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XEFT is a low-energy effective field theory for charm mesons and pions that provides a systemat-
ically improvable description of the X(3872) resonance. A Galilean-invariant formulation of XEFT
is introduced to exploit the fact that mass is very nearly conserved in the transition D∗0

→ D0π0.
The transitions D∗0

→ D0π0 and X → D0D̄0π0 are described explicitly in XEFT. The effects of
the decay D∗0

→ D0γ and of short-distance decay modes of the X(3872), such as J/ψ π+π−, can
be taken into account by using complex on-shell renormalization schemes for the D∗0 propagator
and for the D∗0D̄0 propagator in which the positions of their complex poles are specified. Galilean-
invariant XEFT is used to calculate the D∗0D̄0 scattering length to next-to-leading order. Galilean
invariance ensures the cancellation of ultraviolet divergences without the need for truncating an
expansion in powers of the ratio of the pion and charm meson masses.

PACS numbers: 14.40.Rt, 14.40.Lb

I. INTRODUCTION

The surprising discovery of the X(3872) by the Belle Collaboration in 2003 [1] marked the beginning of a renaissance
in quarkonium spectroscopy [2]. Dozens of new mesons whose constituents include a heavy quark and antiquark and
with mass above the open-heavy flavor threshold have been observed. They are collectively referred to asXY Z mesons.
Some of the XY Z mesons are electrically charged and therefore must be tetraquark mesons whose constituents also
include a light quark and antiquark. The pattern of the observed XY Z mesons remains unexplained. In particular,
the relation between the X(3872) and the other XY Z mesons is still not understood.
The discovery decay mode J/ψ π+π− of the X(3872) implies that its constituents must include a charm quark and

antiquark. However the X(3872) has properties inconsistent with conventional charmonium, including comparable
branching fractions into decay modes with isospin 0 and isospin 1. The JPC quantum numbers of the X(3872) were
finally established by the LHCb Collaboration in 2013 to be 1++ [3]. Its mass is extremely close to the threshold
for the pair of charm mesons D∗0D̄0. By combining precise measurements of the mass MX of the X(3872) in the
J/ψ π+π− channel with precise measurements of the massesM∗ and M of the D∗0 and D0, the difference δX between
the D∗0D̄0 threshold and the mass has been determined to be

δX ≡ (M∗ +M)−MX = 0.11± 0.23 MeV. (1)

The quantum numbers 1++ of the X(3872) imply that it has an S-wave coupling to the charm meson pairs D∗0D̄0

andD0D̄∗0. Given the small value of δX , the universality of near-threshold S-wave resonances implies that theX(3872)
must be a bound state (if δX > 0) or a virtual state (if δX < 0) whose constituents are the C = + superposition
D∗0D̄0 +D0D̄∗0 [4]. The observation of X(3872) in hadron collisions strongly suggests that it is a bound state (like
the deuteron) rather than a virtual state (like the dineutron). One universal property of S-wave near-threshold bound
states is that the mean separation 〈r〉X of the constituents is determined by the binding energy δX : 〈r〉X = (8µδX)1/2,
where µ is the reduced mass of D∗0D̄0 [5]. Given the binding energy δX = 0.11−0.11

+0.23 MeV, the mean separation of the

charm mesons is predicted to be 6.8+∞
−3.9 fm. Thus the size of the X(3872) is comparable to that of the largest nuclei.

The universal properties of S-wave near-threshold bound states imply that most of the probability of the X(3872)
is in a molecular component consisting of well-separated charm mesons D∗0D̄0. (From now on, the equally probable
D0D̄∗0 component will usually not be mentioned explicitly.) At short distances, the wavefunction of the X(3872)
can have other components with smaller probabilities. One possible component is the 1++ P-wave charmonium state
χc1(2P ), whose constituents are cc̄. Another possibility is an isospin-0 tetraquark with constituents cqc̄q̄, where q is a
light u or d quark. It could be a compact tetraquark, it could have substructure consisting of the diquark clusters cq
and c̄q̄, or it could have substructure consisting of color-singlet clusters, such as the pair of mesons J/ψ ω. There are
also hexaquark components of the wavefunction with constituents cqqc̄q̄q̄. One such component that is particularly
important is D0D̄0π0, because the constituent D∗0 in the dominant component of the wavefunction can decay into
D0π0. In considering the various possible components of the X(3872) wavefunction, it is essential to take into account
their couplings to D∗0D̄0 and the resonant interactions between the charm mesons.
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The interplay between theD∗0D̄0, D0D̄0π0, and other components of the wavefunction can be treated systematically
using an effective field theory in which the D∗0, D̄0, and π0 are explicit degrees of freedom. Such an effective field
theory has been developed by Fleming, Kusunoki, Mehen, and van Kolck and named XEFT [6]. In its simplest form,
XEFT is a nonrelativistic field theory for D∗0 and D0, their antiparticles, and π0. It is straightforward to extend
XEFT to include the charged charm mesons and the charged pions. In XEFT, the interactions between D∗0 and
D̄0 must be treated nonperturbatively in order to generate a bound state that can be identified with the X(3872).
Fleming et al. showed that pion-exchange interactions can be treated perturbatively along with the range corrections
to D∗D̄ interactions [6]. We denote the masses of D∗0, D0, and π0 by M∗, M , and m, respectively. We denote the
difference between the D∗0 mass and the sum of the D0 and π0 masses by δ:

δ ≡M∗ − (M +m) ≈ 7.14± 0.07 MeV. (2)

The power counting of XEFT is defined by taking external momenta, the binding momentum scale
√
MδX of the

X(3872), and the momentum scale
√
mδ of the pion to all be low momentum scales of order Q. The low energy

scales include the binding energy δX of the X(3872), the kinetic energy scale δ for a pion, and the kinetic energy
scale mδ/M for a charm meson. The high momentum or energy scales include m, M , and 4πfπ, where fπ is the pion
decay constant. Amplitudes are calculated as systematic expansions in powers of Q divided by a high momentum or
energy scale. In the original paper on XEFT by Fleming et al., the momentum distributions in the decay of X(3872)
to D0D̄0π0 were calculated to next-to-leading order (NLO) in the XEFT power counting and to leading order in an
expansion in powers of m/M [6].
There have been a number of subsequent applications of XEFT. Fleming and Mehen applied XEFT at leading

order (LO) to decays of the X = X(3872) into the P-wave charmonium state χcJ plus one or two pions [7, 8]. Mehen
and Springer applied XEFT at LO to the radiative decays X → ψ(2S)γ and ψ(4040) → Xγ [9]. Margaryan and
Springer applied XEFT at LO to the decay ψ(4160) → Xγ [10]. Recently, Jansen, Hammer and Jia used XEFT to
determine the dependence of the binding energy of X on the light quark masses [11]. They also calculated the D∗0D̄0

scattering length to NLO and to leading order in m/M . The applications of XEFT are not limited to the DD̄π sector,
which also includes D∗D̄ and DD̄∗ states. Canham, Hammer, and Springer pointed out that XEFT can be applied
to the DDD̄π and DDD̄ππ sectors [12]. They calculated the S-wave phase shifts for low-energy scattering of D or
D∗ from X at LO. Braaten, Hammer, and Mehen pointed out that XEFT can be applied to the DD̄ππ sector, which
also includes D∗D̄∗, D∗D̄π, and DD̄∗π states [13]. They calculated the low-energy cross sections for elastic π+X
scattering and for the break-up reaction π+X → D∗+D̄0 at LO.
We will refer to the formulation of XEFT presented in Ref. [6] as original XEFT. There are various problems

with original XEFT that present obstacles to accurate quantitative predictions. Some of these problems are due
to its formulation as a nonrelativistic field theory of the charm mesons and π0 that is not Galilean invariant. One
consequence of the lack of Galilean invariance is that a preferred frame (such as the center-of-momentum frame) must
be specified either explicitly or implicitly in any calculation. Another consequence of the lack of Galilean invariance
is that ultraviolet divergences are much less constrained. The explicit counterterms in the Lagrangian for original
XEFT in Ref. [6] are sufficient to eliminate ultraviolet divergences in NLO calculations only if results are expanded
in powers of m/M and then truncated at a sufficiently low order. This truncation provides a limit on the accuracy.
Although the mass ratio m/M = 0.072 is very small, the expansion is actually in powers of the square root of the mass
ratio, which is 0.27. The alternative of adding additional counterterms to the Lagrangian to cancel the ultraviolet
divergences would introduce additional parameters that would have to be determined phenomenologically. Another
problem with original XEFT is that the renormalization scheme made it difficult to take into account some decays into
final states with momenta too large to be treated explicitly in XEFT. These decays are D∗0 → D0γ, which accounts
for about a third of the full width of the D∗0, and all decay modes of the X(3872) other than D0D̄0π0.
Alhakami and Birse have recently proposed an alternative power counting for XEFT [14]. In their power counting,

m and M∗ −M are treated as small energy scales of order Q, and δ is treated as a tiny energy scale of order Q2/M .
The ratios δ/m = 0.051 and m/M = 0.072 are both of order Q/M . This power counting scheme was not implemented
at the lagrangian level, but it provides an organizing principle for simplifying Feynman diagrams. The power counting
of Ref. [14] makes the expansion in powers ofm/M systematic. The formulation in Ref. [14] is convenient for matching
onto heavy hadron chiral perturbation theory, which has been used in several applications of XEFT [7–10]. It does
not address the problems of frame dependence or of additional ultraviolet divergences. With this new power counting,
the decay D∗0 into D0γ is within the domain of applicability of XEFT. However there are important decay modes of
the X(3872), such as J/ψ π+π−, that remain outside the domain of applicability of XEFT.
In this paper, we present a new formulation of XEFT that removes many of the obstacles to accurate quantitative

calculations. The new formulation is an effective field theory with a Galilean symmetry that is motivated by the fact
that mass is very nearly conserved in the transition D∗0 → D0π0. The Galilean symmetry solves the problem of
frame dependence and it dramatically simplifies ultraviolet divergences. To take into account the decay D∗0 → D0γ
and decay modes of the X(3872) other than D0D̄0π0, a new renormalization scheme is introduced that is expressed
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in terms of the complex energies of D∗0 and X(3872). The new Galilean-invariant formulation of XEFT is illustrated
by a calculation of the D∗0D̄0 scattering length to NLO in the XEFT power counting. The cancellation of ultraviolet
divergences for arbitrary values of m/M is verified explicitly.

