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Abstract. We present a novel string-derived U(1) combination that satisfies necessary
properties to survive to low scales. We discuss previous attempts at acquiring such an abelian
gauge symmetry from two different string embeddings and the pitfalls associated with them.
Finally, we give an example of how a satisfactory model may be constructed within our
framework.

1 Introduction
Evidence for additional gauge symmetries has, so far, been absent in experimental searches.
However, the theoretical motivations of going beyond the standard model gauge group are
abundant (see e.g. [1] and references therein). An important consideration, when going beyond
the standard model, is the question of proton stability. As soon as one begins supersymmetric
model building, dimension-4 and -5 proton decay mediating operators are induced.

Various attempted resolutions have been proposed in the literature, both from bottom-up
and top-down perspectives: gauged B- and L-numbers[2]; gauged B − L[4, 3] and; a variety of
discrete symmetries[5, 6]. However, some of these additional symmetries have consequences that
make realistic model building problematic[7].

In this work, we attempt to acquire an additional abelian gauge symmetry from string models.
As we begin at the string scale, it is useful to construct a list of properties such a gauge symmetry
should satisfy in order to be a viable low-scale gauge symmetry. This list is not, by any means,
exhaustive, however provides some guidance in our approach[8, 9]:

• To sufficiently suppress or forbid proton decay mediating operators upto dimension-6;

• To allow for some mechanism for mν ∼ 1eV;

• To have the electroweak Yukawa couplings invariant;

• To be family universal1;

• To be free of gauge and gravitational anomalies;

• To satisfy low-scale gauge coupling data.

1 this is not a necessary requirement, however we choose to impose it to avoid proton decay mediation via
intrafamily operators
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During this talk, we will introduce the framework with which we build our model and then
briefly discuss examples of U(1)s that were of interest to us in the past. We then present a novel
string-derived model that has the necessary properties to facilitate the above requirements.

2 Heterotic model building
The free fermionic formulation [12, 13, 14] allows for the construction of string models directly in
four dimensions and cancels the conformal anomaly by introducing freely propagating, fermionic,
worldsheet degrees of freedom, detailed in Table 1 for the heterotic string.

Sector Label Description

SUSY

ψµ Majorana–Weyl superpartners of the bosonic coordinates

χi Majorana–Weyl superpartners to the six compactified dimen-
sions

yi, wi Majorana–Weyl fermions that correspond to the bosons
describing the six compactified dimensions in the bosonic
formulation

Non-SUSY

yi, wi Majorana–Weyl fermions that correspond to the bosons
describing the six compactified dimensions in the orbifold
formulation

λ
I





ψ
1,...,5

, η1,2,3 Complex fermions that describe the visible gauge sector,
corresponding to eight coordinates of the internal T 16

φ
1,...,8

Complex fermions that describe the hidden gauge sector, cor-
responding to the remaining eight coordinates parametrising
the internal T 16

Table 1: This table gives the fermionic states that freely propagate on the string worldsheet with µ = 1, 2,
i = 1, . . . , 6 and I = 1, . . . , 16, as four dimensional light-cone, six real internal and sixteen complex indices,

respectively.

Unlike worldsheet bosonic degrees of freedom, worldsheet fermions, generically, pick up a phase
on parallel transport around the non-contractible loops of the toroidal worldsheet,

f → −eiπα(f)f, (2.1)

where we restrict ourselves to α(f) ∈ (−1,+1]. 64-component basis vectors, bi, describing the
phases of the fermions, span a finite additive set, Ξ, where

Ξ = span{b1, . . . ,bk}
' ZN1 ⊕ · · · ⊕ ZNk .

(2.2)

The elements of this additive set make up the various sectors of our string model, α =
∑
mibi,

such that

mibi = 0 mod 2⇔ mi = 0 mod Ni, ∀i = 1, . . . , k, (2.3)

and we can write the partition function as

Z =
∑

α,β∈Ξ

c
(
α
β

)
Z
[
α
β

]
. (2.4)



Thus, free fermionic models can be fully described using the two sets of input parameters: the
set of basis vectors, B = {bi} and the corresponding GSO projections, c(αβ). Modular invariance

is then guaranteed by satisfying the ABK rules [13].

2.1 U(1)s in free fermion models
The gauge group generated in free fermion models is rank-22 with the Cartan subalgebra
generated by the right-moving currents f

∗
f . The corresponding U(1) charges for each complex

fermion, f , are given by

Q(f) =
1

2
α(f) + F (f), (2.5)

where F (f) is the fermion number of f .
For massless sectors consisting of periodic complex fermions only, the vacuum is degenerate,

|±〉. These represent the Clifford algebra generated by the zero modes, f0 and f∗0 , which have
F (f) = 0, 1, respectively, and thus, have Q(|±〉) = ±1

2 .

