
ar
X

iv
:1

50
3.

04
16

2v
2 

 [
as

tr
o-

ph
.H

E
] 

 1
6 

M
ay

 2
01

5

Prepared for submission to JCAP

Generation of the magnetic helicity in

a neutron star driven by the

electroweak electron-nucleon

interaction

Maxim Dvornikova,b,c Victor B. Semikozb

aInstitute of Physics, University of São Paulo, CP 66318, CEP 05314-970 São Paulo, SP,
Brazil

bPushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation (IZMI-
RAN), 142190 Troitsk, Moscow, Russia

cPhysics Faculty, National Research Tomsk State University, 36 Lenin Ave., 634050 Tomsk,
Russia

E-mail: maxdvo@izmiran.ru, semikoz@yandex.ru

Abstract. We study the instability of magnetic fields in a neutron star core driven by the
parity violating part of the electron-nucleon interaction in the Standard Model. Assuming a
seed field of the order 1012 G, that is a common value for pulsars, one obtains its amplification
due to such a novel mechanism by about five orders of magnitude, up to 1017 G, at time scales
∼ (103 − 105) yr. This effect is suggested to be a possible explanation of the origin of the
strongest magnetic fields observed in magnetars. The growth of a seed magnetic field energy
density is stipulated by the corresponding growth of the magnetic helicity density due to the
presence of the anomalous electric current in the Maxwell equation. Such an anomaly is the
sum of the two competitive effects: (i) the chiral magnetic effect driven by the difference of
chemical potentials for the right and left handed massless electrons and (ii) constant chiral
electroweak electron-nucleon interaction term, which has the polarization origin and depends
on the constant neutron density in a neutron star core. The remarkable issue for the decisive
role of the magnetic helicity evolution in the suggested mechanism is the arbitrariness of
an initial magnetic helicity including the case of non-helical fields from the beginning. The
tendency of the magnetic helicity density to the maximal helicity case at large evolution times
provides the growth of a seed magnetic field to the strongest magnetic fields in astrophysics.
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1 Introduction

The study of strong magnetic fields inherent in some compact astrophysical objects, like neu-
tron stars, is one of the hottest topics of the modern astrophysics [1]. This research received
a significant impact in the wake of the observations of anomalous X-ray pulsars (AXP) [2]
and soft gamma-ray repeaters (SGR) [3]. Some observational characteristics of SGRs and
AXPs distinguish them from the more common accretion-powered pulsars in massive X-ray
binaries and place them into a separate class of astrophysical objects.

From the point of view of modern astrophysics [4], SGRs and AXPs are supposed to
be highly magnetized, B & 1015 G, neutron stars, or magnetars. It should be noted that a
typical pulsar can have a magnetic field up to B0 ∼ 1012 G. The magnetic field ∼ B0 can be
generated in the core of a supernova (SN) progenitor at some earlier stage of its evolution,
and subsequently amplified during core collapse, for example, simply by the flux conservation
[5]. The source of the strong magnetic field in a magnetar, in its turn, is still unclear.

It was shown in refs. [6, 7] that the most popular model of the magnetic field in a
magnetar, based on the turbulent dynamo [8], confronts with some of the observational data,
and thus should be corrected. Some other models based, e.g., on the idea of the fossil field,
are also discussed in the literature [7].

Anyway, if one adopts a dynamo scenario for the creation of the magnetic field in a
magnetar, one has to propose a mechanism to amplify the seed field B0 = 1012 G, which is
typical for a pulsar, by at least three orders of magnitude. Recently, in ref. [9], we put forward
a new mechanism which can provide this kind of amplification. That scenario is based on the
magnetic field instability because of the parity violation in the Standard Model (SM) for the
electroweak electron-nucleon (eN) interaction of ultrarelativistic degenerate electrons with
non-relativistic degenerate nucleons in a neutron star (NS) as the SN remnant and a future
magnetar.

On the first glance the mechanism proposed in ref. [9] resembles the results of ref. [10],
where the chiral magnetic effect (CME) in an external magnetic field, which is proportional to
the chemical potential of massless charged fermions, was established. The contribution of the
electroweak interaction into the averaged electron current was discarded in the case ofmassive

– 1 –



fermions. That result of ref. [10] is based on the ambiguous renormalization procedure for the
photon polarization operator calculated in the first order of the perturbation theory in GF,
where GF ≈ 1.17 × 10−5 GeV−2 is the Fermi constant. Nevertheless, the possibility that a
non-zero weak interaction term can appear in other models has not been ruled out in ref. [10].

To avoid nonsequential method in ref. [10] during calculations of the electric current
driven by electroweak interactions, in ref. [9] we considered the additive eN interaction
in the same Dirac equation for chiral states of massless electrons in an external uniform
magnetic field B. We obtained that the total induced electric current J, which is additive to
the standard ohmic current JOhm in plasma, entering the Maxwell equation,

J =
2αem

π
(µ5 + V5)B, (1.1)

is given by the difference of the right and left electrons chemical potentials, µ5 = (µR−µL)/2,
and includes the non-zero weak interaction coefficient

V5 =
(VL − VR)

2
=

GF

2
√
2
[nn − (1− 4ξ)np] , (1.2)

where nn,p are the densities of neutrons and protons inside NS, ξ = sin2 θW = 0.23 is the
Weinberg parameter and αem ≈ (137)−1 is the fine structure constant in eq. (1.1).

We would like to stress the important role of the magnetic helicity density h(t) = H/V =
V −1

∫

(A ·B)d3x in the generation of magnetic fields B = ∇×A in magnetars1.
Despite the problem of the magnetic field evolution in a SN remnant was treated in a

simplified way in ref. [9], we could derive some of the characteristics of the magnetic field in
a magnetar, which are close to the observed ones. Nevertheless we should mention some of
the shortcomings of our model in ref. [9]. Firstly, a stationary electric conductivity σcond =
const ∼ (T8)

−2 at the typical temperature T ≃ 108 K for a cooling neutron star instead
of its decreasing temperature T8(t) = T (t)/108 K was used in the analysis. Secondly, we
assumed the maximal and monochromatic helicity density spectrum: h(k, t) = 2ρB(k, t)/k0
and h(k, t) = h(t)δ(k − k0), where ρB(k, t) is the spectrum of the magnetic energy density.
Thirdly, we considered the magnetic field with the largest scale ΛB = k−1

0 = RNS = 10km
only.