II. GALILEAN-INVARIANT XEFT

In this section, we introduce a new formulation of XEFT as a Galilean-invariant field theory. We describe the
changes in the Lagrangian for the original XEFT defined in Ref. [6] that are required for Galilean invariance. We
explain how the effects of the decay D∗0 → D0γ can be taken into account through the complex rest energy of the
D∗0. We then write down the next-to-leading order Lagrangian for Galilean-invariant XEFT, and give its Feynman
rules.

A. Galilean Invariance

A unique feature of the decay D∗0 → D0π0 is that mass is very nearly conserved: the sum of the masses of the D0

and π0 is only about 3.5% lower than the mass of the D∗0. Galilean invariance is a possible space-time symmetry of
a nonrelativistic theory that requires exact mass conservation [15]. The mass that must be conserved is the kinetic
mass, which is the mass that appears in the denominator of the kinetic energy. The approximate conservation of
mass in the transition D∗0 → D0π0 strongly motivates a Galilean-invariant formulation of XEFT. The Lagrangian for
original XEFT, including all terms required to calculate the decay of X(3872) into D0D̄0π0 to next-to-leading order
(NLO), was written down in Ref. [6]. We will describe how the terms in this Lagrangian must be modified to make
them Galilean invariant. The NLO Lagrangian for Galilean-invariant XEFT will be written down in Section II C.
We choose the kinetic masses of the D0 and π0 to be their physical masses M and m, respectively. Conservation of

kinetic mass then requires the kinetic mass of D∗0 to be M +m. The difference δ between the mass of the D∗0 and
its kinetic mass must be taken into account through its rest energy. Kinetic mass conservation requires the following
change in the Lagrangian for original XEFT defined in Ref. [6]:

• In the kinetic term D† · ∇2D/(2mD∗) for the D∗0, its mass mD∗ must be replaced by M +m.

A similar change must be made in the kinetic term for the D̄∗0. It will be convenient to introduce the reduced kinetic
mass µ for D∗0D̄0 and the reduced mass µπ for D0π0:

µ ≡ M(M +m)

2M +m
= 965.0 MeV, (3a)

µπ ≡
mM

M +m = 125.87 MeV
. (3b)

The ratio of these reduced masses is

r ≡ µπ

µ
= 0.1304. (4)

Galilean invariance requires interaction terms to be invariant under Galilean boosts, in which the momenta of π0,
D0, and D∗0 are boosted by a common velocity vector v multiplied by their kinetic masses m, M , and M + m,
respectively. Galilean invariance requires three changes in the interaction terms in the Lagrangian for original XEFT
that given in Ref. [6]:

• In the pion interaction term D† · D∇π, the operator ∇ between D and π should be replaced by (M
−→
∇ −

m
←−
∇)/(M +m).

• In the ∇2 D∗0D̄0 interaction term (D̄D)† · D̄(
←→∇ )2D, the operator (

←→∇ )2 between D̄ and D should be replaced

by 4(M
−→
∇ − (M +m)

←−
∇)2/(2M +m)2.

• In the interaction term (D̄D)† · D̄D∇π that describes the transition of D0D̄0π0 to D∗0D̄0, the operator ∇

between D̄D and π should be replaced by (2M
−→
∇ −m←−∇)/(2M +m).
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Similar changes must be made in the hermitian conjugates and charge conjugates of these interaction terms. The
three modified interaction terms described above reduce to those of original XEFT in the limit m/M → 0. The
modified interaction terms ensure the invariance of amplitudes under Galilean boosts.
Galilean invariance also strongly constraints ultraviolet divergences. The changes above specify all terms in the

Lagrangian for Galilean-invariant XEFT that are required to calculate the decay of X(3872) into D0D̄0π0 to NLO in
the XEFT power counting. The results should be independent of the ultraviolet cutoff to all orders in m/M . Without
Galilean invariance, there are three independent ∇2 D∗0D̄0 interaction terms and two independent D0D̄0π0 → D∗0D̄0

interaction terms. The Lagrangian for original XEFT defined in Ref. [6] includes only one interaction term of each
kind. Cutoff independent results for the decay rate of X(3872) into D0D̄0π0 at NLO were obtained by also truncating
the expansion in powers of m/M at leading order.
Galilean-invariant XEFT can be extended to include charged charm mesons and charged pions. The π+ must have

the same kinetic mass m as π0. The D+ must have the same kinetic mass M as D0. The D∗+ must have the same
kinetic mass M + m as D∗0. The difference between the mass and kinetic mass of a particle must be taken into
account through its rest energy.
In a nonrelativistic effective field theory for charm mesons, one can impose a phase symmetry that guarantees

the separate conservation of the number Nc of charm quarks and the number Nc̄ of charm antiquarks. These quark
numbers can be expressed in terms of meson numbers:

Nc = ND∗0 +ND0 , (5a)

Nc̄ = ND̄∗0 +ND̄0 . (5b)

If one also considers charged charm mesons, the charm quark number Nc is the sum of the numbers of D∗0, D∗+,
D0, and D+. In Galilean-invariant XEFT, the exact conservation of kinetic mass in the transitions D∗0 ↔ D0π0 and
D̄∗0 ↔ D̄0π0 provides motivation for introducing an additional phase symmetry that guarantees the conservation of
the pion number defined by

Nπ = Nπ0 +ND∗0 +ND̄∗0 . (6)

The name pion number is appropriate since the D∗ can be interpreted as a P-waveDπ resonance. In Galilean-invariant
XEFT with charged charm mesons and pions, the pion number is the sum of the numbers of π0, π+, π−, D∗0, D̄∗0,
D∗+, and D∗−.

B. Choice of Rest Energies

In a nonrelativistic field theory, deviations from mass conservation in a reaction are taken into account through
the rest energies of the particles involved. The rest energy of a particle can be chosen to be its physical mass. In a
Galilean invariant theory, since the kinetic mass is conserved, the rest energy of a particle can equally well chosen as
the difference between its physical mass and its kinetic mass. If there are linear combinations of the particle numbers
that are conserved, field redefinitions can be used to set the rest energies of some of the particles to 0. In XEFT,
conservation of the charm quark number Nc allows the rest energies of D0 and D∗0 to be set to 0 and M∗ −M ,
respectively. Conservation of both Nc and the pion number Nπ allows the rest energies of π0, D0, and D∗0 to be set
to 0, 0, and δ =M∗ −M −m, respectively.
The rest energy of a particle can also be used to take into account its partial width into decay modes that cannot

be described explicitly in the effective field theory. Such a partial width is taken into account through a negative
imaginary term in the rest energy. The width of D∗0 is more than 5 orders of magnitude larger than the widths of
D0 and π0, so the widths of D0 and π0 can be completely ignored. The width of D∗0 come from its decay into D0π0,
which can be described explicitly in XEFT, and from its decay into D0γ, whose momenta are too large to be described
explicitly. The effect of the D0γ decay mode can be taken into account by including a term −iΓ∗0,γ/2 in the D∗0

rest energy, where Γ∗0,γ is the partial width of D∗0 into D0γ, whose branching fraction is approximately 38%. If we
use the complex on-shell renormalization scheme for the D∗0 propagator in which the position of the complex pole is
specified, the D∗0 rest energy also includes the term −iΓ∗0,π/2, where Γ∗0,π is the partial width of D∗0 into D0π0,
whose branching fraction is approximately 62%. In this scheme, the complete imaginary part of the D∗0 rest energy
is −iΓ∗0/2, where Γ∗0 = Γ∗0,π + Γ∗0,γ is the full width of the D∗0.
In original XEFT, the rest energies of π0, D0, and D∗0 were chosen to be −δ, 0, and 0, respectively. Setting the

rest energy of D∗0 to 0 is inconvenient if we wish to take into account the partial width of D∗0 into D0γ. It is more
convenient to choose the rest energies of π0 and D0 to be 0. The rest energy of D∗0 is then δ− iΓ∗0/2. This requires
the following change in the Lagrangian for original XEFT:
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• The rest-energy term δπ†π for the π0 should be replaced by the rest-energy term −(δ − iΓ∗0/2)D
† ·D for the

D∗0.

