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A. C. Aguilar

University of Campinas - UNICAMP, Institute of Physics “Gleb Wataghin”,
CEP 13083-859 - Campinas, SP, Brazil

E-mail: aguilar@ifi.unicamp.br

Abstract.

In this talk we present a new method for determining the nonperturbative quark-gluon
vertex, which constitutes a crucial ingredient for a variety of theoretical and phenomenological
studies. This new method relies heavily on the exact all-order relation connecting the
conventional quark-gluon vertex with the corresponding vertex of the background field method,
which is Abelian-like. The longitudinal part of this latter quantity is fixed using the standard
gauge technique, whereas the transverse is estimated with the help of the so-called transverse
Ward identities. This method allows the approximate determination of the nonperturbative
behavior of all twelve form factors comprising the quark-gluon vertex, for arbitrary values of
the momenta. Numerical results are presented for the form factors in three special kinematical
configurations (soft gluon and quark symmetric limit, zero quark momentum), and compared
with the corresponding lattice data.

1. Introduction

One of the major challenges of nonperturbative QCD is to understand the mechanism that
drives chiral symmetry breaking and the associated generation of constituent quark masses. As is
well known from a series of previous studies [1, 2, 3, 4, 5], the quantity that is intimately related to
the underlying dynamics of the chiral symmetry breaking is the quark-gluon vertex. In addition,
this vertex is of paramount importance in the formalism of the Bethe-Salpeter equations (BSEs),
which describes the formation of the bound states of the theory [6, 7, 8, 9, 10, 11].

From the point of view of the perturbative QCD, the quark-gluon vertex has been carefully
scrutinized at the one-loop level [12], where results for general kinematic configurations and
arbitrary gauges. Moreover, at two and three-loop order we have results for some specific
kinematics and gauges [13, 14].

The main difficulty in dealing with the quark-gluon vertex lies in the fact that one has to
determine the behavior of twelve form factors (four “longitudinal” and the eight “transverse”),
which are functions of three independent kinematic variables. For this reason, the available
nonperturbative information on this quantity is rather limited. In particular, there are only
few results obtained from simulations on relatively small lattices [15, 16, 17, 18, 19, 20]. In
the context of the Schwinger-Dyson equations (SDEs) the situation is not that different. The
behavior of the form factors is governed by a complex system of coupled integral equations,
which can be solved only after considerable truncations and drastic simplifying assumptions
[21, 22, 11, 23, 24, 25, 26].
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In this talk we will present a novel nonperturbative approach for calculating the form factors
of the quark-gluon vertex in the Landau gauge [27]. This task will be accomplished within the
PT-BFM scheme [28, 29, 30], which is obtained from the combination of the pinch technique
(PT) [31, 32, 33, 34, 35, 36] with the background field method (BFM) [37].

An intrinsic feature of the PT-BFM formalism is the natural separation of the gluonic
field into a quantum and a background part, thus increasing the number of possible Green’s
functions that one may consider. In particular, two types of the quark-gluon vertices make
their appearance: (i) the conventional quark-gluon vertex (formed by a quantum gluon, quark
and anti-quark fields), denoted by Γ; and the background quark-gluon vertex (formed by a

background gluon, quark and anti-quark fields), denoted by Γ̂. A crucial difference between these
two vertices, lies in the fact that the conventional vertex satisfies the usual STIs, whereas the
background vertex obeys Abelian-like WIs. The conversion between quantum and background
vertices is achieved through the so-called background-quantum identities (BQIs) [38, 39], which

relate Γ and Γ̂ through special auxiliary ghost Green’s functions, namely Λµν , Kµ and its
conjugated Kµ.

The aim of this work is to express the conventional quark-gluon vertex as a deviation from
the “Abelian-like” vertex Γ̂µ. Specifically, our strategy will be the following: first we use the
“gauge technique” inspired Ansatz [40, 41, 42, 43] for the longitudinal part of the Abelian-like

Γ̂µ. Then, with the help of the so-called “Transverse Ward Identities”(TWIs) [44, 45, 46, 47, 48],

we will fix the transverse part of the Γ̂µ, neglecting the non-local terms present in the TWIs.

