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1 Introduction

The description of transport phenomena and dynamical response in the framework of ef-

fective field theory has experienced great progress in the last few years. This is due, to

a large extent, to a better understanding of the role played by the quantum anomalies

which underlie new macroscopic parity-violating effects at low energy [1]. In this respect,

the construction of the thermal partition function as a derivative expansion of a time-

independent background has turned out to be an important tool to get information about

the non-dissipative part of the constitutive relations of hydrodynamics, without using an

entropy approach [2, 3]. In relativistic systems the first order of such expansion usually

has a relatively simple structure connected with anomalies [4–6].

For non-relativistic systems there is also considerable interest in establishing the precise

connection between the partition function and Hall transport [7–12]. While in these systems

the use of torsional Newton-Cartan geometry appears as natural, the role of torsion in a

relativistic setting is less clear [13, 14]. Originally the torsion-dependent effective action of

massive Dirac fermions at zero temperature and density has been examined in great detail

in refs. [15, 16] with the focus on the renormalization effects on the Hall viscosity. Here we

are interested in the application of the methods of [2, 3] to the thermal partition function

to linear order in the torsion.

The main purpose of this paper is to compute, to linear order in the torsion, the stress

tensor and charge current that follow from the equilibrium partition function for a Dirac

field minimally coupled to torsion. A first result of our computation is that the relationship

between the Hall viscosity and the spin density, η̃ = 〈ℓ〉/2 = −〈Ψ̄Ψ〉/4, naturally appears

as an equilibrium susceptibility relating the stress tensor Θij with certain parity-violating

combination of components of the torsion tensor. Other results are the explicit construction
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of an entropy current consistent with zero production of entropy at equilibrium, and the

derivation of new susceptibilities relating the charge current and the pressure with torsion-

dependent vector and scalar data.

The organization of the paper is as follows. In section 2 we present some details about

the notation, and the partition function we use in the subsequent computations. The form

of the stress tensor at thermal equilibrium is given in section 3 in terms of combinations

of scalar, vector, and tensor background data depending on torsion. The modification in

the Landau frame of the constitutive relations in the presence of torsion is presented in

section 4, as well as an expression for the entropy current compatible with zero entropy

production. We conclude in section 5 with a short summary of our results.

2 Partition function of a Dirac fermion coupled to torsion

We begin with the action for a Dirac field,

S =

∫

d3xdet eaµ

[

−1

2
Ψ̄γµ
−→∇µΨ+

1

2
Ψ̄
←−∇µγ

µΨ+mΨ̄Ψ

]

, γµ(x) = eµa(x)γ
a, (2.1)

in the most general static background with torsion

ds2 = Gµνdx
µdxν = −e2σ(x)(dt+ ai(x)dx

i)2 + gij(x)dx
idxj,

A = A0dt+Aidx
i,

T a =
1

2
T a
µν dxµ ∧ dxν.

(2.2)

This geometry with torsion has been also considered in other studies of the torsion re-

sponse [17]. Note that we are using the prescription of minimal coupling, where the action

depends on the torsion only through the covariant derivative. The notation of ref. [18] has

been adopted, where the Dirac adjoint is defined as Ψ̄ ≡ Ψ†iγ0. For the Dirac matrices

γa we choose the representation {γ0, γ1, γ2} = {−iσ3, σ2,−σ1}. The torsion 2-forms T a

are specified in terms of the frame field eaµ and the torsion tensor by T a
µν = T σ

µν eaσ. The

covariant derivatives

−→∇µΨ = (∂µ +
1

4
ω ab
µ γab − iAµ)Ψ, γab ≡

1

2
[γa, γb]

Ψ̄
←−∇µ = Ψ̄(

←−
∂ µ −

1

4
ω ab
µ γab + iAµ),

(2.3)

are written in terms of the spin connection ω ab
µ , which is specified by the 1-forms ωab =

ω ab
µ dxµ appearing in the Cartan structure equation

dea + ωa
b ∧ eb = T a. (2.4)

By defining the contortion tensor, antisymmetric in the last two indices, as

Kµνρ = −1

2
(T[µν]ρ − T[νρ]µ + T[ρµ]ν), (2.5)
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it turns out that the spin connection can be expressed in terms of the Christoffel symbol

Γσ
µν(g) and the contortion tensor as follows

ω ab
µ = −ebν∂µeaν + ebν

(

Γσ
µν(g) −K σ

µν

)

eaσ

= ω ab
µ (e) +K ab

µ .
(2.6)

(The square brackets denote antisymmetrization of indices A[µν] =
1
2(Aµν − Aνµ).) This

formula contains the affine connection Γσ
µν = Γσ

µν(g) − K σ
µν in the presence of torsion,

which has an antisymmetric part given by

Γσ
µν − Γσ

νµ = T σ
µν . (2.7)

The part of the spin connection in the absence of torsion ω ab
µ (e), which is called the Levi-

Civita connection, is uniquely determined by the frame field. It is obtained from (2.6) by

setting K σ
µν = 0.