There is a similar rest-energy term for the D̄∗0.
If Galilean-invariant XEFT is extended to include charged charm mesons and charged pions, mass differences and

nonnegligible decay modes outside the domain of validity of the effective field theory can be taken into account through
the rest energies of the particles. The π+ − π0 mass difference can be taken into account through the rest energy of
π+. The D+ −D0 mass difference can be taken into account through the rest energy of D+. The difference between
the D∗+ −D0π0 mass difference can be taken into account through the rest energy of D∗+. The tiny partial width
for the decay of D∗+ into D+γ can also be taken into account through the rest energy of D∗+.

C. NLO Lagrangian

We can now write down the complete NLO Lagrangian for Galilean-invariant XEFT for the neutral charm mesons
and the π0. It includes only those terms required to calculate the elastic scattering amplitude for D∗0D̄0 to NLO in
the XEFT power counting. The field for the π0 is denoted by π. The fields for the D0 and D̄0 are denoted by D and
D̄. The fields for the D∗0 and D̄∗0 are denoted by D and D̄. The Lagrangian is the sum of kinetic terms, interaction
terms, and counterterms.
There are kinetic terms for the π0, D0, D̄0, and D∗0, and D̄∗0. The kinetic terms for the π0, D0, and D∗0 are

Lπ0 = π†
(

i∂0 +∇2/(2m)
)

π, (7a)

LD0 = D†
(

i∂0 +∇2/(2M)
)

D, (7b)

LD∗0 = D† ·
(

i∂0 +∇2/(2(M +m))
)

D − (δ − iΓ∗0/2)D
† ·D. (7c)

The kinetic terms for the D̄0 and D̄∗0 can be obtained from those for D0 and D∗0 by replacing D by D̄ and D by D̄.
The interaction terms consist of pion interactions, contact interactions, and ∇2 interactions. The pion interaction

terms for the transitions D∗0 ↔ D0π0 are

LD∗0↔D0π0 =
g

2
√
mfπ(M +m)

[

D† · (D[M
−→
∇ −m←−∇]π) + (D[M

−→
∇ −m←−∇]π)† ·D

]

. (8)

The pion interaction terms for the transitions D̄∗0 ↔ D̄0π0 are obtained by replacing D and D by D̄ and D̄. The
contact and ∇2 interactions are the same in the D∗0D̄0 → D∗0D̄0, D0D̄∗0 ↔ D∗0D̄0, and D0D̄∗0 → D0D̄∗0 channels.
The interaction terms in the D∗0D̄0 → D∗0D̄0 channel are

LD∗0D̄0→D∗0D̄0 = −C0

2
(D̄D)† · (D̄D)

+
C2

4(2M +m)2

[

(D̄D)† · (D̄[M
−→
∇ − (M +m)

←−
∇]2D)

+(D̄[M
−→
∇ − (M +m)

←−
∇]2D)† · (D̄D)

]

. (9)

The interaction terms in the other three channels are obtained by replacing D and D̄ by D̄ and D in the appropriate
places. The coupling constants g in Eq. (8) and C0 and C2 in Eq. (9) are essentially the same as those in the
Lagrangian for original XEFT defined in Ref. [6].
To cancel ultraviolet divergences in Green functions at NLO, it is also necessary to include counterterms in the

Lagrangian. The counterterms are the same in the D∗0D̄0 → D∗0D̄0, D0D̄∗0 ↔ D∗0D̄0, and D0D̄∗0 → D0D̄∗0

channels. The counterterms in the D∗0D̄0 → D∗0D̄0 channel are

Lcounterterm = −δC0

2
(D̄D)† · (D̄D)− δD0

2
(D̄D)† · i∂t(D̄D). (10)

The counterterm with coefficient δD0 is not needed to calculate on-shell quantities, because it can be reduced to the
other counterterm by using field redefinitions. It was omitted in Ref. [6], because the momentum distribution for
D0D̄0π0 in the decay of the X(3872) is an on-shell quantity.
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FIG. 1: The propagators for π0, D0, and D∗0 are represented by dashed, solid, and solid+dashed lines, respectively. The
Feynman rules for these propagators are given in Eqs. (11). The propagators for D̄0 and D̄∗0 look like those for D0 and D∗0

with the arrows reversed.

FIG. 2: The contact interaction vertex for D∗0D̄0
→ D∗0D̄0. The Feynman rule for this vertex is given in Eq. (13).

D. Feynman Rules

The terms in the NLO Lagrangian for Galilean-invariant XEFT with neutral charm mesons and the π0 are given in
Eqs. (7), (8), (9), and (10). We will give the Feynman rules for this Lagrangian. The Feynman rules that are actually
used for calculations beyond leading order will be enclosed in boxes.
In XEFT, the charm quark and antiquark numbers Nc and Nc̄ are conserved. In Galilean-invariant XEFT, the pion

number Nπ is also conserved. These conservation laws can all be made manifest in the Feynman rules by appropriate
notation for the propagators. We use a dashed line for the pion propagator, a solid line for the D and D̄ propagators,
and a double line consisting of a solid and a dashed line for the D∗ and D̄∗ propagators. In the propagators for the
mesons D∗ and D that contain a charm quark, the solid line has a forward arrow. In the propagators for the mesons
D̄∗ and D̄ that contain a charm antiquark, the solid line has a backward arrow. It is sometimes convenient to omit
the arrows on internal lines of diagrams and to use the convention that there is an implied sum over the possible
directions of the omitted arrows.
The propagators for the π0, D0, and D∗0 are illustrated in Fig. 1. The Feynman rules for the propagators of the

π0, the D0 or D̄0, and the D∗0 or D̄∗0 are

i

p0 − p2/(2m) + iǫ
,

i

p0 − p2/(2M) + iǫ
,

iδij

p0 − E∗ − p2/(2(M +m))
,

(11a)

(11b)

(11c)

where p0 and p are the energy and momentum of the particle. The propagator of the D∗0 is diagonal in its vector
indices i and j, and its complex rest energy is

E∗ = δ − iΓ∗0/2. (12)

Since E∗ has a negative imaginary part, an explicit iǫ prescription is unnecessary in the D∗0 propagator.
At LO in the XEFT power counting, the only interaction that is required is a contact interaction for D∗0D̄0 in

the C = + channel. The Feynman rule for the vertex is the same for the D∗0D̄0 → D∗0D̄0, D0D̄∗0 ↔ D∗0D̄0, and
D0D̄∗0 → D0D̄∗0 contact interactions:

(

− iC0/2
)

δij . (13)
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FIG. 3: The vertices for the pionic transitions D∗0
→ D0π0 and D0π0

→ D∗0. The Feynman rule for the D∗0
→ D0π0 vertex

is given in Eq. (14).

FIG. 4: The ∇
2 vertex and the counterterm vertex for D∗0D̄0

→ D∗0D̄0. The Feynman rules for these vertices are given in
Eqs. (15) and (16), espectively.

This vertex for D∗0D̄0 → D∗0D̄0 is illustrated in Fig. 2. The C0 interaction must be treated nonperturbatively in
XEFT. The set of subdiagrams consisting of an arbitrary number of successive C0 interactions can be summed to all
orders analytically. The Feynman rule for the resulting effective interaction is given later in Eq. (44). In calculations
beyond leading order in XEFT, that effective vertex replaces the one in Eq. (13). That is why the Feynman rule in
Eq. (13) is not enclosed in a box.
One of the interactions beyond LO in the XEFT power counting is the D∗ ↔ Dπ transition. The Feynman rules

for the D∗0 → D0π0 and D̄∗0 → D̄0π0 vertices in Galilean-invariant XEFT are

g

2
√
mfπ

(Mq −mp)i

M +m
, (14)

where q and p are the momenta of the outgoing π0 and charm meson, respectively. The vertices for D∗0 → D0π0 and
D0π0 → D∗0 are illustrated in Fig. 3. In the D0π0 center-of-momentum frame defined by p+ q = 0, the momentum-
dependent factor in Eq. (14) reduces to qi, which is the momentum-dependent factor in all frames in original XEFT.
The Feynman rules for the D0π0 → D∗0 and D̄0π0 → D̄∗0 vertices differ from Eq. (14) by an overall minus sign if
q and p are the momenta of the incoming π0 and charm meson, respectively. A convenient way to implement the
XEFT power counting is to assign orders in g to the coupling constants of all other interaction terms. A complete
calculation then requires calculating all diagrams to a given order in g.
The other interaction at NLO in the XEFT power counting is the ∇2 interaction for D∗0D̄0 in the C = + channel.