Of course, the canonical inequality h(k, t) ≤ 2ρB(k, t)/k (see, e.g., ref. [11]) with a
running wave number k, kmin ≤ k ≤ kmax, for the continuous helicity density spectrum h(k, t)
and the magnetic energy density spectrum ρB(k, t), as well as the diminishing temperature for
a cooling NS core, dT/dt < 0, are more realistic conditions for our MagnetoHydroDynamical
(MHD) problem, and we can improve our model in ref. [9] using all these ingredients.

Our work is organized as follows. In the main section 2 we consider the magnetic helicity
evolution in a cooling NS core starting from the Faraday equation generalized in SM due to
the anomalous electric current in eq. (1.1). Basing on the Faraday equation and using the
Adler anomaly, we derive in section 2 the full set of self-consistent kinetic equations for the
three functions: the magnetic helicity density spectrum h(k, t), the magnetic energy density
spectrum ρB(k, t) and the CME parameter µ5(t). After formulation of the initial conditions

1It is well-known that, in a perfectly conducting fluid with fixed boundary conditions, the magnetic helicity
H is a conserved quantity. Even for a finite electric conductivity the magnetic helicity changes slowly. It leads
to the existence of stable equilibrium configurations for magnetic fields. To the extent that the helicity is
conserved, a non-equilibrium or unstable magnetic field with a finite conductivity cannot decay completely,
since the helicity of a vanishing field is zero.
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in section 2.1, we explain in section 2.2 our choice of the initial time for which the law of
the temperature cooling within a NS core should be valid. Then we present our results with
the numerical solutions of the three kinetic equations for the magnetic helicity density h(t)
in section 2.3, for the CME parameter µ5(t) in section 2.4, and, finally, the magnetic field
B(t) in the separate section 3. In section 4 we discuss our results and comment on some
remaining problems. The detailed derivation of the induced electric current in eq. (1.1) is
given in appendix A.

2 Magnetic helicity evolution in a cooling NS core

In this section we shall derive the system of kinetic equations for the continuous spectra of
the helicity density and the magnetic energy density as well as for the chiral imbalance in
the presence of the electroweak term V5 in the current in eq. (1.1). We rewrite this system
using the dimensionless variables in the form convenient for the numerical simulation, and
obtain its solutions which obey certain initial conditions.

We shall start with the Faraday equation for the magnetic field B evolution,

∂B

∂t
= α(t)∇×B+ η(t)∇2B, (2.1)

which can be obtained in a standard way from the Maxwell equations assuming the MHD
approximation; cf. in refs. [12, 13]. Here α(t) = Π(t)/σcond is the magnetic helicity parameter
given by the anomalous current in eq. (1.1) with the coefficient

Π(t) =
2αem

π
(µ5(t) + V5), (2.2)

and η(t) = (σcond)
−1 is the magnetic diffusion coefficient given by the electric conductivity

σcond. Note that one has to take into account the time dependence of σcond = σcond(t) in the
cooling NS core; cf. ref. [14]. In deriving eq. (2.1), we suppose that the anomalous current
in eq. (1.1) is added to the standard ohmic current JOhm = σcond(E+ v ×B) 2.

Basing on eq. (2.1), one can write the evolution equations for the binary combinations,
h(t) ∼ AB and ρB(t) ∼ B2. Here h(t) is the magnetic helicity density,

h(t) =
1

V

∫

d3x(A ·B) =
1

V

∫

d3k

(2π)3
(Ak ·B∗

k) =

∫

h(k, t)dk, (2.3)

where V is the normalization volume, h(k, t) is the spectrum of the helicity density, Ak and
Bk are the Fourier components of the vector potential A and the magnetic field B. The
equation for h(k, t) should be complemented by the equation for the magnetic energy density
ρB(t),

ρB(t) =
1

2V

∫

d3k

(2π)3
|Bk|2 =

∫

dkρB(k, t) =
1

2
B2(t). (2.4)

2Throughout the text we have neglected the bulk velocity evolution described by the Navier-Stokes equation
since the length scale of the velocity variation λv is much shorter than the correlation distance of the magnetic
field, λv ≪ k−1. In other words, infrared modes of the magnetic field are practically unaffected by the velocity
of plasma. In addition, the bulk velocity v does not contribute to the helicity evolution dh/dt ∼ (E ·B) when
the generalized Ohm law is substituted, E = −v × B + η∇ × B − αB. The small scale λv is also a reason
why we omitted the dynamo term ∇× (v×B) in the Faraday equation. Such a term could be important for
a turbulent (early) stage of the NS evolution accounting for its differential rotation.
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Note that, in eqs. (2.3) and (2.4), while defining h(k, t) and ρB(k, t),

h(k, t) =
k2

2π2V
A(k, t) ·B∗(k, t), ρB(k, t) =

k2

4π2V
B(k, t) ·B∗(k, t), (2.5)

we perform the integration over the angles in the Fourier space meaning isotropic spectra.
Accounting for the definition of h(k, t) and ρB(k, t) in eq. (2.5), their evolution reads

∂th(k, t) ∼ (Ȧk ·B∗
k +Ak · Ḃ∗

k) and ∂tρB(k, t) ∼ (Ḃk ·B∗
k + Ḃ∗

k ·Bk). Finally one gets that
(see also Appendix D in ref. [15]):

∂h(k, t)

∂t
= − 2k2

σcond
h(k, t) +

(

4Π

σcond

)

ρB(k, t),

∂ρB(k, t)

∂t
= − 2k2

σcond
ρB(k, t) +

(

Π

σcond

)

k2h(k, t). (2.6)

where Π = Π(t) is the parameter in eq. (2.2) responsible for the magnetic field instability.
Note that analogous evolution equations were obtained in ref. [16].

Then we should derive the kinetic equation which governs the chiral imbalance µ5(t) be-
ing complementary to the system in eq. (2.6). For that purpose we use the Adler anomaly [17],
∂µ(j

µ
R − jµL) = ∂µ(ψ̄γ

µγ5ψ) = (2αem/π)(E ·B), and the magnetic helicity density evolution

dh(t)

dt
= − 2

V

∫

d3x(E ·B), (2.7)

which results from the Maxwell equations and eq. (2.3). Integrating the Adler anomaly,
1
V

∫

d3x(...), combined with eq (2.7), one gets the conservation law

d

dt

[

nR − nL +
αem

π
h(t)

]

= 0, (2.8)

where nR,L are the electron densities for right and left handed electrons given by their chemical
potentials µR,L.

