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Center vortices as composites of monopole fluxes
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Abstract. We study the relation between the flux of a center vortex obtained from the center vortex model and the flux formed
between monopoles obtained from the Abelian gauge fixing method. Motivated by the Monte Carlo simulations which have
shown that almost all monopoles are sitting on the top of vortices, we construct the fluxes of center vortices forSU(2) and
SU(3) gauge groups using fractional fluxes of monopoles. Then, we compute the potentials in the fundamental representation
induced by center vortices and fractional fluxes of monopoles. We show that by combining the fractional fluxes of monopoles
one can produce the center vortex fluxes forSU(3) gauge group in a "center vortex model". Comparing the potentials, we
conclude that the fractional fluxes of monopoles attract each other.
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INTRODUCTION

There are numerical evidences supporting the center vortextheory of quark confinement. Furthermore, according to
Monte Carlo data, monopoles are also playing the role of agents of confinement. Therefore one can expect some kind
of relations between these two topological defects. Lattice simulations by Faberet al. [1] show that a center vortex
configuration after transforming to maximal Abelian gauge and then Abelian projection appears in the form of the
monopole-vortex chains inSU(2) gauge group. Therefore monopoles and center vortices correlate to each other. In
SU(3) gauge group, monopoles and vortices form nets where three vortices meet at a single point [2, 3].

Motivated by these evidences, we construct the fluxes of center vortices forSU(2) andSU(3) gauge groups using
fractional fluxes of monopoles. We study quark confinement for the fundamental representation inSU(3) gauge group
by creating the fractional fluxes of the monopoles, where combinations of them may produce the center vortex fluxes
on the minimal area of a Wilson loop in a "center vortex model". Comparing the potential induced by fractional fluxes
of monopoles with the one induced by center vortices, it seems that the fractional fluxes attract each other.

THE MAGNETIC CHARGES OF ABELIAN MONOPOLES

The formation of monopoles is related to the Abelian gauge fixing. The points in space where the Abelian gauge fixing
becomes undetermined, are sources of magnetic monopoles. We briefly explain the Abelian gauge fixing method in
SU(2) gauge group [4]. A scalar fieldΦ(x) in the adjoint representation is defined as the following:

Φ(x) = Φa (x)Ha, (1)

whereHa are the generators of theSU (2) group. One can diagonalize the scalar field by a gauge transformation. The
gauge in which the scalar field is diagonal is called an Abelian gauge. A degeneracy of the eigenvalues of the scalar
field occurs at specific points. The scalar field in the vicinity of the points has hedgehog shapei.e. Φ(~r) = xaHa.
Now, we consider a gauge transformation that diagonalizes the hedgehog field. The gluon field under the same gauge
transformation can be separated into a regular part~AR and a singular part:

~A = ~AaHa = ~AR
aHa −

1
e
~nϕ

1+ cosθ
rsinθ

H3, (2)

where only the diagonal (Abelian) part of the gluon field acquires a singular form. The singular part of the gauge field
corresponds to the magnetic monopole with the magnetic charge

g =−4π
e

H3, (3)
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wheree is the color electric charge.
For SU(3) gauge group, the topological defects of Abelian gauge fixingare sources of magnetic monopoles with

magnetic charges equal to:

g1 =− 4π
e H3,

g2 =− 4π
e

(

− 1
2H3+

√
3

2 H8

)

,

g3 =
4π
e

(

1
2H3+

√
3

2 H8

)

.

(4)

In the next section, we study center vortices in the thick center vortex model.

THICK CENTER VORTEX MODEL

In this model, it is assumed that the effect of a thick center vortex on a fundamental Wilson loop is to multiply the loop
by a group factor

G f (α(n)) =
1
d f

Tr
(

exp
[

i~α(n) · ~H
])

, (5)

where the{Hi, i = 1, ..,N−1} are the Cartan generators and~αn shows the flux profile for the center vortex of typen.
If a thick center vortex is entirely contained within the loop, then

exp
[

i~α(n) · ~H
]

= znI = e
2πin

N I n = 1,2, ...,N −1. (6)

ForSU(2)wherez1 = eπ i using Eq. (6), the maximum value of the flux profile corresponding to the Cartan generator
H3 for the fundamental representation is equal to 2π i.e.

exp[i2πH3] = z1I, (7)

and forSU(3) wherez1 = e
2πi
3 , the maximum values of the flux profiles corresponding to the Cartan generatorsH3

andH8 for the fundamental representation are equal to zero and4π√
3
, respectively. Therefore

exp

[

i
4π√

3
H8

]

= z1I. (8)

The induced potential between static sources in the fundamental representation is as the following [5]:

V f (R) =−∑
x

ln

{

1−
N−1

∑
n=1

fn(1−ReG f [~αn
C(x)])

}

, (9)

where fn is the probability that any given unit area is pierced by a center vortex of typen.