The Feynman rule for the vertex is the same for the D∗0D̄0 → D∗0D̄0, D0D̄∗0 ↔ D∗0D̄0, and D0D̄∗0 → D0D̄∗0
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interactions. In Galilean-invariant XEFT, the Feynman rule is

(−iC2/4)
((M +m)p−Mp∗)

2 + ((M +m)p′ −Mp′
∗)

2

(2M +m)2
δij , (15)

where p and p∗ are the momenta of the incoming spin-0 and spin-1 charm mesons and p′ and p′
∗ are the momenta

of the outgoing mesons. The vertex for D∗0D̄0 → D∗0D̄0 is illustrated in Fig. 4. In the D∗0D̄0 center-of-momentum

frame defined by p∗ + p = p′
∗ + p′ = 0, the momentum-dependent factor in Eq. (15) reduces to p2 + p′

2
. In

this frame, the Feynman rule coincides with that in original XEFT, for which the momentum-dependent factor is
[(p− p∗)

2 + (p′ − p′
∗)

2]/4. The coupling constant C2 in Eq. (15) can be assigned order g2.
In addition to these interaction vertices, it is also necessary to include a counterterm vertex for D∗0D̄0 in the C = +

channel. The vertex is the same for the D∗0D̄0 → D∗0D̄0, D0D̄∗0 ↔ D∗0D̄0, and D0D̄∗0 → D0D̄∗0 interactions:

(

− i[δC0 + δD0E]/2
)

δij , (16)

where E is the total energy of the pair of charm mesons. The counterterm vertex for D∗0D̄0 → D∗0D̄0 is illustrated
in Fig. 4. The δD0 term is not needed to calculate on-shell quantities at NLO, but it is needed to cancel ultraviolet
divergences in off-shell Green functions. The counterterm coefficients δC0 and δD0 in Eq. (16) can be assigned order
g2.
In the original paper on XEFT, an additional interaction term that produces a transition of D∗0D̄0 to D0D̄0π0 was

written down explicitly [6]. The Feynman rule for its vertex in Galilean-invariant XEFT is

B1

2
√
m

(2Mq −m(p+ p̄))i

2M +m
, (17)

where q, p, and p̄ are the outgoing momenta of the pion and the two spin-0 charm mesons. In the D0D̄0π0 center-of-
momentum frame defined by p+ p̄+ q = 0, the momentum-dependent factor in Eq. (17) reduces to qi, which is the
momentum-dependent factor in all frames in original XEFT. The coupling constant B1 in Eq. (17) can be assigned
order g3. This interaction term was needed in Ref. [6] to calculate the decay of X(3872) into D0D̄0π0 to NLO in the
XEFT power counting or, equivalently, to relative order g2.
In the D∗0 propagator in Eq. (11c), a wavefunction renormalization factor Z can be inserted in the numerator.

That factor can be made completely arbitrary by inserting canceling factors of Z−1/2 into the interaction vertices for
each D∗0 or D̄∗0 line. The number of such factors in the interaction vertices in Eqs. (13), (14), (15), and (16) would
be 2, 1, 2, and 2, respectively. These factors can be absorbed into the coupling constants.
If we use dimensional regularization with d spatial dimensions, it is useful to introduce a renormalization scale Λ

to keep the dimensions of coupling constants the same as in the physical dimension d = 3. The interaction vertices
in Eqs. (13), (14), (15), and (16) would be multiplied by Λ raised to the powers 3 − d, (3 − d)/2, 3 − d, and 3 − d,
respectively. In a Green function, the net effect of these powers of Λ is a factor of Λ3−d for every loop integral and
an overall multiplicative factor of Λ3−d raised to some power. The factor of Λ3−d associated with a loop integral
can be absorbed into its integration measure. If the Green function is made finite by renormalization, the overall
multiplicative factor of Λ3−d raised to some power can be simply be ignored, because it is equal to 1 in the physical
dimension d = 3.

III. RENORMALIZATION PRESCRIPTIONS

In this section, we introduce renormalization prescriptions that can be used to take into account the effects of
transitions to states in which the momenta are too large to be described explicitly in XEFT. We also calculate the
transition amplitude for D∗0D̄0 → D∗0D̄0 at leading order in XEFT.

A. D
∗

−Dπ Coupling Constant

One of the coupling constants in XEFT beyond leading order is the D∗ −Dπ coupling constant g/
√
2fπ. It could

in principle be determined from the partial width of D∗0 into D0π0:

Γ∗0,π ≡ Γ[D∗0 → D0π0] =

(

g2

4mf2
π

)

µπ

3π
(2µπδ)

3/2, (18)
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FIG. 5: The one-loop (and only) D∗0 self-energy diagram in XEFT. The diagram with external legs amputated can be expressed
as −iΣ(Ecm)δij .

where δ is the mass difference in Eq. (2) and µπ is the Dπ reduced mass defined in Eq. (3b). The branching fraction
for D∗0 → D0π0 has been measured to be (62± 3)%, but the full width of D∗0 has not been measured.

By exploiting isospin symmetry, the coupling constant g/
√
2fπ can also be determined from decays of the D∗+.

The full width of D∗+ has been recently measured with high precision by the Babar Collaboration [17]: Γ[D∗+] =
83.3± 1.2± 1.4 keV. The sum of the branching factions of D∗+ into D0π+ and D+π0 is 0.984± 0.005. In Galilean-
invariant XEFT, the sum of the partial widths into D0π+ and D+π0 is

Γ[D∗+ → D0π+] + Γ[D∗+ → D+π0] =
1

3π

(

g2

4mf2
π

)

µπ

[

2(2µπδ+0)
3/2 + (2µπδ++)

3/2
]

, (19)

where δ+0 = 5.856± 0.002 MeV is the D∗+ −D0π+ mass difference, and δ++ = 5.68± 0.08 MeV is the D∗+ −D+π0

mass difference. The resulting value of the coupling constant g is given by

g2

4mf2
π

= (3.67± 0.08)× 10−8 MeV−3. (20)

The pion decay constant fπ determines the scattering amplitude for ππ scattering. With the convention for fπ used
in Ref. [6], its value is fπ ≈ 132 MeV. Given that value, the pion transition coupling constant in Eq. (20) is determined
to be g ≈ 0.59. A more appropriate dimensionless measure of the strength of the pion exchange interaction in XEFT
is

g2µ2
√
2µπδ

12πmf2
π

≈ 0.15, (21)

where µ is the reduced kinetic mass of D∗0D̄0 defined in Eq. (3a).
The determination of the values of g and fπ separately is unnecessary in XEFT applied to the DD̄π sector (which

includes D∗D̄), because the number of pions in the system can only be 0 or 1. In the DD̄ππ sector (which includes
D∗D̄∗), the number of pions in the system can be 0, 1, or 2. Since there can be contributions from ππ scattering, the
value of fπ is needed at a sufficiently high order in the XEFT power counting.

B. D
∗0 Propagator

The conservation of pion number in Galilean-invariant XEFT implies that the exact D∗0 propagator can be cal-
culated analytically. It can be obtained by summing a geometric series of the one-loop D∗0 self-energy diagram in
Figure 5. Galilean invariance implies that the propagator for a D∗0 with energy p0 and momentum p is a function of
the Galilean-invariant combination

Ecm = p0 −
p2

2(M +m)
. (22)

The exact D∗0 propagator can be expressed as

Dij
∗ (p0, p) =

i[1 + δZ]δij

Ecm − (E∗ + δE∗)− Σ(Ecm)
, (23)

where Σ(Ecm) is the D∗0 self-energy and δE∗ is a rest-energy counterterm. We have introduced a wavefunction
renormalization factor 1 + δZ in the numerator. It can be made completely arbitrary by absorbing canceling factors
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FIG. 6: The D∗0 self-energy counterterm vertex. The Feynman rule for this vertex at order g2 in the complex on-shell scheme
is given in Eq. (31).

of [1 + δZ]−1/2 into the interaction vertices. With dimensional regularization, the D∗0 self-energy is

Σ(Ecm) = −µπ

(

g2

4mf2
π

)

Λ3−dΓ(−d/2)
(4π)d/2

[

e−iπ2µπEcm

]d/2
, (24)

where Λ is the renormalization scale and µπ is the D0π0 reduced mass in Eq. (3b). The self-energy has cubic and
linear ultraviolet divergences that are manifested as single poles in d and d− 2, respectively. The pole in d− 2 is

1

d− 2
lim
d→2

(d− 2)Σ(Ecm) =

(

g2

4mf2
π

)

2µ2
πΛ

3π(d− 2)
Ecm. (25)

In the physical dimension d = 3, the self-energy is pure imaginary for real positive Ecm:

lim
d→3

Σ(Ecm) = −i
(

g2

4mf2
π

)

µπ

6π
[2µπEcm]

3/2
. (26)

Its value at E = δ is −iΓ∗0,π/2, where Γ∗0,π is the partial width of D∗0 into D0π0 given in Eq. (18).
In the minimal power-divergence subtraction (PDS) renormalization scheme [16], the D∗0 rest energy and the

propagator counterterms are

E∗,PDS = δ, (27a)

δE∗,PDS = 0, (27b)

δZPDS = −
(

g2

4mf2
π

)

2µ2
πΛ

3π(d− 2)
. (27c)

In the physical dimension d = 3, the self-energy Σ(Ecm) reduces to Eq. (26). The approximate position of the pole
in p0 of the D∗0 propagator in Eq. (23) is where Ecm is equal to the complex energy δ − iΓ∗0,π/2. The PDS scheme
does not take into account the decay D∗0 → D0γ.
The pole in the energy p0 for the physical D∗0 propagator occurs when Ecm is equal to the complex energy

E∗ = δ − iΓ∗0/2, where Γ∗0 is the full width of the D∗0. We introduce the complex on-shell (COS) renormalization
scheme for the D∗0 propagator in which its pole in p0 is at the complex physical value and the residue of that pole is
the same as at LO. The D∗0 rest energy and the propagator counterterms are