In order to vary the metric and torsion variables independently we will assume, ac-

cording with ref. [19], that the torsion tensor with the last coordinate upper index T σ
µν

and the metric components Gµν are independent of each other. This will be important

soon. Note that in ref. [14] the contortion is considered as an independent variable, instead

of the torsion.

With the previous relations and

{γc, γab} = −2ǭcab, ǭ012 = 1 = −ǭ012,
ǫµνρ = det edσ ǭ

abceµae
ν
b e

ρ
c ,

(2.8)

we can see the effect of the torsion on the three-dimensional Dirac action. The substitution

of (2.6) and (2.7) into (2.1) reveals that S may be viewed as the action of a Dirac field in

a torsion-free background, but with a modified mass. The new mass m̃, that now depends

on the torsion, is obtained by the replacement

m→ m̃ = m+ δm = m− 1

8
ǫµνρT λ

µν Gλρ. (2.9)

It is remarkable that a generic non-minimal coupling of the fermion to torsion may be

included simply by replacing δm by ξδm, where ξ is a free parameter [16].

In this way, the partition function at zeroth derivative order in the variables (Aµ, Gµν , m̃)

is written as

W 0 =

∫

d2x
√
g2

eσ

T0
P(T, µ, m̃), T = T0e

−σ, µ = A0e
−σ, (2.10)

where T−1
0 is the period of the imaginary time, and the function P is the pressure in terms

of the temperature and chemical potential. Therefore, we expect that the functional

W [Gµν , T
λ

µν ] = −1

8

∫

d2x
√
g2

eσ

T0
〈Ψ̄Ψ〉 ǫµνρT λ

µν Gλρ, (2.11)

contains all the information about the static linear response to lowest order in the derivative

expansion of the torsion. Here we have used the fact that the spin density is related to
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the pressure by ∂P/∂m = 〈Ψ̄Ψ〉, which follows from the form of the Dirac Lagrangian,

eq. (2.1).

Although no specific form of P is required in the following computations, we write

down the expressions of the pressure and the spin density at non-zero temperature and

density in the free-field case,

P(T, µ,m) = −T 3

2π

[

Li3

(

− exp
(µ− |m|

T

)

)

+ Li3

(

− exp
(−µ− |m|

T

)

)]

− |m|T
2

2π

[

Li2

(

− exp
(µ− |m|

T

)

)

+ Li2

(

− exp
(−µ− |m|

T

)

)]

, (2.12)

〈Ψ̄Ψ〉 = −mT

2π

[

ln

(

1 + exp
(µ− |m|

T

)

)

+ ln

(

1 + exp
(−µ− |m|

T

)

)]

, (2.13)

where Lin(x) is the polylogarithm function.

3 The equilibrium stress tensor at linear order in the torsion

We can now find the energy-momentum tensor Θµν which follows from the partition func-

tion by differentiation with respect to σ, aj and gij , with the understanding that T λ
µν is

independent of the metric. From eq. (2.11), the variational formula for Θ00 leads to

Θ00 = −
T0e

σ

√
g2

δW

δσ

= −e2σ
(

∂〈Ψ̄Ψ〉
∂σ

+ 〈Ψ̄Ψ〉
)

δm− e2σ〈Ψ̄Ψ〉∂δm
∂σ

.

(3.1)

The most obvious way to obtain ∂〈Ψ̄Ψ〉/∂σ is to consider the energy density rewritten in

the form

ε = −P + T
∂P
∂T

+ µ
∂P
∂µ

= −P − ∂P
∂σ

.