Note that at the beginning of a chiral imbalance, µR ∼ µL ∼ µ. Here µ is the chemical
potential of the ultrarelativistic degenerate electron gas which is fixed for the conventional
abundance of electrons Ye ≈ 0.05 in a cooling NS. For the nucleon density close to the nuclear
one, nB ≈ nn = 0.18 fm−3, the abundance Ye = ne/nB = 0.05 corresponds to the electron
density ne = µ3/3π2 = 9× 1036 cm−3, or µ = 125MeV = const.

Using the expression for the derivative of the density difference d(nR − nL)/dt ≈
2µ̇5(t)µ

2/π2 and the first line in eq. (2.6) for dh(t)/dt =
∫

dk[∂h(k, t)/∂t], the conserva-
tion law in eq. (2.8) can be rewritten as the kinetic equation for the imbalance µ5(t),

dµ5(t)

dt
=

παem

µ2σcond

∫

dk k2h(k, t) −
[

4α2
emρB(t)

µ2σcond

]

(µ5(t) + V5)− Γfµ5, (2.9)

where we added the rate of chirality-flipping processes, Γf ≈ (me/µ)
2νcoll, given by the

Rutherford electron-proton (ep) collision frequency νcoll = ω2
p/σcond without flip. Here ωp =

µ
√

4αem/3π is the plasma frequency in a degenerate ultrarelativistic electron gas. Note that
the value of σcond should correspond to a degenerate electron-proton plasma consisting of
ultrarelativistic degenerate electrons and nonrelativistic degenerate protons.
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Let us introduce the notations for the dimensionless functions:

H(κ, τ) =
α2
em

2µ2
h(k, t), R(κ, τ) =

α2
em

kminµ2
ρB(k, t), M(τ) =

αem

πkmin
µ5(t), (2.10)

where kmin is the lower bound for the wave number k range (see below). Then, using eqs. (2.6)
and (2.9), we get

∂H(κ, τ)

∂τ
= F

[

−κ2H(κ, τ) + 2(M(τ) + V)R(κ, τ)
]

,

∂R(κ, τ)

∂τ
= F

[

−κ2R(κ, τ) + 2(M(τ) + V)κ2H(κ, τ)
]

,

dM(τ)

dτ
= F

[∫ κmax

1
κ2H(κ, τ)dκ− 2(M(τ) + V)

∫ κmax

1
R(κ, τ)dκ − GM(τ)

]

.(2.11)

Here the argument κ = k/kmin runs in the wave number region kmin = R−1
NS ≤ k ≤ kmax, τ =

2k2mint/σ0 is the dimensionless diffusion time, G = (σ0Γf/2k
2
min)/F = (2αem/3π)(me/kmin)

2

is the dimensionless rate of the chirality flip, and σ0 is the electric conductivity at the initial
time t0 when the temperature of a NS core was T0 = 108 K. The factor F (τ) = σ0/σcond(t) =
[T (τ)/T0]

2 characterizes an increase of the electric conductivity σcond(t) ∼ T−2 during the
cooling of a NS core due to the neutrino (antineutrino) emission (see below). Finally, V =
αemV5/πkmin = 7 × 108 is the dimensionless eN weak interaction potential for the fixed
V5 = 6eV in eq. (1.2) given by the constant neutron density, nn ≫ np, where nn = 0.18 fm−3.

Note that the system in eq. (2.11) is a generalization of the kinetic equations derived
in ref. [9] for the case of an arbitrary helicity density, based on the system of the two kinetic
eqs. (2.6) completed by the evolution of the chiral imbalance µ5(t) in eq. (2.9). Indeed,
considering the particular case of the monocromatic helicity density spectrum, H(κ, τ) =
H(τ)δ(κ − κ0), where 1 ≤ κ0 ≤ κmax, as well as assuming the constant conductivity with
F = 1 and the maximal helicity density, at which H(τ) = R(τ)/κ0 or h(t) = 2ρB(t)/k0, we
can recover the master equations in ref. [9].

There is, however, a discrepancy between eq. (2.11) and eq. (16) in ref. [9]. It consists
in the additional factor 2 in the (M + V) term in eq. (2.11). This factor appears since in
ref. [9] we have relied on the incorrect eq. (6) in ref [18]. The evolution of h(k, t) is correctly
described by eq. (2.6) (see also refs. [15, 16]). Nevertheless, as we will see in sections 2.3-3,
the main features of the magnetic field evolution, described in ref. [9], remain unchanged.

Separating the magnetic diffusion factor Adiff(τ) = exp
(

−κ2
∫ τ
τ0
F (τ ′)dτ ′

)

in the first

two lines in eq. (2.11), one can easily find the important relation between the magnetic energy
density spectrum R(κ, τ) and the magnetic helicity density spectrum H(κ, τ),

H(κ, τ) =

√

[R(κ, τ)

κ

]2

−
[R(κ, τ0)

κ

]2

(1− q2), 0 ≤ q ≤ 1. (2.12)

The relation in eq. (2.12) results from the conservation law for the auxiliary functions
H1(κ, τ) = H(κ, τ)/Adiff (τ) and R1(κ, τ) = κ2R(κ, τ)/Adiff (τ),

d

dτ

[

κ2H2
1(κ, τ) −R2

1(κ, τ)
]

= 0, (2.13)

which obey the simplified differential equations, ∂τH1(κ, τ) = 2F (τ)(M(τ)+V)R1(κ, τ) and
∂τR1(κ, τ) = 2κ2F (τ)(M(τ) + V)H1(κ, τ), obtained from eq. (2.11).
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At the initial time τ0 the relation in eq. (2.12) takes the form:

H(κ, τ0) = q

[R(κ, τ0)

κ

]

. (2.14)

Here the parametrization by the factor q ≤ 1 corresponds to the the relation h(k, t0) =
2qρB(k, t0)/k in dimensional notations. Thus only the particular case q = 1 gives the maximal
helicity density used in ref. [9].