E∗ = δ − iΓ∗0/2, (28a)

δE∗ = −Σ(E∗), (28b)

δZ = −Σ′(E∗), (28c)

where Σ(E) is the self-energy in Eq. (24). In the physical dimension d = 3, δE∗ and δZ in the COS scheme reduce to

lim
d→3

δE∗ = −i
(

g2

4mf2
π

)

µπ

6π
[2µπE∗]

3/2
, (29a)

lim
d→3

δZ = i

(

g2

4mf2
π

)

µ2
π

2π
[2µπE∗]

1/2 . (29b)

If we ignore the tiny difference between E∗ = δ − iΓ∗0/2 and δ, the rest energy counterterm in Eq. (29a) reduces to
δE∗ = −iΓ∗0,π/2, where Γ∗0,π is the partial width of the D∗0 into D0π0 in Eq. (18).
Although Eq. (23) is the exact D∗0 propagator in Galilean-invariant XEFT, it is not practical to use this propagator

in loop diagrams, because the term in the denominator proportional to E
d/2
cm makes loop integrals more complicated

to evaluate. It is better to expand the exact propagator in Eq. (23) in powers of g2:

Dij
∗ (p0, p) =

iδij

Ecm − E∗

∞
∑

N=0

[

Σ(Ecm) + δE∗ + δZ(Ecm − E∗)

[1 + δZ](Ecm − E∗)

]n

. (30)
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FIG. 7: The one-loop diagram for the LO D∗0D̄0 transition amplitude. There is an implied sum over the two possible directions
of the arrows on the internal lines. The diagram with external legs amputated can be expressed as the contact interaction
vertex (−iC0/2)δ

ij multiplied by C0Π(Ecm), where Π(Ecm) is the LO D∗0D̄0 self-energy.

The expansion generates a geometric series of propagator corrections. The terms of order g2 correspond to inserting
into the propagator the one-loop D∗0 self-energy subdiagram in Fig. 6 and a D∗0 self-energy counterterm. The
Feynman rule for the order-g2 self-energy counterterm vertex in the COS scheme is

+i
(

Σ(E∗) + Σ′(E∗)
[

p0 − p2/(2(M +m))− E∗

]

)

δij , (31)

where p0 and p are the energy and momentum of the D∗0, i and j are its vector indices, and Σ(E) is the self-energy
in Eq. (24).
The previous NLO calculations in XEFT were carried out in the original version of XEFT, which is not Galilean

invariant. The D∗0 self-energy Σ(p0, p) is therefore a function of the two independent variables p0 and p. The kinetic
mass of the D∗0 was set equal to its physical mass M∗. The D∗0 rest energy was taken to be the real energy δ,
although it was actually taken into account through the rest energy term for the π0. In the NLO calculation of
the decay of X(3872) into D0D̄0π0 in Ref. [6], the renormalization of the D∗0 propagator was carried out using the
minimal power divergence subtraction scheme in Eq. (27). In the physical dimension d = 3, the counterterm δZPDS

in Eq. (27c) reduces to the renormalization scale Λ multiplied by a constant. This term was cancelled by a kinetic
counterterm for the D∗0.
In the NLO calculation of the D∗0D̄0 scattering length In Ref. [11], the complex energy of the X(3872) and its partial

width into D0D̄0π0 were calculated to NLO using original XEFT. The calculation involved a two-loop diagram that
has a one-loop D∗0 self-energy subdiagram and that diverges as 1/p as the relative momentum p of D∗0D̄0 approaches

0. The divergence was avoided by resumming to all orders terms proportional to Γ
1/2
∗0,π from one-loop D∗0 self-energy

subdiagrams. The resummation could have been implemented in such a way that the terms that were resummed had
only integer powers of Γ∗0,π. This is equivalent to the complex on-shell renormalization scheme for the D∗0 propagator
in Eq. (28), but with E∗ replaced by δ− iΓ∗0,π/2. The imaginary part of E∗ is not equal to the physical value −Γ∗0/2,
because the decay D∗0 → D0γ was not taken into account in Ref. [11].

C. D
∗0

D̄0 Transition Amplitude

In XEFT, the conservation of pion number ensures that loop diagrams in the DD̄π sector have a single D or D̄
propagator in every loop. The integral over the loop energy of a D can therefore be evaluated by closing the contour
around the pole in the D propagator, putting the D on its energy shell. Since D or D̄ lines in loops can be put on
their energy shells, it is sufficient to consider Green functions in which all external D or D̄ lines are on their energy
shells.
The amputated connected Green function for D∗0D̄0 → D∗0D̄0 in the C = + channel, with the incoming and

outgoing D̄0 or D0 on their energy shells, can be expressed as +iAij , where the tensor Aij is a function of the total
energy P0 and the momenta of the two incoming and two outgoing particles. Its vector indices are associated with
the polarizations of the incoming and outgoing D∗0 or D̄∗0. In XEFT, the corresponding amplitude in the C = −
channel is 0. We will refer to Aij as the transition amplitude for D∗0D̄0 in the C = + channel or simply as the
transition amplitude. Its contribution to the amplitude for D∗0D̄0 → D∗0D̄0 is +iAij/2, where the factor of (1/

√
2)2

comes from projections onto the C = + channel.
The tree level term in the LO transition amplitude, which is given by the Feynman rule in Eq. (13), is −C0δ

ij .
The D∗0D̄0 coupling constant C0 must be treated nonperturbatively in order to generate the bound state that can
be identified with the X(3872). The one-loop diagram in Fig. 7 is therefore also LO. The complete LO transition
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FIG. 8: The Lippmann-Schwinger integral equation for the LO D∗0D̄0 transition amplitude. In the second diagram on the
right side, there is an implied sum over the two possible directions of the arrows on the internal lines. The Feynman rule for
the LO transition amplitude is given in Eq. (44).

amplitude can be obtained by summing a geometric series of the one-loop diagrams. This sum is equivalent to the
solution of the Lippmann-Schwinger equation shown in Figure 8.
In Galilean-invariant XEFT, the LO transition amplitude depends on the energies and momenta of the initial-state

and final-state particles only through the Galilean-invariant combination

Ecm = P0 −
P 2

2(2M +m)
, (32)

where P0 is the total energy of the D∗0 and D̄0 relative to the D0D̄0π0 threshold and P is their total momentum.
The LO transition amplitude is (2π/µ)A(Ecm)δ

ij , where

A(Ecm) =
µ/(2π)

−[C−1
0 + δC−1

0 ] + Π(Ecm)
(33)

and Π(Ecm) is a function of Ecm that we will refer to as the D∗0D̄0 self-energy. The inverse coupling constant from
the contact interaction vertex in Eq. (13) has been separated into C−1

0 and a LO counterterm δC−1
0 . Despite the

notation, δC−1
0 is independent of the NLO counterterm δC0 in the counterterm vertex in Eq. (16). With dimensional

regularization, the D∗0D̄0 self-energy is

Π(Ecm) = −2µ
Λ3−dΓ(1− d/2)

(4π)d/2
[

2µ(E∗ − Ecm)
]d/2−1

, (34)

where µ is the reduced kinetic mass of D∗0D̄0 defined in Eq. (3a). If the amplitude A(Ecm) in Eq. (33) has a pole in
P0, the residue of the pole is

ZX = − (4π)d/2−1Λd−3

2µΓ(2− d/2) γ
4−d
X . (35)

This is a smooth function of d for d < 4.
The D∗0D̄0 self-energy has a linear ultraviolet divergence that is manifested by a pole in d− 2:

1

d− 2
lim
d→2

(d− 2)Π(Ecm) =
µΛ

π(d− 2)
. (36)

In the minimal power-divergence subtraction (PDS) scheme [16], this pole is cancelled by a LO counterterm:

(δC−1
0 )PDS =

µΛ

π(d− 2)
. (37)

The LO transition amplitude in Eq. (33) then has a finite limit as d→ 2:

lim
d→2
A(Ecm) =

1

log
(

2µ(E∗ − Ecm)/Λ2
2

)

Λ
. (38)

The momentum scale Λ2 in the logarithm is determined by the limiting behavior of C−1
0 as d→ 2.