(3.2)

Then differentiating with respect to m yields the relationship

∂ε

∂m
= −〈Ψ̄Ψ〉 − ∂〈Ψ̄Ψ〉

∂σ
, (3.3)

and eq. (3.1) becomes

Θ00 = e2σ
∂ε

∂m
δm− e2σ〈Ψ̄Ψ〉∂δm

∂σ

= e2σ
∂ε

∂m
δm+ 〈Ψ̄Ψ〉

(

eσ

2
ǫij(T0ij − ajT0i0)− e2σδm

)

.
(3.4)

In the computation of the last derivative eq. (2.9) has been used, while keeping T λ
µν

fixed. Here ǫ12 = 1/
√
g2. Note the invariance of this result under time reparametrization,

t→ t+φ(x), x→ x. In the light of (3.4), it is convenient to introduce another pseudo-scalar
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quantity (besides δm) constructed from the torsion as Ξ ≡ −uµTµνρǫ
νρλuλ. This quantity,

evaluated for the equilibrium fluid velocity, uµK = δµ0 e
−σ, becomes Ξ = −e−σǫijT0ij , where

T0ij = T0ij − ajT0i0. Thus the change of Θ00 induced by the torsion reads

Θ00 = e2σ
∂ε

∂m
δm+ e2σ〈Ψ̄Ψ〉

(

−Ξ

2
− δm

)
∣

∣

∣

∣

eq

. (3.5)

The other components of the energy-momentum tensor are easily computed:

Θi
0 =

T0e
−σ

√
g2

δW

δai

= 〈Ψ̄Ψ〉
(

eσ

4
ǫij(Tj − ajT0)−

e−σ

2
ǫijT0j0

)

,

(3.6)

where Tµ is the torsion vector defined by Tµ = T ν
µν . This expression suggests the intro-

duction of two pseudo-vectors orthogonal to uµ given by

X̃µ = −ǫµνρuνuλTλρσu
σ,

W̃ µ = −ǫµνρuνTρ.
(3.7)

In equilibrium these quantities evaluate to

X̃i = e−2σǫijT0j0,

W̃ i = ǫij(Tj − ajT0).
(3.8)

For the equilibrium stress tensor the functional differentiation of W yields

Θij = −2T0e
−σ

√
g2

gikgjm
δW

δgkm

= −e−σ

4
〈Ψ̄Ψ〉

(

ǫikT0kmgmj + ǫjkT0kmgmi
)

.

(3.9)

Remarkably, this expression may be expressed in terms of the pseudo-tensor given by

σ̃µν = −1

2

(

ǫµλρuλσ
ν

ρ + ǫνλρuλσ
µ

ρ

)

, (3.10)

where σµν is the shear tensor,

σµν = ∆µα∆νβ(∇αuβ +∇βuα −Gαβ∇ρu
ρ), ∆µα = Gµα + uµuα. (3.11)

While in the absence of torsion the equilibrium values of σ̃µν and σµν vanish, it turns out

that when torsion is present, the covariant derivative of the equilibrium velocity uµ = δµ0 e
−σ

acquires a non- zero contribution proportional to the torsion, which now is included in the

affine connection. Correspondingly, the shear tensor at equilibrium is given by

σµν = ∆µα∆νβ
[

(K λ
αβ +K λ

βα )uλ +GαβK
ν

νλ uλ
]

= ∆µα∆νβ
[

−(Tλαβ + Tλβα)u
λ +GαβT

ν
λν uλ

]

, uλ = δλ0 e
−σ.

(3.12)
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Hence, apart from σ̃ij no more pseudo-tensors are needed to express the equilibrium value

of Θij. Thus eq. (3.9) may be rewritten in the form

Θij =
1

4
〈Ψ̄Ψ〉

(

σ̃ij − Ξ gij
)

∣

∣

∣

eq
. (3.13)

In a general configuration eq. (3.12) is not longer satisfied, and in addition to σ̃µν , it

is convenient to define another pseudo-tensor t̃µν(2) related to torsion given by

t̃µν
(2)

= −1

2

(

ǫµλρuλt
ν

(2)ρ + ǫνλρuλt
µ

(2)ρ

)

, (3.14)

where tµν(2) = −∆µα∆νβ(Tλαβ +Tλβα−GαβTλ)u
λ. This will be important when we consider

a possible generalization to non minimal coupling in the last section, because then t̃µν(2) will

appear in the constitutive relations.