The combination of these two steps generates the so-called minimal Ansatz for Γ̂µ [49]. As a

final step we use the BQIs to convert Γ̂µ into Γ. This conversion requires the computation of
the special auxiliary functions Λµν and Kµ; the behavior ofΛµν is well-known from previous
studies [50], whereas Kµ and Kµ were first computed at one-loop dressed approximation in
Ref. [27], using as ingredient the gluon lattice propagator.

In order to make contact with the results of lattice simulations [15, 16, 17, 18, 19, 20], we
will present the numerical evaluation of the relevant form factors in three special kinematical
configurations namely (i) soft gluon, (ii) quark symmetric limit and (iii) zero quark momentum.
As we will see, while a general qualitative agreement with the available lattice data is found,
quantitative discrepancies still remain.

2. The two quark-gluon vertices in the PT-BFM formalism

In the PT-BFM formalism there are two quark-gluon vertices, depending on the nature of the
incoming gluon. Specifically, the vertex formed by a quantum gluon (Q) entering into a ψψ̄ pair
corresponds to the conventional vertex, Γa

µ (see left vertex of Fig. 1); the corresponding three-

point function with a background gluon (Â) entering represents instead the PT-BFM vertex,

and will be denoted by Γ̂a
µ (see right vertex of Fig. 1). Choosing the flow of the momenta such

that p1 = q + p2, we then define

iΓa
µ(q, p2,−p1) = igtaΓµ(q, p2,−p1); iΓ̂a

µ(q, p2,−p1) = igtaΓ̂µ(q, p2,−p1), (1)

where the hermitian and traceless generators ta of the fundamental SU(3) representation are
given by ta = λa/2, with λa the Gell-Mann matrices.

It is important to stress that Γµ and Γ̂µ coincide only at tree-level, where one has

Γ
(0)
µ = Γ̂

(0)
µ = γµ.

The essential difference between these two vertices is that Γ̂µ obeys the QED-like WI [37]

qµΓ̂µ(q, p2,−p1) = S−1(p1)− S−1(p2), (2)
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Figure 1. The conventional and background quark-gluon vertex with the momenta routing
used throughout the text.

instead of the standard STI

qµΓµ(q, p2,−p1) = F (q2)
[
S−1(p1)H(q, p2,−p1)−H(−q, p1,−p2)S

−1(p2)
]
, (3)

satisfied by Γµ. In both expressions, S−1(p) = A(p2) /p −B(p2), is the inverse of the full quark
propagator, defined in terms of the wave function, A(p2), and the mass function B(p2). In
addition, F (q2) denotes the ghost dressing function, related to the full ghost propagator by
D(q2) = F (q2)/q2, whereas the functions Ha = −gtaH and its conjugated H

a
= gtaH

correspond to the so-called quark-ghost kernel, and are shown in Fig. 2.

p2

p1

r

s

s

r

Ha(q, p2,−p1) = −gta +

H
a
(−q, p1,−p2) = gta +
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Figure 2. The ghost kernels H and H appearing in the STI satisfied by the quark vertex Γµ.
The composite operators ψcs and ψ̄cs have the tree-level expressions −gta and gta respectively.

Notice that the quark-ghost kernel admits the general decomposition [12]

H(q, p2,−p1) = X0I+X1p/1 +X2p/2 +X3σ̃µνp
µ
1p

ν
2 , (4)

H(−q, p1,−p2) = X0I+X2p/1 +X1p/2 +X3σ̃µνp
µ
1p

ν
2 ,

where σ̃µν = 1
2 [γµ, γν ] and we have introduced the compact notation on the form factors

Xi = Xi(q
2, p22, p

2
1) and Xi = Xi(q

2, p21, p
2
2). Notice that at tree-level, one clearly has

X
(0)
0 = X

(0)
0 = 1, with the remaining form factors vanishing.