The U(1) symmetries of interest in this talk are those generated by ηi∗ηi, i = 1, 2, 3, which

correspond to the Cartan generators of our choice of observable gauge group, along with ψ
j∗
ψ
j
,

j = 1, . . . , 5, generating the SO(10) GUT.
Early heterotic string models, constructed using the free fermionic formulation, were NAHE-

based; that is, additional basis vectors were added to the canonical set BNAHE = {1,S,b1,b2,b3}
to build semi-realistic string models, with

1 = {All},
S =

{
ψµ, χ1,...,6

}
,

b1 =
{
ψµ, χ12, y3,...,6y3,...,6, ψ

1,...,5
, η1
}
,

b2 =
{
ψµ, χ34, y1,2, w5,6y1,2, w5,6, ψ

1,...,5
, η2
}
,

b3 =
{
ψµ, χ56, w1,...,4w1,...,4, ψ

1,...,5
, η3
}
,

(2.6)

where fermions in {. . . } are periodic. This, with the correct choice of GGSO phases, results
in an N = 1 supersymmetric SO(10) × SO(6)3 × E8 gauge group in four dimensions, with 48
generations of the spinor-16 representation of SO(10). Upon addition of further basis vectors,
the number of generations is reduced and the SO(6)3 is broken to U(1) factors, and the remaining
SUSY maybe broken. However, in the following, we choose to preserve the N = 1 SUSY. The
SO(10) GUT is also broken to one of its subgroups.

3 Symmetry breaking patterns and embeddings
There are two classes of SO(10) breakings, as previously constructed in the literature using the
free fermionic formulation of the heterotic string:

(i) Flipped SU(5)[15], Pati-Salam[16] and Standard-like models[17, 18];

(ii) Left-right symmetric[19] and SU(4)× SU(2)× U(1) models[20].

For the case (i) models, the linear combination of the Cartan U(1)s

Jζ = η1∗η1 + η2∗η2 + η3∗η3 (3.1)

is always anomalous [21]. For the case (ii) models, the U(1)1,2,3 individually and, thus, the
combination in (3.1) may be anomaly-free. This is due to the embedding of the SO(10) GUT



symmetry and the U(1)ζ combination in (3.1): the case (i) models come from an N = 4 vacuum
with E8 × E8 × SO(12) gauge symmetry generated by the basis vectors BI = {1,S,x, ξ}2, and
may follow the breaking patterns in Figure 1 as a result of additional basis vectors or changing
the GGSO projection operators. In previous literature, the enhancing gauge bosons in the
x-sector are always projected out.

The case (ii) models originate from a different N = 4 vacuum with an E7 × E7 × SO(16)
generated by the basis vector set BII = {1,S,x, 2γ}3 and are broken as shown in Figure 2 upon
addition of b1 and b2.

E8 ⇥ E8 ⇥ SO(12)

E6 ⇥ U(1)2 ⇥ E8 ⇥ SO(4)3 SO(16) ⇥ SO(16) ⇥ SO(12)

c

✓
x
⇠

◆
b1,b2

c

✓
x
⇠

◆
b1,b2

SO(10) ⇥ U(1)⇣ ⇥ U(1)2 ⇥ SO(16) ⇥ SO(4)3

Figure 1: Symmetry breaking patterns for case (i)
models.

b1,b2

SO(10) ⇥ U(1)⇣ ⇥ U(1)2 ⇥ SO(16) ⇥ SO(4)3

E7 ⇥ E7 ⇥ SO(16)

Figure 2: Symmetry breaking pattern for case (ii)
models.

The c(xξ ) projection removes the gauge bosons that enhance the SO(16) symmetries to E8

and, in addition, projects out either the 16 or the 10+1 representations in the bi or bi + x
sectors, respectively, depending on the c(bix ) projections. Thus, the additional states completing
the 27 of E6 are no longer present in the spectrum and so U(1)ζ becomes anomalous. In case
(ii) models, there is no E6 embedding. In fact, the anomalies are avoided due to the components
of the 16 representation having U(1)ζ charges of opposite sign. This was analysed in a toy
string-inspired model previously in [8]. There, we built a toy field theory model, using our
the string charge assignments, consisting of the MSSM+νR states, i.e. three 16s of SO(10).
Additional doublets were required to cancel the SU(2)2

L/R × U(1)ζ anomalies, however, due to

these doublets having Qζ 6∈ E6, we found no agreement with low-scale gauge coupling data (as
shown in Figure 4). Including the full 27 of E6 in the field theory analysis, and thus having
U(1)ζ ⊂ E6, circumvents this problem, due to the cancellation between the additional triplets
and doublets in the spectrum when running the renormalisation group equations, shown in
Figure 3.

The requirement that U(1)ζ is anomaly-free originates in the desire for a low-scale U(1)
coming from a string model to act as the proton lifeguard: the two U(1) combinations orthogonal
to U(1)ζ are, generically, family non-universal or anomalous; the U(1) combination orthogonal
to the weak hypercharge and embedded in SO(10), necessarily breaks at very high scales in order
to provide a sufficiently large seesaw scale [7]. Therefore, a light Z ′ in heterotic string models
must be some combination of all of these symmetries and, thus, U(1)ζ must be anomaly-free.

