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Abstract. We study the relation between the flux of a center vortex abthfrom the center vortex model and the flux formed
between monopoles obtained from the Abelian gauge fixindnatetMotivated by the Monte Carlo simulations which have
shown that almost all monopoles are sitting on the top ofie®est we construct the fluxes of center vortices30r(2) and

J (3) gauge groups using fractional fluxes of monopoles. Thenongpate the potentials in the fundamental representation
induced by center vortices and fractional fluxes of monapdlée show that by combining the fractional fluxes of monopole
one can produce the center vortex fluxes30r(3) gauge group in a "center vortex model". Comparing the piztisntwe
conclude that the fractional fluxes of monopoles attrach exilger.
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INTRODUCTION

There are numerical evidences supporting the center vty of quark confinement. Furthermore, according to
Monte Carlo data, monopoles are also playing the role of sg#rconfinement. Therefore one can expect some kind
of relations between these two topological defects. Latsimulations by Fabeat al. [1] show that a center vortex
configuration after transforming to maximal Abelian gaugd then Abelian projection appears in the form of the
monopole-vortex chains iBU (2) gauge group. Therefore monopoles and center vorticesla@® each other. In
U (3) gauge group, monopoles and vortices form nets where thrtiea®meet at a single point [2, 3].

Motivated by these evidences, we construct the fluxes okcenatrtices forSU (2) andSU (3) gauge groups using
fractional fluxes of monopoles. We study quark confinementtfe fundamental representatiordd (3) gauge group
by creating the fractional fluxes of the monopoles, wherehioations of them may produce the center vortex fluxes
on the minimal area of a Wilson loop in a "center vortex modetimparing the potential induced by fractional fluxes
of monopoles with the one induced by center vortices, it st the fractional fluxes attract each other.

THE MAGNETIC CHARGES OF ABELIAN MONOPOLES

The formation of monopoles is related to the Abelian gaugedixThe points in space where the Abelian gauge fixing
becomes undetermined, are sources of magnetic monopodebrigfly explain the Abelian gauge fixing method in
SJ(2) gauge group [4]. A scalar field (x) in the adjoint representation is defined as the following:

P (X) = Pa(X) Ha, 1)

whereJ#; are the generators of tig) (2) group. One can diagonalize the scalar field by a gauge tranafmn. The
gauge in which the scalar field is diagonal is called an Albediauge. A degeneracy of the eigenvalues of the scalar
field occurs at specific points. The scalar field in the vigimf the points has hedgehog shdpe @ (F) = xa.#a.
Now, we consider a gauge transformation that diagonallmtédgehog field. The gluon field under the same gauge
transformation can be separated into a regularA&end a singular part:

1 1+cosf

A:Aa%:Aa%_Eﬁ‘p rsing A3, (2)

where only the diagonal (Abelian) part of the gluon field aoegia singular form. The singular part of the gauge field
corresponds to the magnetic monopole with the magnetigehar
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whereeis the color electric charge.
For U (3) gauge group, the topological defects of Abelian gauge figirggsources of magnetic monopoles with
magnetic charges equal to:
O1=— %T%a
gz=—%’r(—%%+§%), (4)
GB="7 (%%—i— @%) :

In the next section, we study center vortices in the thickeevortex model.

THICK CENTER VORTEX MODEL

In this model, it is assumed that the effect of a thick centetex on a fundamental Wilson loop is to multiply the loop
by a group factor

Gt (aM) = d—lfTr (exp[i?xm) j?D, (5)

where the{ %, i = 1,..,N — 1} are the Cartan generators amtishows the flux profile for the center vortex of type
If a thick center vortex is entirely contained within the pohen

exp{ia(“)-%ﬂ =zl =N n=12..,N-1 (6)

ForSJ(2) wherez; = €’ using Eq. (6), the maximum value of the flux profile correspogtb the Cartan generator
3 for the fundamental representation is equalto 2.

expli2rmAa) =z, )

and foraUJ (3) wherez; = esz, the maximum values of the flux profiles corresponding to thetdh generators#z
and.s# for the fundamental representation are equal to zero%mdespectively. Therefore

41T

exp[i \/é%} =2zl. (8)

The induced potential between static sources in the fundeheepresentation is as the following [5]:

N-1
Vi(R) = —zln{l— S fn<1—Reéfr8<x>]>}, 9)
X n=1

wheref, is the probability that any given unit area is pierced by aeewortex of typen.