It is important to stress here that a set of identities, called background quantum identities
(BQIs) [38, 39], relate the conventional and PT-BFM vertices. The BQI of interest in our case
reads [30]

Γ̂µ(q, p2,−p1) =

[
gνµ

(
1 +G(q2)

)
+
qµq

ν

q2
L(q2)

]
Γν(q, p2,−p1)

− S−1(p1)Kµ(q, p2,−p1)−Kµ(−q, p1,−p2)S
−1(p2), (5)

where, in the Landau gauge, the special functions Kµ and its conjugated Kµ are related to the
quark-ghost kernel H (and its conjugated) in the following way

H(q, p2,−p1) = 1 + qµKµ(q, p2,−p1) ,

H(−q, p1,−p2) = 1− qµKµ(−q, p1,−p2) . (6)
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Figure 3. The auxiliary functions Kµ and Kµ appearing in the BQI relating the conventional

quark vertex Γµ with the PT-BFM vertex Γ̂µ. The diagrams on the right represent the one-loop
dressed approximation of the two functions.

In what follows we will use the one-loop dressed approximation, in which the propagators are
fully dressed while vertices are retained at their tree-level (see Fig. 3 again). This approximation
yields the following expressions

Kµ(q, p2,−p1) =
i

2
g2CA

∫

k

S(k + p2)γ
νPµν(k)∆(k2)D(k − q),

Kµ(−q, p1,−p2) =
i

2
g2CA

∫

k

γνS(p1 − k)Pµν(k)∆(k2)D(k − q) , (7)



+Λµν(q) = νµ µ ν

Hνµ(q, p, r) = gµν +

µ

q
ν

r

p

Figure 4. The auxiliary function Λµν appearing in the BQI relating the conventional quark

vertex Γµ with the PT-BFM vertex Γ̂µ. The diagrammatic representation of the gluon-ghost
scattering kernel Hµν .

where CA represents the Casimir eigenvalue of the adjoint representation [CA = N for
SU(N)], d = 4 − ǫ is the space-time dimension, and we have introduced the integral measure∫
k
= µǫ

∫
ddk/(2π)d, with µ the ’t Hooft mass.

The functions G(q2) and L(q2) appearing in Eq. (5) are the tensorial projections of the special
two-point function

Λµν(q) = −ig2CA

∫

k

∆σ
µ(k)D(q − k)Hνσ(−q, q − k, k)

≡ gµνG(q
2) +

qµqν
q2

L(q2), (8)

Finally, Hµν is the ghost-gluon scattering kernel, and ∆µν(q) is the gluon propagator defined in
the Landau gauge as

i∆µν(q) = −iPµν(q)∆(q2), Pµν(q) = gµν − qµqν/q
2. (9)

Interestingly enough, in the Landau gauge the form factors G(q2) and L(q2) are related to
the ghost dressing function F (q2) by the all-order relation [51, 50]

F−1(q2) = 1 +G(q2) + L(q2). (10)

The most general tensorial decomposition of the quark-gluon vertex contains four longitudinal
and eight transverse form factors. Using transverse and longitudinal (T+L) basis [12, 52], we
can write

Γµ(q, p2,−p1) =

4∑

i=1

ΓL

i (q
2, p22, p

2
1)L

µ
i (q, p2,−p1) +

8∑

i=1

ΓT

i (q
2, p22, p

2
1)T

µ
i (q, p2,−p1), (11)

where the longitudinal basis vectors read (remember that t = p1 + p2)

Lµ
1 = γµ; Lµ

2 = t/tµ; Lµ
3 = tµ; Lµ

4 = σ̃µνtν ; (12)



while for the transverse basis vectors we have instead

T µ
1 = pµ2 (p1 · q)− pµ1 (p2 · q); T µ

2 = T µ
1 t/;

T µ
3 = q2γµ − qµq/; T µ

4 = T µ
1 σ̃νλp

ν
1p

λ
2 ;

T µ
5 = σ̃µνqν ; T µ

6 = γµ(q ·t)− tµq/;

T µ
7 = −

1

2
(q ·t)Lµ

4 − tµσ̃νλp
ν
1p

λ
2 ; T µ

8 = γµσ̃νλp
ν
1p

λ
2 + pµ2p/1 − pµ1p/2. (13)

In addition to the usual WI (2) and STI (3), specifying the divergence of the quark-gluon
vertex ∂µΓµ, there exists a set of less familiar identities, called transverse Ward identities (TWIs)
[44, 45, 46, 47, 48, 49], which give information on the curl of the vertex, ∂µΓν − ∂νΓµ.