2.1 Initial conditions

In this section we choose the initial conditions for the system in eq. (2.11) corresponding to
a realistic NS.

The value of R(κ, τ0) = (α2
em/kminµ

2)ρB(k, t0) is given by the continuous initial mag-
netic energy density spectrum [12, 13],

ρB(k, t0) = Ck2+νB , kmin ≤ k ≤ kmax, (2.15)

where the minimal wave number corresponds to the largest scale ΛB = RNS for an internal
magnetic field within the NS core with the radius RNS = 10km, kmin = R−1

NS = 2× 10−11 eV.
The maximal wave number kmax is a free parameter corresponding to the minimal spatial

scale for the magnetic field Λ
(min)
B = k−1

max. The normalization constant C in eq. (2.15) results
from eq. (2.4) and equals to

C =
(3 + νB)B

2
0

2k3+νB
max

(2.16)

for kmin ≪ kmax.
In eq. (2.15), we choose the Kolmogorov’s spectrum for the initial energy density with

νB = −5/3, while other models of continuous spectra are possible, e.g. the Kazantsev’s
spectrum with νB = −1/2, or the white noise case νB = 0.

Basing on eqs. (2.15) and (2.16) and using eq. (2.14), we choose finally the following
initial conditions in eq. (2.11) for dimensionless quantities:

H(κ, τ0) = qC
(

κ

κmax

)1+νB

, 1 ≤ κ ≤ κmax =
kmax

kmin
≫ 1,

R(κ, τ0) = C
(

κ

κmax

)2+νB

, C =

(

α2
em(3 + νB)B

2
0

2µ2k2max

)

,

M(τ0) =
αem

πkmin
µ5(t0) = 1.2× 1014. (2.17)

Here in the last line µ5(t0) = 1MeV ≪ µ was used as an arbitrary value at the beginning
of the chiral imbalance production through an electroweak mechanism at the earlier stages
t < t0 of the NS evolution.

2.2 Growth of electric conductivity for a cooling non-superfluid NS

In this section we study the influence of the NS cooling on the time dependence of the
conductivity and thus on the growth of the magnetic field.

We remind that, in our problem, σcond is the electric conductivity in a degenerate
electron-proton plasma consisting of ultrarelativistic degenerate electrons and non-relativistic
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degenerate protons. The effects of both ee-collisions and the scattering of electrons by a neu-
tron magnetic moment are minor for the electric conductivity in plasma, σcond = ω2

p/νcoll,

given mostly by ep-collisions [14]. Here ωp = µ
√

4αem/3π is the plasma frequency in a degen-
erate ultrarelativistic electron gas with the density ne = µ3/3π2. Note that in a degenerate
electron gas both νcoll and σcond depend on the temperature T since νcoll ∼ T 2 . This is due
to the Pauli principle when all electron states with the electron momenta 0 ≤ pe ≤ µ are
busy, i.e. the ep-scattering is impossible at T = 0.

For the constant electron abundance Ye = ne/nB ≈ const the electric conductivity rises
with the cooling of a NS core [14]3,

σcond(t) = σ0

[

T (t0)

T (t)

]2

, σ0 = 107
( ne
1036 cm−3

)3/2
MeV ≈ const, (2.18)

due to the negative derivative dT/dt < 0 given by the neutrino (antineutrino) emission [19,
20]:

dT (t)

dt
= − T (t)

(nT − 2)t
, (2.19)

where the index nT equals to 6 or 8 depending on the neutrino emission channel4.
At early times, direct Urca processes, n → p + e− + ν̄e and p + e− → n + νe, prevail

with the neutrino emissivity LdU ∼ 1034(T/108 K)6 erg · s−1. Thus, at this stage the index
nT = 6 should be substituted in eq. (2.19). These equilibrium processes start just after a
SN burst at first seconds, when the electron abundance is large enough Ye ∼ 0.4. However,
then the electron abundance Ye becomes less due to the deleptonization within the NS core
as the SN remnant, and below Ye < 1/9 the direct Urca processes turn out to be suppressed
because degenerate fermions are unable to conserve momentum while remaining on their
Fermi surfaces. However, the presence of a third body, a nucleon N , in the modified Urca
processes, n+N → p+e−+N+ν̄e and p+N+e− → n+N+νe, allows to conserve momentum,
and the neutrino (antineutrino) emissivity LmU ∼ 1030(T/108 K)8 erg · s−1, corresponding to
the index nT = 8, dominates at Ye < 1/9. Thus we will adopt here nT = 8 in eq. (2.19)
assuming also the conventional constant electron (proton) abundance Ye ∼ 0.05.

From eqs. (2.18) and (2.19) one can find the factor F = σ0/σcond(t) in eq. (2.11),

F =

[

T (t)

T (t0)

]2

=

(

t

t0

)−2/(nT−2)

, (2.20)

or F (τ) = (τ/τ0)
−1/3 for nT = 8. Here we consider the cooling problem for a thermally

relaxed non-superfluid NS core at the neutrino cooling stage. Before this time interval, during
the first stage which lasts from ∼ 10 yr to a few centuries, a newly born star is thermally
non-relaxed. We put here t0 = 100 yr (T0 = 108 K) as the initial time (temperature) for
our evolution eq. (2.11) and consider here the second stage which lasts for (105 − 106) yr,

3The dependence of σcond in eq. (2.18) on the electron abundance, Ye = ne/nB, where nB = nn +np ≈ nn,
is more slower than that on the temperature. For a cooling NS at the second stage the conventional value
Ye ≃ 0.05 corresponds to ne = 9× 1036 cm−3

4For the redshifted spatially constant internal temperature T (t) = T (r, t) exp[Φ(r)], where T (r, t) is the
local internal temperature, r is the radial coordinate and Φ(r) is the metric function that determines the
gravitational redshift, we do not take into account in eq. (2.19) the constant factor exp[Φ(r)] ≈ exp[Φ(RNS)]
and consider the uniform internal temperature T (r, t) ≈ Tb where Tb is temperature at the bottom of a thin
envelope of NS related to the observable surface temperature by Ts ∝

√
Tb; cf. ref. [20].
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t0 ≤ t ≤ 106 yr, when the core is thermally decoupled from the crust and it cools via the
neutrino emission. During the third (final) stage, t > 106 yr, a thermally relaxed NS cools
via the surface emission of thermal photons. Thus, the time t0 = 100 yr < t < 106 yr is
appropriate in our numerical calculations where we use the cooling law in eq. (2.19).