It is also possible to derive these results directly from the energy-momentum tensor

obtained from the action (2.1), without using the partition function (2.11). With the

assumption that the spin connection does not depend on the frame field, the functional

derivative of the action with respect to eρa produces the non-symmetric tensor

T ′µν = −1

e
eµa

δS

δeρa
gρν =

1

2
Ψ̄
(

γµ
−→∇ν −←−∇νγµ

)

Ψ. (3.15)

The symmetry may be restored by adding the tensor ∆T µν given by

∆T µν =
1

8
(∇λ + Tλ)

(

Ψ̄{γλµ, γν}Ψ
)

, (3.16)

where the covariant derivative is performed with the affine connection including the con-

tortion, and Tλ denotes the torsion vector Tλ ≡ T ρ
µρ . Using the equations of motion this

gives the usual form of the stress tensor

Θµν = T ′µν +∆T µν =
1

4
Ψ̄
(

γµ
−→∇ν −←−∇νγµ + (µ↔ ν)

)

Ψ. (3.17)

To obtain the dependence of 〈Θµν〉 with the torsion, we note that the contortion tensor

in the covariant derivatives always multiplies the term 〈Ψ̄Ψ〉. A second kind of contribu-

tion comes from the fact that the fermion field satisfies a Dirac equation with a torsion-

dependent mass m̃. As a consequence the corresponding perfect fluid constitutive relation

〈Θµν〉 = ε(T, µ, m̃)uµuν + P(T, µ, m̃)∆µν , (3.18)

contributes to the expectation values of Θ00 and Θij with terms proportional to ∂ε/∂m

and ∂P/∂m respectively. Then the explicit evaluation of K ab
µ in the spin connection shows

that the equilibrium values may be written as the combinations

〈Θ00〉 = 〈Ψ̄Ψ〉
(

eσ

2
ǫijT0ij − e2σδm

)

+ e2σ
∂ε

∂m
δm, (3.19)

〈Θij〉 = −〈Ψ̄Ψ〉
(

e−σ

4

(

ǫikT0kmgmj + ǫjkT0kmgmi
)

+ δmgij
)

+
∂P
∂m

δmgij . (3.20)

These are in perfect agreement with (3.4) and (3.9). The result for 〈Θj
0〉 coincides with (3.6),

and does not include contributions of the second type because they are not generated by

the perfect fluid constitutive relation.
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3.1 Kubo formula for Hall viscosity from a contact term

So far we have been working at the level of the partition function, but it is instructive

to consider the response to a general time-dependent applied torsion in the framework of

linear response theory. With this in view, we now consider eq. (3.20) as the static limit

of a Kubo formula for the stress tensor response to an externally applied time-dependent

torsion (not necessarily uniform). In order to obtain such a formula, we assume that the

only non-zero components of the torsion tensor are T0jk = −Tj0k, and we also consider

that the metric is Minkowskian. Thus the change of the Hamiltonian to linear order in the

torsion becomes

H1 = −
∫

d2x Ψ̄Ψδm

= −1

4

∫

d2x Ψ̄Ψ ǫijT0ij .

(3.21)

The induced change of the expectation value of Θij is obtained from linear response theory

in the form

δ〈Θij(x, t)〉 =
∫

d2y

〈

δΘij(x, t)

δT0km(y, t)

〉

0

T0km(y, t)

+
i

4

∫ t

−∞

dt̄ e−η(t−t̄)

∫

d2y
〈

[Θij(x, t), Ψ̄Ψ(y, t̄)]
〉

0
ǫkmT0km(y, t̄),

(3.22)

where η → 0+, and the subindex 0 means an equilibrium average with respect to the unper-

turbed Hamiltonian. The first term (contact term) has its origin in the explicit dependence

of Θ with the torsion, and corresponds exactly to the first summand of eq. (3.20),

〈

δΘij(x, t)

δT0km(y, t)

〉

0

= −1

4
〈Ψ̄Ψ〉0

(

ǫikδmj + ǫjkδmi + ǫkmδij
)

δ(x− y) . (3.23)

The second term involves the retarded stress tensor-spin density correlator defined by

Yij(x, t) ≡ −
i

2
lim

η→0+
θ(t)

〈

[Θij(x, t), Ψ̄Ψ(0, 0)]
〉

0
e−ηt. (3.24)

We can express eq. (3.22) in terms of a response function to the torsion χij km(q, ω), which in

the Fourier domain relates δ〈θij〉 = χij kmT0km. Therefore eq. (3.22) leads to the following

Kubo-type formula

χij km(q, ω) = −1

4
〈Ψ̄Ψ〉0

(

ǫikδmj + ǫjkδmi
)