In the physical dimension d = 3, the LO transition amplitude in Eq. (33) reduces to the form

lim
d→3
A(Ecm) =

1

−γX +
√

−2µ(Ecm − E∗)
, (39)



13

where γX is a complex constant that we will refer to as the binding momentum of the X(3872). It is determined by
the limiting behavior of C−1

0 as d→ 3:

γX = (2π/µ) lim
d→3

(

C−1
0 + δC−1

0

)

. (40)

The amplitude A(Ecm) in Eq. (33) has a pole in P0 on the physical sheet. The residue of the pole is

lim
d→3

ZX = −γX/µ. (41)

The pole in P0 of the amplitude A(Ecm) in Eq. (33) occurs when Ecm equals a complex energy EX that can be
interpreted as the energy of the X(3872) resonance:

EX = E∗ − γ2X/(2µ) (42a)

= δ − δX − iΓX/2. (42b)

In the first line, the complex energy EX has been expressed in terms of the complex D∗0 energy E∗ and the complex
binding momentum γX . In the second line, EX has been expressed in terms of real variables δX and ΓX that can
be interpreted as the binding energy and full width of the X(3872). The measured value of the binding energy δX is
given in Eq. (1). The width ΓX has not yet been measured, but there is an upper bound: ΓX < 1.2 MeV [18]. If the
complex binding momentum is expressed as γX = γre + iγim, where γre and γim are real, the binding energy and full
width are

δX = (γ2re − γ2im)/(2µ), (43a)

ΓX = Γ∗0 + 2γreγim/µ. (43b)

In calculations beyond LO in the XEFT power counting, it is convenient to replace the contact interaction vertex
in Eq. (13) by a vertex for the transition amplitude. The Feynman rules are the same for the D∗0D̄0 → D∗0D̄0,
D0D̄∗0 ↔ D∗0D̄0, and D0D̄∗0 → D0D̄∗0 transition amplitudes:

+i

(

1√
2

)2
2π

µ
A(Ecm)δij , (44)

where Ecm is the function of the total energy P0 and the total momentum P of the charm meson pair defined in
Eq. (32) and i and j are the vector indices of the incoming and outgoing D∗0. In d dimensions, the function A(Ecm)
is defined by Eqs. (33) and (34). In the physical dimension d = 3, it reduces to Eq. (39). The vertex for the transition
amplitude is represented by a blob, as illustrated for the D∗0D̄0 → D∗0D̄0 channel by the Lippmann-Schwinger
equation in Fig. 8.
Beyond leading order in the XEFT power counting, the transition amplitude Aij(Ecm,p,p

′) for D∗0D̄0 in the
C = + channel in Galilean invariant XEFT is a function of Ecm and the relative momenta p and p′ of the incoming
and outgoing charm mesons. At NLO, this amplitude has additional ultraviolet divergences. The renormalizability
of XEFT requires that they be cancelled by appropriate choices of the constants δC0 and δD0 in the counterterm
vertex in Eq. (16). A renormalization prescription for the amplitude Aij(Ecm,p,p

′) is necessary to determine the
finite parts after the cancellations. In order to take into account decay modes of the X(3872) with momenta too large
to be described explicitly, it is advantageous to use the complex on-shell (COS) renormalization scheme in which the
pole in the total energy P0 is at its physical value. The complex energy of the pole can be specified in terms of the
complex binding momentum γX of the X(3872), as in Eq. (42a), or in terms of its binding energy δX and full width
ΓX , as in Eq. (42b). The definition of the COS scheme for the D∗0D̄0 → D∗0D̄0 Green function can be completed by
specifying the residue of the pole in P0. The amplitude Aij(Ecm,p,p

′) has a well-behaved limit as p→ 0 and p′ → 0
that is a function of Ecm only. Thus we complete the definition of the COS scheme by requiring the residue of the
pole in P0 for the amplitude Aij(Ecm, 0, 0) to be the same as for the LO amplitude (2π/µ)A(Ecm)δ

ij . In the physical
dimension d = 3, the limiting behavior as P0 approaches the pole is

Aij(Ecm, 0, 0) −→
(2π/µ)ZXδ

ij

[P0 − P 2/(2(2M +m))]− [E∗ − γ2X/(2µ)]
, (45)

where ZX is the LO residue in Eq. (41) and γX is the complex binding momentum of the X(3872). The COS scheme
can be implemented through specific choices of the counterterms δC0 and δD0.
In the previous NLO calculations in XEFT in Ref. [6] and [11], the NLO counterterm δC0 was included, but δD0

was not. The counterterm δC0 could have been chosen so that the pole in P0 was at the physical point, as in Eq. (45).
However without the counterterm δD0, the prescription in Eq. (45) for the residue of the pole could not have been
implemented. In fact, the residue would have been ultraviolet divergent.
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IV. D
∗0

D̄
0

SCATTERING

In this Section, we use Galilean-invariant XEFT to calculate the D∗0D̄0 scattering length to NLO in the XEFT
power counting.

A. NLO Transition Amplitude

In Galilean-invariant XEFT, the NLO transition amplitude for D∗0D̄0 → D∗0D̄0 in the C = + channel in the
center-of-momentum frame is a tensor Aij(E,p,p′) that depends on the total energy E and the relative momenta p

and p′ of the incoming and outgoing charm mesons. The LO transition amplitude is (2π/µ)A(E)δij , where A(E) in
the physical dimension d = 3 is given in Eq. (39). The NLO diagrams for the transition amplitude are calculated
in Appendix B. The 20 diagrams are labeled An, Bn, Cn, and Dn, where n is an integer. The NLO terms in the
transition amplitude have a well-behaved limit as p → 0 and p′ → 0 that is diagonal in the vector indices i and j.
The NLO transition amplitude can be expressed as

Aij(E, 0, 0) =
2π

µ

(

A(E) + (g2µ2/4mf2
π)
[

F (E)A2(E) +G(E)A(E)
]

+(C2/C0)H(E)A2(E)− 2π[δC0 + δD0E]

µC2
0

A2(E)

)

δij . (46)

The NLO correction terms either have a factor of A2(E) or a factor ofA(E). The function F (E), which has dimensions
of momentum, is obtained by adding the pion-exchange diagram A4 in Eq. (B8) and the D∗ propagator correction
diagrams B1 and B2 in Eqs. (B9) and (B10). The function B(E), which is dimensionless, is the sum of the pion-
exchange diagrams A2 and A3 in Eq. (B7). The function H(E), which has dimensions of (momentum)3, comes from
the ∇2 vertex diagrams C in Eqs. (B16). The δC0 and δD0 terms come from the D∗D̄ counterterm diagrams D in
Eq. (B18). The functions F (E), G(E), and H(E) can be expressed in terms of the loop integrals Jn, In, and Klmn

defined in Appendix A:

F (E) =
(−8π)r

d

( 1√
1− r

[

2K110(E)− 2µ(2E∗ − rE)K111(E)− (2− r)J1(E)2
]

+2
[

K110(E)− 2µE∗K120(E)
]

+ rI1(E∗)
[

4µE∗J2(E)− dJ1(E)
]

)

, (47a)

G(E) =
8r
√
1− r [(E − E∗)J1(E)− rEI1(E)]

d[(1− r)E − E∗]
, (47b)

H(E) = 8πµ(E − E∗)J1(E), (47c)

where r = µπ/µ is the ratio of reduced masses defined in Eq. (4). The terms proportional to A(E) in Eq. (46) have a
single pole in E at E∗− γ2X/(2µ). The terms proportional to A2(E) have an unphysical double pole in E. The N2LO
term would have a triple pole and higher order terms would have even higher poles. These unphysical multiple poles
can be summed to all orders, in which case they produce a shift in the position of the pole in the LO amplitude. In
Ref. [11], such a resummation was used in the NLO calculations of the binding energy of the X(3872) and its partial
width into D0D̄0π0. It was not used in the NLO calculation of the D∗0D̄0 scattering length. An expression for the
transition amplitude that is accurate to NLO and has only a single pole is

Aij(E, 0, 0) =
(2π/µ)

[

1 + (g2µ2/4mf2
π)G(E)

]

δij

A(E)−1 − (g2µ2/4mf2
π)F (E) − (C2/C0)H(E) + (2π/µC2

0 )[δC0 + δD0E]
. (48)

To NLO accuracy, the factor of 1 + (g2µ2/4mf2
π)G in the numerator could equally well be moved to the denominator

as a factor 1− (g2µ2/4mf2
π)G multiplying A(E)−1.

B. Renormalization

Loop integrals in XEFT have ultraviolet (UV) divergences. With dimensional regularization, the UV divergences
produce poles in d − 2 and poles in d − 3. A pole in d − 3 represents a logarithmic UV divergence, and a pole in
d− 2 represents a linear UV divergence. In previous NLO calculations in XEFT [6, 11], power divergence subtraction
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was used to remove the poles in d − 2. The subsequent limit d → 3 produces terms that depend explicitly on the
renormalization scale Λ. In the PDS scheme, a loop integral with a pole term Λ3−d/(d − 2) requires a canceling
counterterm −Λ/(d − 2). In the physical dimension d = 3, the loop integral becomes independent of Λ, but the
canceling counterterm reduces to −Λ.
In the NLO calculation of the decay of the X(3872) into D0D̄0π0 in Ref. [6], the explicit dependence on Λ was

through terms proportional to Λ, Λ2, and logΛ. The explicit dependence on Λ was exactly cancelled by the implicit
dependence on Λ of the coupling constants of XEFT. In the NLO calculations of Ref. [11], in addition to terms
proportional to Λ, Λ2, log Λ, there was explicit dependence on Λ from terms proportional to 1/(Λ − γ), where γ is
the leading order binding momentum or inverse scattering length. These terms were introduced by a resummation
prescription for dealing with an infrared divergence at the D∗0D̄0 threshold. The terms proportional to 1/(Λ − γ)
were not cancelled by the implicit dependence on Λ of the coupling constants, but they were suppressed by a factor
proportional to the partial width Γ∗0,π for D∗0 → D0π0.
The poles in d− 3 in the NLO transition amplitude are given in Appendix B in Eqs. (B22). In the NLO transition