2.3 Magnetic helicity growth driven by weak eN interaction

In this section we study the evolution of the magnetic helicity based on the numerical solution
of the system in eq. (2.11).

In figure 1 we show the corresponding growth of the helicity density h(t) = ∫kmax

kmin
dkh(k, t)

in the case of the Kolmogorov’s spectrum with νB = −5/3. Figures 1(a) and 1(b) correspond
to kmax = 2 × 10−10 eV or ΛB = 1km, and figures 1(c) and 1(d) to kmax = 2 × 10−9 eV or

Λ
(min)
B = 100m ≪ RNS. To support the helicity growth, i.e. to have dh/dt > 0, the maximal

wave number kmax, that is equivalent to the smallest scale ΛB = (kmax)
−1, should obey the

inequality5:

kq <
Π(t0)

2
, Π(t0) =

2αem

π
(µ5(t0) + V5). (2.21)

One can easily see the condition in eq. (2.21) is fulfilled for any chiral imbalance µ5 since
V5 = 6eV = const ≫ kq for any k ≤ kmax.

The most interesting issue here is the growth of the helicity density h(t) for the initially
non-helical field, q = 0. It is remarkable that the difference of the helicity densities for the
initially non-helical magnetic field, q = 0, shown by the solid lines, and the maximum helical
field, q = 1 , shown by the dashed lines, vanishes at t ≫ t0. In other words, an initial non-
helical field tends to be maximum helical irrespective to the initial condition in eq. (2.17); cf.
figures 1(a) and 1(c). On the contrary, at earlier times t & t0 such a difference is significant;
cf. figures 1(b) and 1(d). In all cases we start from t0 = 100 yr corresponding to the initial
moment of the thermally relaxed non-superfluid NS core (see the comments in section 2.2).

While the minimal wave number kmin = R−1
NS is fixed, we can not choose rather big values

of kmax or the ratio κmax = kmax/kmin ≫ 1. Otherwise, the minimal scale of magnetic field

Λ
(min)
B = k−1

max could be comparable with a small scale of the fluid velocity λv we neglected
here, when we consider large-scale magnetic fields and put λv ≪ k−1, in order to avoid the
involvement of the Navier-Stokes equation in our simplified model.

Considering smaller scales ΛB = k−1, compared to those shown in lower panels in
figure 1, we should also discuss earlier initial times t0, when the stage of a thermally relaxed
non-superfluid NS core have not been started yet. In other words, one expects that for a big
kmax the medium should be turbulent. This fact is not surprising because for small scales,
i.e. when k is big, the evolution of h(t) and ρB(t) proceeds faster since both characteristics,
like the helicity density and the magnetic energy density, are proportional to the running
wave number k, h(k, t) ∼ Ak(t)Bk(t) ≃ kA2

k and ρB(k, t) ≃ k2A2
k, involved in continuous

spectra. The example of such an accelerated growth can be seen in figures 1(c) and 1(d),

where kmax = 2× 10−9 eV, or Λ
(min)
B = 100m ≪ RNS, is chosen.

5Using eq. (2.6) one can show that the helicity growth is possible just at the initial time t0 if

dh(k, t)

dt

∣

∣

∣

∣

t=t0

=
2ρB(k, t0)

σ0

[−2qk +Π(t0)] > 0.
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Figure 1. The dimensional (in standard units G2cm) helicity density h(t) =
(2µ2kmax/α

2
em)

∫

κmax

1
dκH(κ, τ) versus time t′ = t − t0 for the initially non-helical field, q = 0

(solid lines), and the maximum helical field, q = 1 (dashed lines). Here kmin = R−1
NS = 2 × 10−11 eV

and t0 = 100 yr. Panel (a) corresponds to kmax = 2 × 10−10 eV, or Λ
(min)
B = 1km. The helicity

evolution is shown for t0 < t < 4× 105 yr. Panel (b) is the same as the panel (a) but for earlier times

t0 < t < 5 × 103 yr. Panel (c) corresponds to kmax = 2 × 10−9 eV, or Λ
(min)
B = 100m ≪ RNS, for

t0 < t < 104 yr. Panel (d) is the same as the panel (c) but for earlier times t0 < t < 6× 102 yr.

2.4 Change of the sign for CME

In this section we discuss some peculiarities in the evolution of the chiral imbalance µ5.
In figure 2 we show the evolution of the CME parameter M ∼ µ5 at different time

scales based on the numerical solution of the system in eq. (2.11). In section 2.1 we have
already commented on an initial positive µ5(t0) ∼ O(MeV) ≪ µ = 125MeV that vanishes
fast during t ∼ 10−12 s ≪ t0 due to the huge chirality flip rate G ∼ 1030 [9]. This fast
relaxation of µ5 to zero is not shown in figure 2. The example of the attenuation of µ5 → 0
is given in ref. [9]. The curves in figure 2 start from the plateau M ≈ 0. In figure 2(b) one
can see that this plateau lasts for ∼ 2000 yr ≫ t0 for the maximal kmax = 2× 10−9 eV. Then
the CME parameter µ5(t) changes sign, and for the same kmax reaches the absolute value of
the weak interaction parameter V5, |M| → V = 7× 108, or |µ5| → V5 = 6eV. Nevertheless,
as seen in figure 2, the sum M+V remains positive, M+V > 0, that provides the magnetic
helicity growth, dH/dτ > 0, and the magnetic field strength itself, ∂R/∂τ > 0, as it results
from eq. (2.11).
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Figure 2. The dimensionless chiral imbalance M versus time t′ = t− t0 for the initially non-helical
field, q = 0 (solid line), and the maximum helical field, q = 1 (dashed line). We choose t0 = 100 yr

and kmin = R−1
NS = 2×10−11 eV. Panel (a) corresponds to kmax = 2×10−10 eV, or Λ

(min)
B = 1km, and

t0 < t < 4× 105 yr. Panel (b) is built for kmax = 2× 10−9 eV, or Λ
(min)
B = 100m, and t0 < t < 104 yr.