− 1

2

(

Yij(q, ω) +
1

2
〈Ψ̄Ψ〉0δij

)

ǫkm, (3.25)

where

Yij(q, ω) =

∫ ∞

0
dt ei(ω+i0+)t

∫

d2x e−iq·x
〈

[Θij(x, t), Ψ̄Ψ(0, 0)]
〉

0
. (3.26)

The response function Yij(q, ω) is similar to the (integrated) stress-strain form of the re-

sponse function in ref. [20], where the role of the spin density is played by the antisymmetric

part of the strain generators Jαβ.
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We see that the Kubo formula (3.25) is consistent with the static result of eq. (3.20)

only if the ordered limit limq→0 limω→0 Yij(q, ω) satisfies

lim
q→0

lim
ω→0

Yij(q, ω) = lim
q→0

Yij(q, ω = 0) = −δij
2

∂P
∂m

. (3.27)

This requirement can be expressed as a thermodynamic sum rule valid for q → 0,

lim
q→0

∫ ∞

−∞

dω

π

ImYij(q, ω)

ω − i0+
= −δij

2

∂P
∂m

, (3.28)

which is similar to other sum rules giving different susceptibilities. It follows that the static

response to T0km is determined by a part of the contact term, namely

lim
q→0

χij km(q, ω = 0) = η̃
(

ǫikδmj + ǫjkδmi
)

, (3.29)

so that

η̃ =
1

4
lim
q→0

δijǫkmχij km(q, ω = 0). (3.30)

The coefficient η̃ = −〈Ψ̄Ψ〉0/4 will be identified below with the Hall viscosity.

4 Torsion-dependent constitutive relations

We now consider the corrections to the constitutive relations imposed by the partition

function (2.11). The argument essentially follows ref. [2]. As these corrections involve

the expectation value of the particle current Jµ = i Ψ̄γµΨ, we also need the modification

induced by the torsion on the equilibrium current. This is simply given by

δJ0 = −T0e
σ

√
g2

δW

δA0
= −eσ ∂n

∂m
δm, δJ i = 0. (4.1)

This may be immediately obtained from the relation between the particle density and the

pressure, n = eσ∂P/∂A0, which implies

∂〈Ψ̄Ψ〉
∂A0

= e−σ ∂n

∂m
. (4.2)

4.1 Stress tensor and charge current

The most general parity violating modification of the currents that includes torsion must

be written in terms of the non-zero quantities in equilibrium δm,Ξ, W̃ µ, X̃µ and η̃µν . Then

the non-dissipative parts of the constitutive relations in the Landau frame take the form

T µν = εuµuν + P∆µν − (χ̃Υδm+ χ̃ΞΞ)∆
µν − η̃ σ̃µν ,

Jµ = nuµ + χ̃W W̃ µ + χ̃XX̃µ,
(4.3)

which involve four new transport coefficients χ̃Υ, χ̃Ξ, χ̃W , χ̃X and the Hall viscosity η̃.1 To

find them, we specialize to equilibrium by using uµ = δµ0 e
−σ to zero order in the torsion,

1 The term (χ̃Υδm+ χ̃ΞΞ)∆
µν would be replaced by (χ̃BB + χ̃ΩΩ + χ̃Υδm+ χ̃ΞΞ)∆

µν in the complete

constitutive relation, where B = 1

2
ǫµνρFνρ and the vorticity is defined by Ω = ǫµνρuµ∂νuρ rather than

ǫµνρuµ∇νuρ. Then the effect of the additional term related to the antisymmetric part of the affine connection

in the presence of torsion, ∆Ω = −ǫµνρuµTνρu
λ, is considered separately in the coefficients χ̃Υ and χ̃Ξ.
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and ∆00 = σ̃00 = X̃0 = W̃0 = 0. Because the torsion-induced corrections can be expressed

in terms of changes in the fluid variables (δT, δµ, δui) according to

δT00 = e−2σ

(

∂ε

∂T
δT +

∂ε

∂µ
δµ

)

,

δJ0 = −e−σ

(

∂n

∂T
δT +

∂n

∂µ
δµ

)

,

δT i
0 = −eσ(ε+ P)δui,

δJ i = n δui + χ̃W W̃ i + χ̃XX̃i,

δT ij =

(

∂P
∂T

δT +
∂P
∂µ

δµ− χ̃Υδm− χ̃ΞΞ

)

gij − η̃ σ̃ij,

(4.4)

we can equate these first three equations to (3.5), (4.1) and (3.6). This gives

(

∂ε

∂T

∂n

∂µ
− ∂ε

∂µ

∂n

∂T

)