ABELIAN MONOPOLES AND CENTER VORTICES

In this section, we construct the center vortex fluxes using fractional fluxes of monopoles. InSU(2) gauge group, when
a center vortex completely contains the minimal area of the Wilson loop, Eq. (7) is applied. SubstitutingH3 from Eq.
(3) in Eq. (7) gives

exp[i2πH3] = exp
[

−ie
g
2

]

= z1I, (10)

wherez1I = eπ iI is the center element ofSU(2) gauge group. In this case, the flux that the center vortex carries is
equal toπ : Φv = π . On the other hand, when a closed surfaceS surrounds a magnetic monopole of chargeg, the total
magnetic flux crossing the surface is equal to the magnetic chargeg of the monopole [7]:

Φm =

∫

S
~B.d~s = g (11)



FIGURE 1. Percentages of monopoles pierced by zero, one, or more than one P-vortex line in the Monte Carlo simulations.
Almost all of monopoles (about 93%) are pierced by a single P-vortex line. Only very small fractions of monopoles either are not
pierced at all, or are pierced by more than one line [1].

FIGURE 2. Some vortex-monopole configurations inSU(2) vacuum. A line which connects two monopoles carries half of the
flux of the monopole.

whereg is the monopole charge in Eq. (3).
Therefore according to Eq. (10) the effect of a center vortexon the Wilson loop is equivalent to the effect of an

Abelian configuration related to the half of the matrix fluxg on the Wilson loop. The contribution of this Abelian
configuration on the Wilson loop is as the following

W = G f =
1
d f

Tr
(

exp
[

−ie
g
2

])

=
1
2

Tr

(

e−iπ 0
0 eiπ

)

= eiπ . (12)

On the other hand, the contribution of an Abelian field configuration to the Wilson loop isW = eiqΦ corresponding
to q units of the electric charge and for the fundamental representationq = 1 [8]. Therefore the flux of this Abelian
configuration corresponding to half of the magnetic chargeg which affects on the fundamental Wilson loop isπ .

As a result, the flux of the Abelian configuration corresponding to half of the magnetic chargeg on the Wilson loop
is equal to the flux of center vortex on the Wilson loop.

According to the Monte Carlo simulations, almost all monopoles are sitting on top of the vortices by Abelian
projection [1] as shown in Fig. 1.

In addition, the monopole-vortex junctions are also discussed by Cornwall [2] where they are called nexuses. In
SU(N) gauge group, each nexus is a source ofN vortices which meet each other at a point. Using Eq. (10), some
configurations which appear in theSU(2) monopole vacuum are plotted in Fig. 2. The sum of vortex fluxesmust yield
the total flux of the monopole. Therefore each monopole is a source of two vortex fluxes. A line in the configurations
carries half of the flux of the monopole which is equivalent tothe center vortex flux.

In SU(3) gauge group, magnetic charges satisfy the constraint

g1+ g2+ g3 = 0. (13)



FIGURE 3. Some configurations of the monopole fractional fluxes inSU(3) vacuum. A line with one arrow corresponds to one
third of the total monopole flux and a line with two arrows corresponds to two third of the total monopole flux.

Therefore the number of independent magnetic charges reduces to 2. We combine fractional fluxes of magnetic charges
to obtain a center vortex flux. When a center vortex pierces the minimal area of the loop, substitutingH8 from Eq. (4)
in Eq. (8) gives

exp

[

i
4π√

3
H8

]

= exp
[

ie(
g3

3
− g2

3
)
]

= z1I, (14)

wherez1I = e
2πi
3 I is the center element ofSU(3) gauge group. Therefore, the same asSU(2) gauge group, the effect

of a center vortex on the Wilson loop is equivalent to the effect of an Abelian configuration related to one third of the
magnetic chargeg3− g2 on the Wilson loop.

In other words, forSU(3) gauge group, the vortex carries one third of the total monopole flux g3 plus one third of the
total monopole fluxg2 pointing in opposite direction. On the other hand, using Eq.(14), some monopole configurations
which appear in theSU(3) monopole vacuum are plotted in Fig. 3. A line with one arrow inthe configurations carries
one third of the total flux of a monopole and a line with two arrows carries two third of the total flux of a monopole.
Since theSU(3) monopole charges satisfy the Dirac quantization conditioneg = 2nπ , exp[±ieg] = 1. Using this
equation, two third of the total monopole flux on the Wilson loop may be regarded as the same as one third of the total
monopole flux pointing in opposite direction as the following

exp

[

ie
2gn

3

]

= exp

[

ie
2gn

3
− iegn

]

= exp

[

ie
−gn

3

]