The change of the sign for the CME parameter µ5 at a certain moment of time, µ5 >
0 → µ5 < 0, is explained by the huge negative back reaction from the growing magnetic field,
when the second term in eq. (2.9), ∼ ρB(t), corresponding to the second negative term in the
last line in eq. (2.11) for dM/dτ , becomes much greater than the chirality flip term, ∼ Γf .
For the initial magnetic field, B0 = 1012 G, or at earlier times t < 2000 yr, the situation is
reversal: the back reaction from a moderate magnetic field is negligible and the chirality flip
term is the main one, which reduces the initial positive µ5 > 0 to zero, M → 0.

3 Generation of magnetic fields in magnetars driven by weak eN interac-

tions

The previous attempts to explain the growth of a seed field B0 ∼ 1012 G in a NS core up to
the strongest B = (1015 − 1016)G observable in magnetars [4], which were based, e.g., on
CME with µ5 6= 0 in refs. [21, 22], failed because of the underestimated chirality flip ∼ Γf ,
see comments on this issue in refs. [9, 23–25].

In figure 3, we show that the magnetic field instability caused by the current in eq. (1.1)
leads to the growth of a seed field B0 by about five orders of magnitude. The resulting
magnetic field grows up to B ≃ 1017 G for B0 = 1012 G. The magnetic field growth happens

in the interval (103−105) yr, depending on the minimal scale Λ
(min)
B = k−1

max of the continuous
spectrum in eq. (2.15). We revealed above the leading role of the weak interaction term V5 for
the magnetic field instability providing the growth of the magnetic field strength, ∂R/∂τ > 0.

Now it should be noted that our model (see also ref. [9]) does not require any special
initial conditions, like an extremely strong magnetic field in a protostar in ref. [7], or a fast
rotation in ref. [8], or a significant initial chiral imbalance in refs. [21, 22, 26], to generate
strong magnetic fields in magnetars. Thus, using our results, we can predict a rather high
magnetars abundance. This fact is in agreement with the findings of ref. [27] that the
number of magnetars in our universe should be comparable with that of ordinary pulsars
having moderate magnetic fields ∼ B0 = 1012 G.
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Figure 3. The dimensional (in Gauss) magnetic field in NS, B(t) =
√

2
∫

dkρB(k, t), versus time

t′ = t− t0 for the initially non-helical field, q = 0 (solid lines), and the maximum helical field, q = 1
(dashed lines). Here kmin = R−1

NS = 2 × 10−11 eV and t0 = 100 yr. Analogously to figures 1 and 2,
the Kolmogorov’s initial spectrum ρB(k, t0), given by eq. (2.15) with νB = −5/3, is assumed. Panel

(a) corresponds to kmax = 2× 10−10 eV, or Λ
(min)
B = 1km. The magnetic field evolution is shown for

t0 < t < 4× 105 yr. Panel (b) is the same as panel (a) but at earlier times t0 < t < 5× 103 yr. Panel

(c) corresponds to kmax = 2 × 10−9 eV, or Λ
(min)
B = 100m ≪ RNS, and times t0 < t < 104 yr. Panel

(d) is the same as the panel (c) but for earlier times t0 < t < 6× 102 yr.

4 Discussion

There are two anomalies in SM that give two corresponding terms in the electric current in
eq. (1.1), J = JCME + JCS. The former one is the Adler anomaly that leads to the well-
known current in QCD plasma, JCME = (2αem/π)µ5B, see, e.g., ref. [28] or appendix A in
ref. [29]. The latter anomaly leading to the Chern-Simons (CS) term JCS ∼ GF arises due
to the polarization effect when accounting for the parity violation in SM; cf. ref. [30]. The
corresponding CS term in the SM Lagrangian LCS = Π2(A·B) = A·JCS is given by the static
limit of the parity violation term in the photon polarization operator Πij ∼ eijnknΠ2(ω =
0, |k|) [31]. It arises as the second term in eq. (2.2) for large scale magnetic fields, |k| → 0,
Π2(0, 0) = (2αem/π)V5 ∼ GF. In the present work we did not apply the Matsubara technique
to derive such Π2, as it was made in our previous works [15, 32] for the electroweak νe-
and ee-interactions. Instead we adopted a more transparent method to derive JCS = Π2B

for massless electrons basing on the exact solution of the Dirac equation, accounting for the
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electroweak eN interaction under the influence of an external magnetic field (see ref. [9] and
Appendix A). This approach includes automatically the CME term JCME in the current.
Thus both terms, ∼ µ5 and ∼ V5, are present in the kinetic equations in eq. (2.11). The
anomalous current J, being additive to the ohmic current enters Maxwell equation, results in
the nonzero magnetic helicity parameter α = Π/σcond, which governs the Faraday eq. (2.1)
modified in SM due to anomalies.

We generalized the approach for the magnetic field generation in a magnetar, which
has been recently suggested in ref. [9], where the concept of the maximum helicity density
was used. In the present work we considered an arbitrary initial magnetic helicity density
in eq. (2.14), which is parametrized by the parameter 0 ≤ q ≤ 1. Here we also chose
the continuous magnetic energy spectrum in eq. (2.15) instead of the monochromatic one in
ref. [9]: ρB(k, t) = ρB(t)δ(k−k0). The growth of the magnetic helicity density for the initially
nonhelical field, h(k, t0) = 0 corresponding to q = 0, is owing to the presence of the term
∼ ρB(k, t), which is nonzero at t = t0, in the first line in eq. (2.6). Although at early times
nonhelical (q = 0) and maximum helical (q = 1) magnetic helicities are well distinguishable,
the remarkable issue here is the tendency of the zero initial magnetic helicity (q = 0) to
grow up to the maximal one (q = 1) at large time scales, compare figures 1(a) and 1(c) with
figures 1(b) and 1(d). Of course, this helicity enhancement provides the similar dependence
on the parameter q for the magnetic field itself in figure 3.

As shown in section 2.2, the cooling of a NS core due to the neutrino emission via the
slow (modified) Urca processes leads to the increase of the electric conductivity. Such a
cooling displaces with time the evolution curves for both h(t) and B(t) keeping the general
effect of their growth at large times ∼ (103 − 105) yr.