amplitude in Eq. (46), the only poles in d− 3 come from the two-loop integrals K110, K120, and K111 in the function
F (E) in Eq. (47a). The poles in K120 and K111 are constants given in Eqs. (A20b) and (A20c), respectively. The
pole in K110 is a linear function of E given in Eq. (A23). Thus the dependence on the energy in the pole terms is of
the form A2(E) and EA2(E). These poles in d − 3 can be cancelled by the δC0 and δD0 counterterms in Eq. (46).
Thus logarithmic UV divergences in the NLO transition amplitude can be cancelled by the available counterterms.
The poles in d− 2 in the NLO transition amplitude are given in Appendix B in Eqs. (B20) and (B21). In the NLO

transition amplitude in Eq. (46), the functions G(E) and H(E) have single poles in d− 2 while the function F (E) has
double poles. The single poles in d− 2 in the one-loop integrals J1 and I1 are given in Eqs. (A14). The poles in d− 2
in the two-loop integrals are given in Eqs. (A18): K110 has a double pole and K120 has a single pole. The pole terms
with the energy dependence A2(E) and EA2(E) can be cancelled by the counterterms δC0 and δD0, respectively.
They include the double-pole terms from F (E), some of the single-pole terms from F (E), and the single-pole terms
from H(E). However there are also single-pole terms from F (E) that have the energy dependence log(E∗−E)A(E)2.
In the single pole of G(E) in Eq. (47b), the energy-dependent denominator is cancelled, so it gives pole terms with
the energy dependence A(E). Neither of these terms can be cancelled by the available counterterms δC0 and δD0.
The poles in d− 2 after suitable choices of the counterterms are

Aij(E) −→
(

g2

4mf2
π

)

4r
√
1− r µΛ2

d− 2
log

2µ(E∗ − E)

Λ2
A2(E) δij

+

(

g2

4mf2
π

)

(−4)r
√
1− r µΛ

d− 2
A(E) δij . (49)

The argument of the logarithm has been made dimensionless by using the renormalization scale Λ.
The uncanceled poles in d− 2 in Eq. (49) seem to indicate that the NLO transition amplitude in Galilean-invariant

XEFT has linear UV divergences that cannot be removed by renormalization. This puzzle can be resolved by taking
into account the expression for the amplitude A(E) in d = 2, which is given in Eq. (38). Its reciprocal A(E)−1 is
linear in log(E∗ −E). The cancellation between the two terms in Eq. (49) leaves a term with the energy dependence
A2(E) that can be cancelled by the counterterm δC0.
We proceed to implement the complex on-shell renormalization scheme specified by Eq. (45). This scheme requires

the pole in E of Aij(E, 0, 0) to be at the same complex energy EX and to have the same residue as the LO amplitude
(2π/µ)A(E)δij . It can be implemented as specific choices of the counterterms δC0 and δD0. We use the variation
of the amplitude in Eq. (48) in which the term (g2µ2/4mf2

π)G in the numerator is moved to the denominator. The
renormalized expression for the transition amplitude is

Aij(E, 0, 0) = (2π/µ)δij
[

A(E)−1 − (g2µ2/4mf2
π)[G(E)A(E)−1 −G(EX)(E − EX)/ZX ]

−(g2µ2/4mf2
π)Fsub(E)− (C2/C0)Hsub(E)

]−1
, (50)

where Fsub(E) and Hsub(E) are obtained by subtracting terms from F (E) and H(E):

Fsub(E) = F (E)− F (EX)− F ′(EX)(E − EX), (51a)

Hsub(E) = H(E)−H(EX)−H ′(EX)(E − EX). (51b)

The denominator in Eq. (50) vanishes at E = EX . The value of its first derivative at E = EX is such that the residue
of the pole in E is (2π/µ)ZXδ

ij , in accord with the renormalization prescription in Eq. (45). The explicit expressions
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for the counterterms are given by

2πδC0

µC2
0

=
g2µ2

4mf2
π

(

F (EX)−
[

F ′(EX) +G(EX)/ZX

]

EX

)

+
C2

C0

(

H(EX)−H ′(EX)EX

)

, (52a)

2πδD0

µC2
0

=
g2µ2

4mf2
π

[

F ′(EX) +G(EX)/ZX

]

+
C2

C0

H ′(EX). (52b)

In the previous NLO calculations in XEFT in Refs. [6] and [11], power divergence subtraction was used to make
double and single poles in d − 2 explicit as terms proportional to Λ2 and Λ, where Λ is the renormalization scale.
Since the poles in d− 2 have the same energy dependence as the counterterms δC0 and δD0, the terms proportional
to Λ2 and Λ are exactly cancelled by those counterterms in the COS scheme. Thus it is unnecessary to use power
divergence subtraction to make the poles in d− 2 explicit.

C. D
∗0
D̄

0

Scattering Length

T-matrix elements in XEFT involving charm mesons and π0’s can be obtained from the amputated connected Green
functions by the following steps:

• Multiply by a polarization vector εi for a D∗0 or D̄∗0 in the initial state and by a polarization vector ε′j∗ for a
D∗0 in the final state.

• Multiply by a residue factor |Z∗|1/2 for each D∗0 or D̄∗0 in the initial and final states. In the COS scheme,
Z∗ = 1.

• Put the external lines on their energy shells. For the D0 or D̄0 and for the π0, the energy shells are real:
p0 = p2/(2M) and p0 = p2/(2m), respectively. For the D∗0 or D̄∗0, the energy shell is complex: p0 =
E∗ + p2/(2(M +m)).

We consider the elastic scattering of D∗0D̄0 in the center-of-momentum frame with incoming momenta ±pẑ and
outgoing momenta ±pn̂. The scattering angle satisfies cos θ = ẑ · n̂. The initial and final polarization vectors of the
D∗0 are ε and ε′. The total energy is Ep = E∗ + p2/(2µ). The T-matrix element is

T (p, θ) = (1/2)
∑

ij

Aij(Ep, pẑ, pn̂)ε
iε′j∗. (53)

In the limit of zero relative momentum, the scattering is isotropic. The T-matrix element reduces to

T (p = 0) = (1/2)
∑

ij

Aij(E∗, 0, 0)ε
iε′j∗, (54)

where the transition amplitude is given by Eq. (50) evaluated at E = E∗.
In the case of short-range interactions, a scattering amplitude can be expanded in powers of the relative momentum.

This expansion is called the effective range expansion. Beyond LO in XEFT, the effective range expansion for D∗0D̄0

breaks down because of the effects of the exchange of a pion that can be on its energy shell. However Jansen, Hammer,
and Jia pointed out that the leading term in the effective range expansion, which is the S-wave D∗0D̄0 scattering
length, remains well defined [11]. They calculated the scattering length to NLO in original XEFT, truncating the

expression at first order in an expansion in powers of γX/
√
2mδ and at leading order in m/M . We will calculate the

scattering length to NLO in Galilean-invariant XEFT, truncating the expression at fourth order in an expansion in
powers of γX/

√
2µE∗ but keeping all orders in m/M .

The S-wave scattering length as,+ for D∗0D̄0 in the C = + channel can be defined by expressing the T-matrix in
the zero-momentum limit in Eq. (54) as

T (p = 0) = (1/2)(2π/µ)(−as,+)ε · ε′∗. (55)

At leading order in XEFT, the inverse scattering length is equal to the complex binding momentum: 1/as,+ = γX .
The inverse scattering length at NLO is

1/as,+ = γX + (g2µ2/4mf2
π)
[

G(EX)− 2G(E∗)
]

γX/2

+(g2µ2/4mf2
π)Fsub(E∗) + (C2/C0)Hsub(E∗). (56)
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We have used the expressions for EX and ZX in terms of γX in Eqs. (42a) and (41). This expression for 1/as,+ in
Eq. (56) can be simplified by expanding it in powers of γX/

√
2µE∗ using the expressions for the one-loop integrals Jn

and In in Eqs. (A21a) and (A22a) and the threshold expansions for the two-loop integrals Klmn in Eqs. (A30). The
expansion of G(EX)− 2G(E∗) to third order in γX is

G(EX)− 2G(E∗) ≈ −
2i

3π
r3/2
√
1− r

√

2µE∗

(

1 +
(2 + r)γ2X
2r(2µE∗)

− iγ3X
r3/2(2µE∗)3/2

)

, (57)

where r = µπ/µ is the ratio of reduced masses defined in Eq. (4). The quantity Hsub(E∗) is very simple:

Hsub(E∗) = γ3X/2. (58)

The expansion of Fsub(E∗) to fourth order in γX is

Fsub(E∗) ≈ −i
r5/2[1−

√
1− r ]

6π
√
1− r

γX
√

2µE∗

+
1

12π2

(

−r
5/2

5
+

(12− 22r − 5r2)r1/2

3
√
1− r

+
(2− r)(2 − 4r − r2) arccos(√r )

1− r

+
8(2− r)√

1− r 2F1

(

− 1

2
,− 1

2
, 3
2
, 1− r

)

)

γ4X
2µE∗

. (59)

Our final result for the inverse scattering length, including all terms suppressed by up to three powers of γX/
√
2µE∗,

is

1/as,+ = γX +
C2

2C0

γ3X +
g2µ2

12πmf2
π

[

− ir3/2
(

1− 1

2
r +

1

8
r2
)

γX
√

2µE∗

−ir1/2
(

1− 3

8
r2
)

γ3X√
2µE∗

+

(

1− 1

2
r − 1

8
r2 − 1

10π
r5/2

)

γ4X
2µE∗

]

. (60)

The coefficient of each term has been expanded to relative order r5/2. The leading power of r in the g2γX term comes
from the function G. The entire g2γ3X term comes from the function G. The g2γ4X term receives contributions of
order r0 from both the function F and the function G.