ABELIAN MONOPOLES AND CENTER VORTICES

In this section, we construct the center vortex fluxes usiagtional fluxes of monopoles. BU (2) gauge group, when
a center vortex completely contains the minimal area of tlledN loop, Eq. (7) is applied. Substitutiogz from Eq.
(3)in Eq. (7) gives

expli2ri) = exp[—ieg} =zl, (10)
wherez;l = €7l is the center element @&J(2) gauge group. In this case, the flux that the center vortexesais
equal tort. d, = 1. On the other hand, when a closed surf8sairrounds a magnetic monopole of chaggée total

magnetic flux crossing the surface is equal to the magnetigely of the monopole [7]:

DOy — / Bds—g (11)
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FIGURE 1. Percentages of monopoles pierced by zero, one, or more thePeortex line in the Monte Carlo simulations.
Almost all of monopoles (about 93%) are pierced by a singl@Rex line. Only very small fractions of monopoles eithez aot
pierced at all, or are pierced by more than one line [1].
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FIGURE 2. Some vortex-monopole configurations3d (2) vacuum. A line which connects two monopoles carries halhef t
flux of the monopole.

whereg is the monopole charge in Eq. (3).

Therefore according to Eqg. (10) the effect of a center voatethe Wilson loop is equivalent to the effect of an
Abelian configuration related to the half of the matrix flg>on the Wilson loop. The contribution of this Abelian
configuration on the Wilson loop is as the following

W=9¢; = d—lfTr (exp{—iegD = %Tr( e;n elon ) =€ (12)

On the other hand, the contribution of an Abelian field corrfigion to the Wilson loop iV = €9® corresponding
to g units of the electric charge and for the fundamental remtesenq = 1 [8]. Therefore the flux of this Abelian
configuration corresponding to half of the magnetic chargaich affects on the fundamental Wilson looris

As aresult, the flux of the Abelian configuration correspagdd half of the magnetic chargeon the Wilson loop
is equal to the flux of center vortex on the Wilson loop.

According to the Monte Carlo simulations, almost all monlegaare sitting on top of the vortices by Abelian
projection [1] as shown in Fig. 1.

In addition, the monopole-vortex junctions are also disedsby Cornwall [2] where they are called nexuses. In
SJ(N) gauge group, each nexus is a sourcéofortices which meet each other at a point. Using Eq. (10),esom
configurations which appear in ti&) (2) monopole vacuum are plotted in Fig. 2. The sum of vortex flumast yield
the total flux of the monopole. Therefore each monopole isuacsoof two vortex fluxes. A line in the configurations
carries half of the flux of the monopole which is equivalentie center vortex flux.

In U (3) gauge group, magnetic charges satisfy the constraint

g1+02+093=0. (13)
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FIGURE 3. Some configurations of the monopole fractional fluxeSik{3) vacuum. A line with one arrow corresponds to one
third of the total monopole flux and a line with two arrows esponds to two third of the total monopole flux.

Therefore the number of independent magnetic chargesesdo@. We combine fractional fluxes of magnetic charges
to obtain a center vortex flux. When a center vortex piercesriimimal area of the loop, substitutiogg from Eq. (4)
in Eq. (8) gives

exp[i%%’é} = exp[ie(% - %)} =2zl, (14)
wherez;| = el is the center element &U (3) gauge group. Therefore, the sameSa{2) gauge group, the effect
of a center vortex on the Wilson loop is equivalent to theaféd an Abelian configuration related to one third of the
magnetic charggs — g> on the Wilson loop.

In other words, foBU (3) gauge group, the vortex carries one third of the total motedihax gs plus one third of the
total monopole fluxg, pointing in opposite direction. On the other hand, using(E4), some monopole configurations
which appear in th&UJ (3) monopole vacuum are plotted in Fig. 3. A line with one arrowhia configurations carries
one third of the total flux of a monopole and a line with two arsacarries two third of the total flux of a monopole.
Since theSUJ (3) monopole charges satisfy the Dirac quantization condié®ma- 2n7, exp[+ieg] = 1. Using this
equation, two third of the total monopole flux on the Wilsoapanay be regarded as the same as one third of the total
monopole flux pointing in opposite direction as the follogin

. 20n| 200 B . —0On
exp[le?] _exp[le 3 —|egn} _exp[|e 3 } (15)

wheregy are monopole charges in Eq. (4). Using Dirac quantizatiordition, right panel of Fig. 3 is plotted in Fig.
4. A line with two arrows may be regarded as the same as a liteasie arrow pointing in opposite direction. Using
Egs. (14) and (15), some configurations which may appearei®ti{3) monopole vacuum are plotted in Fig. 5. A
line in the configurations corresponds to the center vortexvilhich obtains from combining of a line corresponding
to one third of the total flux o§3 monopole and a line corresponding to one third of the total diug, monopole
pointing in opposite direction. Now, we investigate thegmitals induced by fractional flux lines of the monopoles in
a "center vortex model". We use quotation mark because iffesreint from the center vortex model. The difference
comes from the fact that we use each fractional flux betweemopales as an individual "vortex".