δT =

[

∂n

∂µ

(

∂ε

∂m
− 〈Ψ̄Ψ〉

)

− ∂ε

∂µ

∂n

∂m

]

δm− 〈Ψ̄Ψ〉
2

∂n

∂µ
Ξ,

(

∂ε

∂T

∂n

∂µ
− ∂ε

∂µ

∂n

∂T

)

δµ =

[

∂n

∂T

(

− ∂ε

∂m
+ 〈Ψ̄Ψ〉

)

+
∂ε

∂T

∂n

∂m

]

δm+
〈Ψ̄Ψ〉
2

∂n

∂T
Ξ,

δui =
〈Ψ̄Ψ〉
ε+ P

(

X̃i

2
− W̃ i

4

)

.

(4.5)

We now determine the transport coefficients appearing in the constitutive relations by

equating the last two equations in (4.4) with (4.1) and (3.13). With eqs. (4.5) and the

thermodynamical derivatives

∂P
∂ε

=

(

∂P
∂T

∂n

∂µ
− ∂P

∂µ

∂n

∂T

)/(

∂ε

∂T

∂n

∂µ
− ∂ε

∂µ

∂n

∂T

)

,

∂P
∂n

=

(

−∂P
∂T

∂ε

∂µ
+

∂P
∂µ

∂ε

∂T

)/(

∂ε

∂T

∂n

∂µ
− ∂ε

∂µ

∂n

∂T

)

,

(4.6)

we are left with

χ̃Υ = 〈Ψ̄Ψ〉
(

1− ∂P
∂ε

)

,

χ̃Ξ = −〈Ψ̄Ψ〉
(

1

2

∂P
∂ε

+
1

4

)

,

η̃ = −〈Ψ̄Ψ〉
4

,

χ̃W =
1

4
〈Ψ̄Ψ〉 n

ε+ P ,

χ̃X = −1

2
〈Ψ̄Ψ〉 n

ε+ P .

(4.7)

These expressions, which uniquely determine the new transport coefficients in term of the

angular momentum density, are one of the main results of this paper.
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4.2 The entropy current

Finally we consider the contribution to the entropy current which arises from the partition

function in eq. (2.11),

W =

∫

d2x
√
g2

eσ

T0

∂P(T, µ,m)

∂m
δm, δm = −1

8
ǫµνρTµνρ. (4.8)

If s denotes the entropy density that follows from the thermodynamic potential at zero

derivative order, s = ∂P/∂T , the standard formula for the entropy yields the contribution

S =
∂(T0W )

∂T0
=

∫

d2x
√
g2

∂2P
∂m∂T

δm =

∫

d2x
√
g2

∂s

∂m
δm. (4.9)

Therefore a condition that must be fulfilled by the correction to the entropy current δJµ
S is

∫

d2x
√
g2 e

σδJ0
S =

∫

d2x
√
g2

∂s

∂m
δm. (4.10)

Let us consider the following tentative expression for the entropy current containing the

dependence on the torsion:

Jµ
S = suµ − µ

T

(

χ̃W W̃ µ + χ̃XX̃µ
)

+ (bΞ Ξ + bΥδm)uµ + dW W̃ µ + dXX̃µ. (4.11)

It follows then from this form of the entropy current that the four coefficients bΞ, bΥ, dW
and dX are determined, in a unique way, by the condition

δJ0
S = s δu0 + e−σ

(

∂s

∂T
δT +

∂s

∂µ
δµ

)

− µ

T

(

χ̃W W̃ µ + χ̃XX̃µ
)

+ (bΞ Ξ+ bΥδm)uµ + dW W̃ µ + dXX̃µ

= e−σ ∂s

∂m
δm.

(4.12)

Then one finds that

bΞ =
〈Ψ̄Ψ〉
2T

,

bΥ =
2〈Ψ̄Ψ〉

T
,

dW =
〈Ψ̄Ψ〉
4T

,

dX = −〈Ψ̄Ψ〉
2T

.