In the case of an Abelian gauge theory, one may consider a fermion coupling to a gauge boson
through a vector vertex Γµ and an axial-vector vertex ΓA

µ. In this case the TWIs read [49]

qµΓν(q, p2,−p1)− qνΓµ(q, p2,−p1) = i[S−1(p2)σ̃µν − σ̃µνS
−1(p1)] + 2imΓµν(q, p2,−p1)

+ tλǫλµνρΓ
ρ
A(q, p2,−p1) +AV

µν(q, p2,−p1),

qµΓ
A

ν (q, p2,−p1)− qνΓ
A

µ(q, p2,−p1) = i[S−1(p2)σ̃
5
µν − σ̃5µνS

−1(p1)]

+ tλǫλµνρΓ
ρ(q, p2,−p1) + V A

µν(q, p2,−p1), (14)

where σ̃5µν = γ5σ̃µν , ǫλµνρ is the totally antisymmetric Levi-Civita tensor, while Γµν , A
V

µν , and
V A

µν represent non-local tensor vertices that appear in this type of identities.
As was shown in Ref. [49], it is possible to disentangle the vector and the axial-vector vertices

appearing in Eq. (14). Specifically, for the vector vertex we obtain

[tµθiµqρ − (q ·t)θiρ]Γ
ρ(q, p2,−p1) = Pµν

i {i[S−1(p2)σ̃
5
µν − σ̃5µνS

−1(p1)] + V A

µν(q, p2,−p1)}, (15)

where the tensorial projectors are defined as

Pµν
i =

1

2
ǫαµνβθiαqβ, i = 1, 2; θ1α = tα, θ2α = γα. (16)

In what follows we will use Eq. (15) in conjunction with the WI (2) in order to determine

the complete set of form factors characterizing the vertex Γ̂µ. After that, we will apply the BQI
given by Eq. (5) to obtain the final expression for Γµ.

3. Special kinematic configurations

In this section, we will present the results for three special kinematic configurations: (i) the
soft gluon limit, (ii) the symmetric limit and (iii) the zero quark momenta configuration. The
general expressions, which are valid a generic configuration, can be found in Ref. [27].

3.1. Soft-gluon limit

Let us start with the soft limit, obtained when we take the limit of p1 → p2 or similarly
q → 0. In this limit all the transverse tensor structures (13) vanish identically. The vertex is
therefore purely longitudinal, and after setting p1 = p2 = p, the longitudinal tensorial structures
reduce (p1 = p2 = p) to

Lµ
1 = γµ; Lµ

2 = 4p/pµ; Lµ
3 = 2pµ; Lµ

4 = 2σ̃µνpν . (17)



The form factors that accompany each one of the above tensorial structures are given by

F−1
0 Γ1 = A

(
1− 2p2K4

)
− 2BK1,

F−1
0 Γ2 = 2A′ + 2A (K3 +K4)− 2BK2,

F−1
0 Γ3 = −2B′ + 2A

(
K1 + p2K2

)
− 2BK3,

Γ4 = 0, (18)

where F−1
0 = F−1(0), A = A(p2), B = B(p2), Ki = Ki(p

2), and a prime denotes the derivative
with respect to p2. The Ki correspond to the decomposition of the tensorial structure of Eq. (7)
in the basis presented in Eq. (11), and its detailed derivation is given in Ref. [27].