POTENTIAL FOR FUNDAMENTAL REPRESENTATION

In the center vortex model, the center vortices are line-dikd the Wilson loop is considered a rectangRlarT loop
in thex—t plane, withT >> R. The time-extensiom is huge but fixed. Therefore the loop is characterized jushby
width R.



FIGURE 4. Same as right panel of Fig. 3. Using Dirac quantization daomli two third of the total monopole flux on the Wilson
loop may be regarded as the same as one third of the total mlanfiyx pointing in opposite direction.
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FIGURE 5. Some vortex-monopole configurations3d (3) vacuum. The lines in the configurations correspond to théecen
vortices and the magnetic chargés equal tags — g».

Among vortex-monopole configurations, configurations \wrace line-like (right configurations in Figs. 2 and 5)
affect the Wilson loop. Other configurations have no effectiee Wilson loop because the effect of a center vortex
inside a configuration is eliminated by another center wgpt@Enting in opposite direction.

As stated above, i8U(3) gauge group, the combination of the fractional fluxes of npmies leads to the center
vortex flux. Now, the interaction between these fractionaddk is investigated in a "center vortex model".

Creation of the fractional flux line d8J (3) monopole vacuum linked to the fundamental representatigsow
loop in a "center vortex model" has the effect of multiplythg Wilson loop by a phasee.

Wi (C) — %W (C), (16)

where¥; = éTreie%@ andgn (n = 2,3) are monopole charges in Eq. (4). The static potential indlefractional
flux lines of the monopoles (see Fig. 4) in this "center vortedel", where combinations of them produce the center
vortex fluxes is as the following:

vf(R)z—zln{l—ifn[l—Re(%f)]}. (17)
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FIGURE 6. PotentiaV (R) induced by monopole fractional fluxes where combinationthef produce the center vortex fluxes
as well as the one induced by center vorticeSlii{3) gauge theory. Upper linear potential is induced by an icteya between
the Wilson loop and fractional fluxes corresponding to orltbf g3 monopole fluxes and one third g6 monopole fluxes. The
probability that any given plaquette is pierced by a frawioflux is chosen to be.0. Lower linear potential is induced by an
interaction between the Wilson loop and center vortex fluXes probability that any given plaquette is pierced by aeaevortex
flux is chosen to be.Q. The potential induced by center vortices has an extrativegenergy compared to the one induced by
fractional fluxes where combinations of them produce theéeremrtex fluxes. Therefore it may be an attraction betwegctibnal
flux lines in Fig. 4 to produce center vortex line.

On the other hand, the static potential induced by thin cestgices is
Vi(R) = =% In{1-fi[1—Re(z)]}. (18)
X

Figure 6 shows the potentials induced by fractional fluxethefmonopoles and center vortices for the fundamental
representation.

The free parameterf, in Egs. (17) and (18) are chosen to h&.0As shown in Fig. 6, the potential induced by
fractional fluxes of monopolesis linear. The extra neggivential energy of static potential induced by centeresort
compared with the potential induced by fractional fluxes @hopoles shows that the fractional flux lines of the
monopoles in Fig. 4, attract each other.

CONCLUSION

Both the Abelian monopole and center vortex mechanismseofjttark confinement are supported by lattice gauge
theory. Therefore one can expect that Abelian monopolesstated to center vortices. According to lattice results in
SJ(2) gauge theory, a center vortex configuration, transformeaktximal Abelian gauge and then Abelian-projected,
will appear as a monopole-vortex chain. Motivated by thesdemces, we construct center vortex fluxes using
fractional fluxes of monopoles f&J (2) andSJ (3) gauge groups. A "center vortex model" is applie®th(3) gauge
group to calculate induced potentials from the center westaind the monopole fractional fluxes where combinations
of them produce center vortex fluxes. Comparing the potishtige conclude that the fractional fluxes obtained from
monopoles attract each other.
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