Note that our approach that is based on the consideration of the binary combinations,
such as ρB ∼ B2 and h ∼ AB, gives no information on the structure and the orientation of the
magnetic field. We deal here with random magnetic fields having Kolmogorov’s spectrum
of the magnetic energy density. Such magnetic fields are characterized by the changing
amplitude B and the varying large spatial scale ΛB = k−1 in the continuous spectrum.

Decreasing the minimal scale Λ
(min)
B = k−1

max down to the inhomogeneity size of velocities λv
we should also consider the Navier-Stokes equation for the random fluid velocity v as well as
distinguish a large scale magnetic field B and a small scale fluctuation b. Then the interplay
of the kinetic helicity αkin ∼ 〈v · (∇×v)〉, where the mean value is taken at large scales6, and
the anomalous magnetic helicity parameter α = Π/σcond entering the Faraday eq. (2.1), both
governing the evolution of large scale magnetic fields, would be important. In the present
approach we do not take into account these problems. It should be also noted that in the case
of the solid-state rotation with the spatially homogeneous angular velocity Ω(t) we assume
here, the azimuthal rotation velocity of NS as a whole, V0 = Ω(t)r sin θeΦ, 0 ≤ r ≤ RNS,
does not contribute to the dynamo term ∇× (V ×B), where V = V0 + v is the total fluid
velocity and v is the small scale (random) velocity vanishing at large scales. As a result, the
αΩ dynamo is not essential for us, while α2-dynamo is active, see, e.g., refs. [13, 15].

To resume we have further developed a novel mechanism, initially proposed in ref. [9],
for the generation of the strongest magnetic fields in magnetars taking into account: (i) the
neutrino cooling of the NS core, (ii) continuous magnetic helicity density and magnetic energy
density spectra, and assuming (iii) an arbitrary initial magnetic helicity, including the case
of the initially non-helical magnetic field. We have found that the CS anomaly caused by

6In the dynamo term ∇ × 〈v × b〉, the mean vector 〈v × b〉 ≈ αkinB defines the pseudoscalar αkin ∼
〈v · (∇× v)〉.

– 12 –



the parity violation in the SM interaction of electrons with nucleons drives the growth of a
seed magnetic field by about five orders of magnitude and its helicity by about ten orders
of magnitude independently of an initial magnetic helicity density h(t0) that could be even
zero, h(t0) = 0. Such a sharp magnetic helicity growth, followed by the strong enhancement
of the magnetic field, is the main result of the present work.
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A Averaged electron current induced by chiral effects

In this appendix we obtain the solution of the Dirac equation for a massless electron inter-
acting with nucleons under the influence of the magnetic field. Then we derive the induced
electric current along the magnetic field direction.

The Dirac equation for massless electrons reads

[

γµ (i∂µ + eAµ)− γ0 (VLPL + VRPR)
]

ψe = 0, (A.1)

where γµ =
(

γ0,γ
)

are the Dirac matrices, Aµ = (0, 0, Bx, 0) is the vector potential for the
magnetic field directed along the z-axis, PL,R = (1∓γ5)/2 are the chiral projection operators,
γ5 = iγ0γ1γ2γ3, e > 0 is the absolute value of the electron charge, and VL,R are the effective
potentials for the interaction of left and right electrons with nucleons. The explicit form of
VL,R can be found in ref. [9]. The upper sign both in ∓ and ±, throughout this appendix,
corresponds to the left particles.

Let us decompose ψe in the chiral projections as ψe = ψL + ψR, where ψL,R = PL,Rψe.
Using the Dirac matrices in the standard representation [33],

γ0 =

(

1 0
0 −1

)

, γ =

(

0 σ

−σ 0

)

, γ5 =

(

0 1
1 0

)

, (A.2)

where σ are the Pauli matrices, it is convenient to represent ψT
L,R = (ϕL,R,∓ϕL,R). Using

eq. (A.1) and separating the variables ϕL,R = e−iEL,Rt+ipyy+ipzzϕL,R(x), we get the following
equation for ϕL,R(x):

[P0 ± (σP)]ϕL,R =

(

P0 ± pz ∓i
√
eB [∂η + η]

∓i
√
eB [∂η − η] P0 ∓ pz

)

ϕL,R = 0, (A.3)

where Pµ = (EL,R − VL,R,−i∂x, py + eBx, pz) and η =
√
eBx+ py/

√
eB.

The solution of eq. (A.3) can be found using the Hermite function un(η) = (eB/π)1/4

× exp(−η2/2)Hn(η)/
√
2nn!, where Hn(η) is the Hermite polynomial, as

ϕL,R(x) =
1

4π
√
P0

(√
P0 ∓ pzun−1

∓i
√
P0 ± pzun

)

, (A.4)
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for n = 1, 2, . . . . The normalization coefficient in eq. (A.4) corresponds to the following
normalization of the four component wave function ψT

L,R = (ϕL,R,∓ϕL,R):

∫

(ψL,R)
†
npypz

(ψL,R)n′p′yp′z
d3x = δnn′δ

(

py − p′y
)

δ
(

pz − p′z
)

. (A.5)

The energy levels can be found from the expression,

P 2
0 = (EL,R − VL,R)

2 = p2z + 2eBn. (A.6)

To obtain the solution in eq. (A.4) we use the following properties of the Hermite functions:
[∂η + η]un =

√
2nun−1 and [∂η − η] un−1 = −

√
2nun.

If n = 0, the solution of eq. (A.3) has the form,

ϕL,R(x) =
1

2π
√
2

(

0
u0

)

. (A.7)

Substituting eq. (A.7) to eq. (A.3) and using eq. (A.6), we get that pz > 0 for left particles
and pz < 0 for the right ones. It should be noted that, at n > 0, −∞ < pz < +∞.

Finally, we obtain the four component wave function in the form,

ψ
(n>0)
L,R (x) =

1

4π
√

EL,R − VL,R









√

EL,R − VL,R ∓ pzun−1

∓i
√

EL,R − VL,R ± pzun
∓
√

EL,R − VL,R ∓ pzun−1

i
√

EL,R − VL,R ± pzun









,

ψ
(n=0)
L,R (x) =

1

2π
√
2









0
u0
0

∓u0









. (A.8)

Using eq. (A.8), we can calculate the averaged electric current along the magnetic field
as

JL,R
z = e

∞
∑

n=0

∫ +∞

−∞

dpy

∫

dpz
[

ψ̄ē
L,Rγ

3ψē
L,Rfē(E

ē
L,R)− ψ̄e

L,Rγ
3ψe

L,Rfe(E
e
L,R)

]

, (A.9)

where fe,ē(E) = [exp(β(E ∓ µL,R) + 1]−1 is the Fermi-Dirac distribution with upper (lower)
sign ahead chemical potentials for electrons (positrons), Ee,ē

L,R =
√

p2z + 2eBn± VL,R are the
energy levels for electrons (upper sign) and positrons (lower sign), β = 1/T is the recipro-
cal temperature, and µL,R is the chemical potential. The positron wave functions ψē

L,R in
eq. (A.9) can be obtained from the electron ones ψe

L,R, given in eq. (A.8), by the charge
conjugation [10].