All ingredients that are necessary for computing the Ki = Ki(p
2) are renormalized at

µ = 2.0 GeV. In particular, we use the SU(3) gluon propagator, ∆(q), obtained by the lattice
simulation of Ref. [53], the solution of the SDE for ghost dressing function, F (q), and the
auxiliary functions 1 +G(q) and L(q). All these quantities where computed using α(µ) = 0.45.
In addition, the behavior of the functions A(p) and B(p) were obtained by solving the quark
gap equation for a current mass m0 = 115 MeV.

In Fig. 5 we plot the functions Ki in the soft gluon limit. With the Ki at hand, the next step
is to determine the vertex form factors of Eq. (18).
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Figure 5. (color online). The auxiliary functions Ki evaluated in the soft gluon limit.

Specifically, in Figs. 6 and 7 we plot the form factors

λ1(p) = ΓE

1(pE); λ2(p) =
1

4
ΓE

2(pE); λ3(p) = −
1

2
ΓE

3(pE), (19)

and compare them with the lattice data of [17], obtaining rather reasonable agreement.

3.2. Symmetric limit

The symmetric limit is defined taking p1 → −p2. In this limit, only one longitudinal basis
tensor (12) and two transverse tensors (13) survive. Specifically we have

Lµ
1 = γµ; T µ

3 = 4
(
p2γµ − pµp/

)
; T µ

5 = −2σ̃µνpν . (20)
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Figure 6. (color online). The soft gluon form factors λ1 (left) and pλ3 (right). Lattice data in
this and all the following plots are taken from [17].
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Figure 7. (color online). The form factor λ2 and the corresponding lattice data.

However, the lattice simulations can not determine separately the form factors that
accompanies the tensorial structures above described; only combinations of the type

G2p(Γ
L

1 + p2ΓT

3 ) = 2p2A′ +A(1 + 2p2KT

5 )− 2B(KL

1 + p2KT

3 ),

G2pΓ
T

5 = 2B′ + 2A
(
KL

1 + p2KT

3

)
− 2BKT

5 . (21)

can be extracted. In the above equation the compact notation A = A(p2), B = B(p2) and
G2p = 1 +G(4p2) has been introduced.

Using the same ingredients described in the soft gluon case, we have computed the
corresponding Ki for the symmetric configuration, which are presented in Fig. 8. In this limit,
we clearly see that we have a divergent K2 and a finite K4.

The next step is to compare our numerical results for the Euclidean version of the form factors
combinations of Eq. (21) with the lattice data of Ref. [17]. This comparison is shown in Fig. 9,
where we have defined

λ′1(p) = ΓLE

1 (pE)− p2
E
ΓTE

3 (pE); τ5(p) =
1

2
ΓTE

5 (pE) , (22)



-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.001  0.01  0.1  1  10  100

K1(p2)
K2(p2)
K3(p2)
K4(p2)

p [GeV]

K
i(
p
)

Figure 8. (color online). The auxiliary functions Ki evaluated in the symmetric gluon limit.
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Figure 9. (color online). The symmetric limit form factors λ′1 and τ5 compared with the
corresponding lattice data. The grey curves are obtained through simple rescaling of the blue
ones.

Clearly, we see that the overall shape of the both form factors are correctly reproduced;
however, the overlap with the lattice data is only obtained if we rescale our results by (different)
multiplicative factors, giving rise to the gray curves.

In Figs. 10 and 11 we plot, for completeness the three non-zero form factors separately.
Notice that both ΓL

1 and ΓT

5 are finite, whereas ΓT

3 is divergent.

