the quantum level (up to some gravitational effects), be-

cause parameters do not receive threshold corrections at Λ in our theory. Then, (24) can

become fingerprints or indirect proof of the underlying symmetry and the existence of

unphysical fields, if gravitational effects are small enough or predictable. We can test

them, using the measured values for gk and the renormalization group equations, based

on Ls({ϕs}). Note that (24) are not understood from Ls alone, because the symmetry of

Ls is not GU but G , as seen from the fact that {ϕs} form not multiplets of GU but those of

G .

If fundamental objects have a large gauge symmetry to unify the SM gauge group

SU (3)C×SU (2)L×U (1)Y, we predict the unification of gauge coupling constants [9]. This

prediction suggests the existence of extra particles other than the SM ones beyond the

weak scale.8

4 Conclusions and discussions

We have used the secret of finiteness in SSTs as a guide for constructing a new type of

FFTs, and proposed a framework of theories based on a hidden duality between an UV

7 There is a possibility that Ltotal is also derived after eliminating some parts ({ϕs}1) of Qf-singlets,

starting from L
(β).

8 For instance, the unification of gauge coupling constants at MPl has been studied under the assump-

tion that extra particles appear at the terascale as remnants of hypermultiplets [15].
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and an IR region. Concretely, quantum corrections are invariant under the duality trans-

formation t → 1/(Λ̃4t ), where t is a proper time for a particle running in the loop and

Λ̃ is a fundamental scale Λ up to some factor. From the requirement that radiative cor-

rections should be also invariant under the duality transformation for external world

lines, we have arrived at the feature that physical quantities cannot receive any radia-

tive corrections at Λ̃, neglecting the gravitational effects. It is compatible with models

possessing a specific fermionic symmetry. The low-energy physics (q2 ≪ Λ̃2) can be

described by a renormalizable effective field theory whose constituents are Qf-singlets,

and physical quantities can be calculated precisely using the low-energy theory alone.

Theories can be tested indirectly by relations among parameters, reflecting underlying

symmetries, in case that the system has a large symmetry at the ultimate level.

Here, let us summarize features of fundamental theory, in the broken phase. The

theory is defined just at the fundamental scale. Values of fundamental parameters are

given there as initial conditions. The sector with ordinary particles alone has the large

symmetry GU, that can originate from a characteristics of fundamental objects. Ordinary

particles are decomposed into multiplets of the subgroup G . Some submultiplets are

observed, and others form Qf-quartets and become unphysical in the presence of ghosts.

The reduction of symmetry occurs from GU to G , as a result that ghosts are not multiplets

of GU but those of G . The symmetry of the system enhances in the limit that all ghost

fields go to zero.

There are serious problems related to ghost fields. First, in most cases, ghosts re-

quire the non-local interactions [9], and this fact might suggest that fundamental objects

are not point particles but extended objects, and a formulation using extended objects

should be required to describe interactions containing ghosts consistently. Second, the

origin of incomplete multiplets for ghosts is not clear. We have introduced two scenar-

ios. One is that some ghosts are reduced for the system that all members are Qf-quartets

as a beginning. The other is that ghosts emerge for the system that some ordinary par-

ticles exist as Qf-singlets. In this case, ghosts might appear as solitonic states. In any

case, both scenarios seem to be unrealistic or surreal, because a drastic change for the

degrees of freedom is needed to realize them. Though we recognize that quantum field

theory is an extremely useful tool to describe the lower-energy dynamics than Λ, there

is a possibility that it has limitations, i.e., every physical phenomenon at Λ cannot be

described completely in the framework of field theory with finite numbers of fields. It is

less unnatural that the number of particle species changes for the system with infinite

kinds of fields than for that with finite kinds of ones. Hence, it would be interesting to

study the reduction or emergence of ghosts, using a theory of extended objects.
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