(4.13)

Note that in order to obtain these results it is necessary to use the values of δT and

δµ given by eqs. (4.5), as well as the expressions for δu0 = −aiδui, W̃ 0, X̃0, and the

thermodynamical identities

∂s

∂ε
=

1

T
,

∂s

∂n
= −µ

T
, ε+ P = Ts+ µn. (4.14)
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Thus one has
∂s

∂m
=

1

T

∂ε

∂m
− µ

T

∂n

∂m
. (4.15)

It is remarkable that the results in eqs. (4.13) imply that the spatial part of δJµ
S is

identically zero at equilibrium:

δJ i
S = s δui +

(

−µ

T
χ̃W + dW

)

W̃ i +
(

−µ

T
χ̃X + dX

)

X̃i

= s δui +
s〈Ψ̄Ψ〉
ε+ P

(

W̃ i

4
− X̃i

2

)

= 0.

(4.16)

Thus the condition of no entropy production is satisfied since the divergence of δJµ
S is

necessarily zero under these conditions.2

5 Conclusion

In this paper, we have studied the modifications of the stress tensor of an ideal gas of Dirac

fermions coupled minimally to torsion. We have concentrated on the part coming from

the equilibrium thermal partition function to linear order in the torsion, which in 2 + 1

dimensions may be easily expressed in terms of an effective mass shift. Differentiating

with respect to the metric we have obtained different types of background data linear in

the torsion, including two pseudo-scalars, two pseudo-vectors and a pseudo-tensor field.

We have also found an expression for the entropy current consistent with zero entropy

production at equilibrium. It turns out that the non-dissipative part of the constitutive

relations involve five susceptibilities, four of them expressing the modifications of the stress

tensor and the current in response to the applied torsion. Because of the way the torsion

affects the covariant derivative of the fluid velocity, the remaining susceptibility may be

written as the proportionality factor that expresses the equilibrium response to the parity

odd shear tensor. Therefore it would be identified as the Hall viscosity.

Throughout this paper we have assumed that the fermions are minimally coupled to

torsion. Considering non-minimal couplings introduces an additional parameter on which

some of response functions may depend. Specifically, one has to make the replacement

δm → ξδm for arbitrary ξ, therefore leading at first sight to η̃ → ξη̃ . This has been used

to question the existence of a connection between Hall viscosity and torsion response [14].

However, the analysis sketched above ignores the fact, pointed out in section 3, that there

are actually two independent tensors, given by eqs. (3.10) and (3.14), which coincide at

equilibrium (see eq. (3.12)). Therefore, both tensors must be used in the modified consti-

tutive relation

δTµν = −η̃ σ̃µν − η̃2 t̃
µν

(2)
. (5.1)

2If torsion is present, the covariant differentiation is defined with respect to the non-symmetric connection

Γσ
µν(g) − K σ

µν . However, it is possible to define a modified divergence (see e.g., ref. [19]) according to
∗

∇µ ≡ ∇µ+T ν
µν , which for a vector field V µ reduces to the torsion-free result

∗

∇µV
µ = (

√
−g)−1∂µ(

√
−gV µ).

Thus the conservation or the entropy current found above must correspond to
∗

∇µJ
µ
S = 0.
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Now, as the covariant derivative in the presence of torsion involves the affine connection

Γσ
µν = Γσ

µν(g) −K σ
µν , rather than Γσ

µν(g)− ξK σ
µν , the parity odd shear tensor σ̃µν in the

last term of eq. (4.3) remains unchanged even if ξ 6= 1, and the same applies to η̃ which

cannot depend on ξ. Therefore the torsional response in the presence of non-minimal

coupling requires that

η̃2 = (1− ξ)
〈Ψ̄Ψ〉
4

. (5.2)

In this way the Hall viscosity remains intact, and in the absence of torsion is the only

non-dissipative term in the constitutive relation.

Finally, it would be desirable to combine the results from holographic models with

those presented here, but it does not appear to be an easy task. The main reason is

that there is no unique way to produce Hall viscosity and angular momentum density in

holography [4, 21–23]. For example, the holographic model considered in ref. [4] gives rise

to nonzero angular momentum density but vanishing Hall viscosity, while for the model

considered in ref. [22] the ratio between these quantities is compatible with the universal

value 1/2 from field theory. In this respect, it may be interesting to note that for a gapped

system, such as a free massive Dirac fermion, the spin density of eq. (2.13) is nonzero

at µ = 0, while the angular momentum density 〈ℓ〉 from certain holographic models [4]

vanishes at µ = 0. Thus the relation 〈ℓ〉 = 1
2∂P/∂m that determines many features of the

results in this paper does not seem to be satisfied in those models. Further studies are

required to understand all these points.
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