3.3. Zero quark momentum

The next limit that we will present here is the so-called zero quark configuration, where we
set to zero the quark momentum p2, which leads to q = p1 = p. A crucial difference of this case
compared with the previous one is that the KL,T

i (p2, 0, p2) and K
L,T

i (p2, p2, 0) do not coincide
anymore, and need to be evaluated separately. More specifically, the non-zero form factors are
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Figure 11. (color online). The divergent form factor ΓT

3 in the symmetric limit.

expressed as

F−1ΓL

1 = A(1 + p2KL

3 )−BKL

1 −B0K
L

1 ,

F−1ΓL

3 = −
1

p2
(B −B0) +AKL

1 −BKL

3 −B0K
L

3 ,

GΓT

3 = −A(KL

3 +KT

5 )−BKT

3 −B0K
T

3 +
1

p2
LpFp

[
A(1 + p2KL

3 )−BKL

1 −B0K
L

1

]
,

GΓT

5 = −
1

p2
(B −B0)−A(KL

1 + p2KT

3 )−BKT

5 −B0K
T

5 , (23)

with the usual definitions A = A(p2), B = B(p2), as well as B0 = B(0).
In Fig. 12 we show the auxiliary functions Ki (left) and Ki (right) evaluated in the zero

quark momentum configuration. Notice that all Ki and Ki are IR finite except for K2 and K2

which are divergent.
In Fig. 13 we show the Euclidean version of the numerical results for the form factors

appearing in Eq. (23). In particular, we see the appearance of a negative divergence in the
form factor ΓTE

3 .



-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.01  0.1  1  10  100

K1(p2)
K2(p2)
K4(p2)

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.01  0.1  1  10  100

K1(p2)
K2(p2)
K3(p2)
K4(p2)

p2 [GeV2] p2 [GeV2]

K
i
(p

2
)

K
i
(p

2
)

Figure 12. (color online). The auxiliary functions Ki (left) and Ki (right) evaluated in the
zero quark momentum configuration.
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momentum configuration.
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Figure 14. (color online). The form factors λ′1 (left) and τ5 (right) in the quark zero momentum
configuration.

Although there is no lattice results for this kinematic limit, the combination that could be
measured on the lattice would be of the type

G(ΓL

1 + p2ΓT

3 ) = A(1− p2KT

5 )−B(KL

1 + p2KT

3 )−B0(K
L

1 + p2K
T

3 ),

GΓT

5 = −
1

p2
(B −B0)−A(KL

1 + p2KT

3 )−BKT

5 −B0K
T

5 . (24)

In this case, we present our “prediction” for these combinations in Fig. 14.

4. Conclusions

We have presented a new methodology for determining the longitudinal and transverse form
factors of the nonperturbative quark-gluon vertex within the PT-BFM scheme. This scheme
allows us to take the full advantage of the rich amount of information originating from the
fundamental underlying symmetries, which are encoded in a set of crucial identities such as
WIs, STIs and BQIs.

The key observation in this analysis is the connection between the two distinct quark-gluon
vertices, Γµ and Γ̂µ, appearing in the PT-BFM scheme. Using the WIs and the TWIs satisfied

by Γ̂µ, we first determine the form factors that describes the behavior of this Abelian-like type
of vertex. Then, with the help of the BQI that connects both vertices, we obtain the final
expression for the conventional Γµ.

We have shown that the BQI is expressed in terms of the auxiliary three-point functions
Kµ, which were calculated in the one-loop dressed approximation. Already, at this level of
approximation, we have obtained nontrivial information for all form-factors. In addition, we
have noticed that the contributions originating from the Ki and Ki are in general sizeable, and
therefore the Ki and Ki contribute significantly in obtaining results similar to those found in
lattice simulations.

For the determination of the Ki and Ki we have used as external ingredient the full gluon
propagator, ∆(q2), obtained in lattice simulations. The remaining necessary ingredients, namely
the ghost dressing function F (q2) and the quark functions A(p2) and B(p2), were obtained
solving numerically their corresponding SDEs.

For the purpose of this talk we have applied our formalism to three particular kinematic
limits known as (i) “soft gluon”, (ii) “quark symmetric” and (ii) “zero quark momentum”



configurations, which give rise to considerable technical simplifications, especially in the
calculation of the Ki and Ki. Evidently, the numerical analysis presented here may be extended
to arbitrary kinematic configurations, furnishing valuable information on such a fundamental
quantity as the quark-gluon vertex, which constitutes a crucial ingredient for a variety of
theoretical and phenomenological studies.
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