At n > 0 we get for electrons

ψ̄L,Rγ
3ψL,R =∓ 1

8π2(EL,R − VL,R)

×
[

(EL,R − VL,R ∓ pz) u
2
n−1 − (EL,R − VL,R ± pz) u

2
n

]

, (A.10)

and
∫ +∞

−∞

dpyψ̄L,Rγ
3ψL,R =

eB

4π2
pz

EL,R − VL,R
. (A.11)
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Integrating eq. (A.11) over pz, one obtains that Landau levels with n > 0 do not contribute
to the electric current.

For the lowest Landau level with n = 0 we have

ψ̄L,Rγ
3ψL,R = ± u20

4π2
,

∫ +∞

−∞

dpyψ̄L,Rγ
3ψL,R = ± eB

4π2
. (A.12)

Finally one obtains for left electrons

JL
z = −e

2B

4π2

∫ +∞

0
dpzfe(pz + VL), (A.13)

and for right electrons

JR
z = +

e2B

4π2

∫ 0

−∞

dpzfe(−pz + VR), (A.14)

and the analogous expression for positrons.
Adding the contribution of positrons with the properly changed signs, we obtain that

the total current J = JL + JR induced by chiral effects reads

Jz =
e2B

4π2

{∫ 0

−∞

dpz [fe (−pz + VR)− fē (−pz − VR)]

−
∫ +∞

0
dpz [fe (pz + VL)− fē (pz − VL)]

}

, (A.15)

or finally (see eq. (1.1) above):

J =
2αem

π
(µ5 + V5)B, (A.16)

which is additive to the ohmic current JOhm in a standard QED plasma and where αem =
e2/4π is the fine structure constant, µ5 = (µR − µL)/2, and V5 = (VL − VR)/2. It is worth
to mention that eq. (A.16) is valid for any electron temperature. The first term (∼ µ5)
in eq. (A.16) determines CME exploited, e.g., in QCD plasma [28], while the second term
(∼ V5) is given by weak eN interactions in SM and has the polarization origin (compare in
ref. [30]).
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[18] A. Boyarsky, J. Fröhlich and O. Ruchayskiy, Self-consistent evolution of magnetic fields and
chiral asymmetry in the early Universe, Phys. Rev. Lett. 108 (2012) 031301 [arXiv:1109.3350].

[19] C. Pethick, Cooling of neutron stars, Rev. Mod. Phys. 64 (1992) 1133.

[20] D.G. Yakovlev, W.C.G. Ho, P.S. Shternin, C.O. Heinke and A.Y. Potekhin, Cooling rates of
neutron stars and the young neutron star in the Cassiopeia A supernova remnant, Mon. Not.
Roy. Astron. Soc. 411 (2011) 1977 [arXive:1010.1154].

[21] A. Ohnishi and N. Yamamoto, Magnetars and the chiral plasma instabilities [arXiv:1402.4760].

[22] Y. Akamatsu and N. Yamamoto, Chiral plasma instabilities, Phys. Rev. Lett. 111 (2013)
052002 [arXive:1302.2125].

[23] D. Grabowska, D. Kaplan and S. Reddy, The role of the electron mass in damping chiral
magnetic instability in supernova and neutron stars, Phys. Rev. D 91 (2015) 085035
[arXiv:1409.3602].

[24] D.E. Kharzeev, Topology, magnetic field, and strongly interacting matter, to be published in
Annu. Rev. Nucl. Part. Sci. 65 (2015) [arXiv:1501.01336].

[25] V.A. Miransky and I.A. Shovkovy, Quantum field theory in magnetic field: from quantum
chromodynamics to graphene and Dirac semimetals, Phys. Rep. 576 (2015) 1
[arXive:1503.00732].

[26] J. Charbonneau and A. Zhitnitsky, Topological currents in neutron stars: Kicks, precession,
toroidal fields, and magnetic helicity, JCAP 08 (2010) 010 [arXive:0903.4450].

[27] P.M. Woods, Observations of magnetars, AIP Conf. Proc. 983 (2008) 227.

[28] K. Fukushima, D.E. Kharzeev, and H.J. Warringa, The chiral magnetic effect, Phys. Rev. D

– 16 –



78 (2008) 074033 [arXiv:0808.3382].

[29] M. Dvornikov and V. B. Semikoz, Lepton asymmetry growth in the symmetric phase of an
electroweak plasma with hypermagnetic fields versus its washing out by sphalerons, Phys. Rev.
D 87 (2013) 025023 [arXiv:1212.1416].

[30] V.B. Semikoz and J.W.F. Valle, Chern-Simons anomaly as polarization effect, JCAP 11

(2011) 048 [arXive:1104.3106].

[31] A. Boyarsky, O. Ruchayskiy and M. Shaposhnikov, Long-range magnetic fields in the ground
state of the Standard Model plasma, Phys. Rev. Lett. 109 (2012) 111602 [arXiv:1204.3604].

[32] M. Dvornikov, Impossibility of the strong magnetic fields generation in an electron-positron
plasma, Phys. Rev. D 90 (2014) 041702 [arXiv:1405.3059].

[33] C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill, New York (1980),
pp. 691–696.

– 17 –


	1 Introduction
	2 Magnetic helicity evolution in a cooling NS core
	2.1 Initial conditions
	2.2 Growth of electric conductivity for a cooling non-superfluid NS
	2.3 Magnetic helicity growth driven by weak eN interaction
	2.4 Change of the sign for CME

	3 Generation of magnetic fields in magnetars driven by weak eN interactions
	4 Discussion
	A Averaged electron current induced by chiral effects