. (15)

wheregn are monopole charges in Eq. (4). Using Dirac quantization condition, right panel of Fig. 3 is plotted in Fig.
4. A line with two arrows may be regarded as the same as a line with one arrow pointing in opposite direction. Using
Eqs. (14) and (15), some configurations which may appear in the SU(3) monopole vacuum are plotted in Fig. 5. A
line in the configurations corresponds to the center vortex flux which obtains from combining of a line corresponding
to one third of the total flux ofg3 monopole and a line corresponding to one third of the total flux of g2 monopole
pointing in opposite direction. Now, we investigate the potentials induced by fractional flux lines of the monopoles in
a "center vortex model". We use quotation mark because it is different from the center vortex model. The difference
comes from the fact that we use each fractional flux between monopoles as an individual "vortex".

POTENTIAL FOR FUNDAMENTAL REPRESENTATION

In the center vortex model, the center vortices are line-like and the Wilson loop is considered a rectangularR×T loop
in thex− t plane, withT >> R. The time-extensionT is huge but fixed. Therefore the loop is characterized just bythe
width R.



FIGURE 4. Same as right panel of Fig. 3. Using Dirac quantization condition, two third of the total monopole flux on the Wilson
loop may be regarded as the same as one third of the total monopole flux pointing in opposite direction.

FIGURE 5. Some vortex-monopole configurations inSU(3) vacuum. The lines in the configurations correspond to the center
vortices and the magnetic chargeg is equal tog3−g2.

Among vortex-monopole configurations, configurations which are line-like (right configurations in Figs. 2 and 5)
affect the Wilson loop. Other configurations have no effect on the Wilson loop because the effect of a center vortex
inside a configuration is eliminated by another center vortex pointing in opposite direction.

As stated above, inSU(3) gauge group, the combination of the fractional fluxes of monopoles leads to the center
vortex flux. Now, the interaction between these fractional fluxes is investigated in a "center vortex model".

Creation of the fractional flux line ofSU(3) monopole vacuum linked to the fundamental representation Wilson
loop in a "center vortex model" has the effect of multiplyingthe Wilson loop by a phase,i.e.

Wf (C)→ G fWf (C), (16)

whereG f =
1

d f
Treie gn

3 andgn (n = 2,3) are monopole charges in Eq. (4). The static potential induced by fractional

flux lines of the monopoles (see Fig. 4) in this "center vortexmodel", where combinations of them produce the center
vortex fluxes is as the following:

V f (R) =−∑
x

ln

{

1−
3

∑
n=2

fn[1−Re(G f )]

}

. (17)



FIGURE 6. PotentialV (R) induced by monopole fractional fluxes where combinations ofthem produce the center vortex fluxes
as well as the one induced by center vortices inSU(3) gauge theory. Upper linear potential is induced by an interaction between
the Wilson loop and fractional fluxes corresponding to one third of g3 monopole fluxes and one third ofg2 monopole fluxes. The
probability that any given plaquette is pierced by a fractional flux is chosen to be 0.1. Lower linear potential is induced by an
interaction between the Wilson loop and center vortex fluxes. The probability that any given plaquette is pierced by a center vortex
flux is chosen to be 0.1. The potential induced by center vortices has an extra negative energy compared to the one induced by
fractional fluxes where combinations of them produce the center vortex fluxes. Therefore it may be an attraction between fractional
flux lines in Fig. 4 to produce center vortex line.

On the other hand, the static potential induced by thin center vortices is

V f (R) =−∑
x

ln{1− f1[1−Re(z1)]} . (18)

Figure 6 shows the potentials induced by fractional fluxes ofthe monopoles and center vortices for the fundamental
representation.

The free parametersfn in Eqs. (17) and (18) are chosen to be 0.1. As shown in Fig. 6, the potential induced by
fractional fluxes of monopoles is linear. The extra negativepotential energy of static potential induced by center vortex
compared with the potential induced by fractional fluxes of monopoles shows that the fractional flux lines of the
monopoles in Fig. 4, attract each other.

CONCLUSION

Both the Abelian monopole and center vortex mechanisms of the quark confinement are supported by lattice gauge
theory. Therefore one can expect that Abelian monopoles arerelated to center vortices. According to lattice results in
SU(2) gauge theory, a center vortex configuration, transformed tomaximal Abelian gauge and then Abelian-projected,
will appear as a monopole-vortex chain. Motivated by these evidences, we construct center vortex fluxes using
fractional fluxes of monopoles forSU(2) andSU(3) gauge groups. A "center vortex model" is applied toSU(3) gauge
group to calculate induced potentials from the center vortices and the monopole fractional fluxes where combinations
of them produce center vortex fluxes. Comparing the potentials, we conclude that the fractional fluxes obtained from
monopoles attract each other.
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