2 with x =
{
ψ

1,...,5
, η1,2,3

}
and ξ =

{
φ
1,...,8

}
3 with 2γ =

{
ψ

1,...,3
, η1,2,3, φ

1,8
}



-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17

α
3(

M
Z
)

sin2 θW (MZ)

Figure 3: Running the standard model gauge
couplings, α3(µ) and sin2 θW (µ), from the string scale,
Mstring, to MZ , we find that our simple toy model does

not match the experimental measurements. Here we
have taken 0 < αstring ≤ 0.1 and

2 · 1016 ≤Mstring ≤ 5.27 · 1017 GeV[9].
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Figure 4: Running the standard model gauge
couplings again for the same range of Mstring and
αstring[9], this time with a string model spectrum

containing the full 27 of E6. As expected, there are
many phenomenologically viable models, as

highlighted.

4 A new model
So, the issue is then not obvious to avoid: the gauge coupling running necessitates an E6

embedding of the U(1)ζ , however the known string embeddings of such a symmetry require it
be broken at the string scale due to anomalies. A possible solution to this would be to break
E6 to a different maximal subgroup, e.g. SU(6) × SU(2), and having the U(1)ζ combination
embedded in one of the subgroups. However, to break this to the Standard Model, one requires
a Higgs living in the adjoint representation[10]; a feature missing from Kač-Moody level one
worldsheet theories.

Alternatively, we may construct NAHE-based models that, rather than projecting out the
enhancing gauge bosons in the x-sector, they are kept. This will allow for states in the bi + x-
sectors to remain in the spectrum, thus filling the 27 of E6. In order to accommodate this, we
add to the NAHE set the basis vectors α,β,γ, where the visible gauge symmetry is broken by
the boundary conditions,

b
{
ψ

1,···5,
, η1,2,3

}
= {1 1 1 0 0 1 1 1} ⇒ SO(6)× SO(4)× U(1)3, (4.1a)

b
{
ψ

1,···5,
, η1,2,3

}
= {1 1 0 1 0 1 1 1} ⇒ SO(4)× SO(2)× SO(2)× SO(2)× U(1)3, (4.1b)

b
{
ψ

1,···5,
, η1,2,3

}
=

{
1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

}
⇒ SU(2)× U(1)× U(1)× U(1)× U(1)× U(1)3, (4.1c)

with the U(1)3 factor generated by the ηi∗ηi currents. The x-sector may then arise in these
models either as a separate basis vector or as, for example, 2γ. The gauge symmetry in (4.1) is
generated by the untwisted sector gauge bosons. This is enhanced by the gauge bosons in the
x-sector, to

SU(3)× SU(2)× U(1)2 × U(1)ζ′ , (4.2)

where U(1)ζ′ is a rotation of our original combination in (3.1) and the U(1)2 factor are those
embedded in SO(10). The advantage of such a model is the presence of all the states filling the
27 of E6 in the spectrum, shown in Table 2. The spectrum also contains pairs of heavy Higgs



states,

N +N =

(
1,1,

3

2
,−1,

1

2

)
+

(
1,1,−3

2
,+1,−1

2

)
, (4.3)

required to break this symmetry down to

SU(3)× SU(2)× U(1)Y × U(1)Z′ . (4.4)

Field SU(3)C SU(2)L U(1)a U(1)b U(1)ζ′

QiL 3 2 + 1
2 0 1

2

uiL 3 1 − 1
2 −1 1

2

diL 3 1 − 1
2 +1 1

2

eiL 1 1 + 3
2 +1 1

2

LiL 1 2 − 3
2 0 1

2

N i
L 1 1 + 3

2 −1 1
2

Di 3 1 −1 0 −1

D̄i 3 1 +1 0 −1

H̄i 1 2 0 +1 −1

Hi 1 2 0 −1 −1

Si 1 1 0 0 +2

Table 2: High scale spectrum and SU(3)C × SU(2)L × U(1)a × U(1)b × U(1)ζ′ quantum numbers, with
i = 1, 2, 3 for the three light generations. The charges are displayed in the normalisation used in free fermionic

heterotic string models [22].

Due to the survival of the states filling the 27 representation of E6, it is possible that proton
decay mediating operators may be induced. In particular, couplings of the form

QQD,udD, dND, ueD,QLD (4.5)

are potentially dangerous. However, the additional states are charged under other symmetries
in the string model, some of which are broken at the string scale, and the surviving remnant
discrete symmetries may be suitable to suppress these couplings. Further analysis of this will
appear in future work.

5 Conclusions and outlook
Here we have presented a novel, string-derived U(1) gauge symmetry that may survive to
low scales. The model presented is free of anomalies and, due to the enhanced spectrum,
accommodates the low-scale gauge coupling data. In addition, the model facilitates the necessary
requirements outlined in the introduction and is a viable candidate for a low-scale Z ′.

An extension of this work is currently being conducted and an explicit string model, with an
accompanying RGE analysis, will appear soon.
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