D. Comparison with Previous Calculation

We can compare our result for the scattering length as,+ in Eq. (60) with that from a previous calculation by Jansen,
Hammer, and Jia [11]. They used original XEFT to calculate the complex energy EX of the X(3872) and the complex
scattering length as,+, dropping terms that were suppressed by at least one power of r = m/M . They expressed their
results in terms of a leading-order inverse scattering length γ. Their physical renormalization condition was that
the real part of the complex energy EX should be identified with the energy of the X(3872) resonance. Their NLO
corrections included terms proportional to g2, C2, and an additional coupling constant D2 that takes into account
the dependence of the contact interaction on the pion mass. The coupling constant D2 allowed them to study the
dependence of the mass of the X(3872) on the light quark masses. Their NLO corrections also included terms involving
the partial width Γ∗0,π for D∗0 → D0π0 that were resummed to all orders. If the other NLO corrections are omitted,
their results reduce to

EX = δ − γ2/(2µ)− iΓ∗0,π/2, (61a)

as,+ = 1/
(

γ −
√

−iµΓ∗0,π

)

, (61b)

where Γ∗0,π is the partial width of D∗0 into D0π0. The universal relation expressing the binding energy in terms of
a large positive scattering length as,+ is

EX = δ − 1/(2µa2s,+). (62)
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The leading order results in Eqs. (61) are incompatible with the analytic continuation of this universal relation to a
complex scattering length as,+. This incompatibility suggests that the resummation used in Ref. [11] to eliminate an
infrared divergence at the D∗0D̄0 threshold was inadequate. Because of this problem, we will only compare results in
the limit Γ∗0,π → 0. In this limit, their NLO results reduce to

EX = δ − γ2

2µ

(

1 +
(C2/C

2
0 )(4πγ/µ) + (g2µ/6πf2

π)(1/γ)[(Λ− γ)2 − 2mδd′2]

1 + (g2µ/6πf2
π)(mδ/γ) log(1 + 2iγ/

√
2mδ)

)

, (63a)

as,+ =
1

γ
− 1

γ2

(

g2µ

12πf2
π

)

[

−2iγ
√
2mδ + Λ2 − 2γΛ− 2mδd′2

]

, (63b)

where Λ is the PDS renormalization scale and d′2 is a finite constant related to the coupling constant D2. Note that
the dependence on Λ can be eliminated from both EX and from as,+ by absorbing it into d′2. ln the expression for
as,+ in Eq. (63b), the factor of 1/γ2 comes from a term that has an unphysical double pole in the energy. The double
pole could have been eliminated in favor of a shift in the position of the single pole by expressing as,+ as the ratio of
a numerator and denominator with NLO accuracy, as in their result for EX in Eq. (63a).
The complex on-shell renormalization scheme can be implemented by choosing d′2 so that the numerator of the

NLO correction term to EX in Eq. (63a) is zero. The complex energy EX then reduces to δ − γ2/(2µ), so γ can be
identified with the binding momentum γX of the X(3872). The NLO scattering length calculated in Ref. [11] reduces
to

as,+ =
1

γX

[

1 +
2πC2

µC2
0

γX +
g2µ

12πf2
π

(

2i
√
2mδ − γX

)

]

. (64)

This can be compared with the result from Galilean-invariant XEFT in Eq. (60). Dropping terms suppressed by three
or more powers of γX/

√
2µE∗ and keeping only the leading power of r in the coefficients, our result reduces to

as,+ =
1

γX

[

1− C2

2C0

γ2X +
g2µ2

12πmf2
π

(

ir3/2
√

2µE∗ + ir1/2
γ2X√
2µE∗

)]

. (65)

If we ignore the tiny difference between E∗ and δ and if we approximate µ by M/2 and µπ by m, the
√
2µE∗ term

in Eq. (65) agrees with the
√
2mδ term in Eq. (64). However the other correction terms in Eq. (64) are proportional

to γX , while those in Eq. (65) are proportional to γ2X . Furthermore the coupling constants C2 and C0 appear in the
combination C2/C

2
0 in Eq. (64), while they appear in the combination C2/C

2
0 in Eq. (65). Thus there seems to be a

clear discrepancy between the results for as,+ in Eqs. (64) and (65). However the conclusion that there is a discrepancy
relies on an implicit assumption that the coupling constant C2 in Eqs. (64) and (65) can be identified. In the following
section, we will show the surprising result that in the limit g → 0 in which the pions decouple, the NLO correction
terms proportional to C2 in Eqs. (64) and (65) are indeed compatible. Whether the apparent discrepancy between
the NLO correction terms proportional to g2γX in Eq. (64) and to g2γ2X in Eq. (65) is real cannot be determined
definitively using the results given in Ref. [11].

E. Decoupled Pions

If pions are decoupled by setting g = 0, the NLO terms in the transition amplitude Aij(E,p,p′) reduces to the
∇2 vertex diagrams C in Eqs. (B16) and the D∗D̄ counterterm diagrams D in Eq. (B18). The terms proportional to
A2(E) which have a double pole in E, can to NLO accuracy be replaced by terms in the denominator, as in Eq. (48).
After implementing the COS renormalization scheme, the transition amplitude reduces to

Aij(E, p, p′) =
(2π/µ)

[

1 + 1

2
(C2/C0)

(

p2 + p′
2
)]

A(E)−1 − (C2/C0)Hsub(E)
δij , (66)

where Hsub(E) is defined by Eqs. (51b) and (47c).
To obtain the T-matrix element in Eq. (53), we put the charm mesons on their energy shells by setting p′ = p and

setting the energy equal to Ep = E∗ + p2/(2µ). The term Hsub(Ep) in the denominator of Eq. (66) is

Hsub(Ep) =
1

2
γ3X + 3

2
γXp

2 + ip3. (67)

The T-matrix element reduces to

T (p) = (π/µ)
[

1 + (C2/C0)p
2
]

−γX − ip− (C2/C0)[
1

2
γ3X + 3

2
γXp2 + ip3]

ε · ε′∗. (68)
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To NLO accuracy, the factor 1 + (C2/C0)p
2 in the numerator of Eq. (68) could equally be included as a factor

1− (C2/C0)p
2 multiplying −γX − ip in the denominator:

T (p) = π/µ

−[γX + 1

2
(C2/C0)γ3X ]− 1

2
(C2/C0)γXp2 − ip

ε · ε′∗. (69)

We can read off the S-wave inverse scattering length and effective range in the C = + channel as coefficients in the
denominator:

1/as,+ = γX + 1

2
(C2/C0)γ

3
X , (70a)

rs,+ = −(C2/C0)γX . (70b)

The inverse scattering length in Eq. (70a) is consistent to NLO accuracy with setting g = 0 in Eq. (60). Eliminating
C2/C0, we reproduce a familiar relation between the scattering length, effective range, and binding momentum to
first order in the range expansion:

1/as,+ = γX
(

1− 1

2
rs,+γX

)

. (71)

Our result for the effective range in Eq. (70b) implies that, in the absence of pions, the ratio C2/C0 of coupling
constants has a simple physical interpretation in terms of the effective range and the binding momentum:

C2/C0 = −rs,+/γX . (72)

In the previous NLO calculations in XEFT in Refs. [6] and [11], power divergence subtraction was used and C0 and
C2 were determined as functions of the renormalization scale Λ. The dependence on Λ canceled in the following
combination of coupling constants:

C2/C
2
0 = µrs,+/(4π). (73)

The apparent incompatible with our result in Eq. (72) is at first puzzling. Our coupling constants C0 and C2 can
be defined as the coefficients of the terms in the Lagrangian given in Eq. (9). This seems to be equivalent to the
definitions of C0 and C2 in Ref. [6] up to corrections suppressed by powers of r = µπ/Mπ. The resolution is that the
absence of the counterterm δD0 in the Lagrangian for original XEFT in Ref. [6] implies that the definitions are not
equivalent. To determine the relation between the coupling constants, it is necessary to compare physical observables,
such as the effective range rs,+. By equating rs,+ in Eqs. (72) and (73), we can infer that the combination C2/C

2
0 in

Ref. [6] should actually be identified with our ratio C2/C0 multiplied by −µγX/(4π). This identification brings the
NLO correction terms to as,+ proportional to (C2/C

2
0 )γX in Eq. (64) and (C2/C0)γ

2
X in Eq. (65) into agreement.

V. SUMMARY

We have introduced a Galilean-invariant formulation of XEFT to exploit the fact that mass is very nearly conserved
in the transition D∗ → Dπ. Galilean invariance requires the kinetic mass of the D∗ to be equal to the sum of the
kinetic masses M and m of the D and π. One advantage of Galilean invariance is that an amplitude is the same in
every Galilean frame. A more important advantage is that it strongly constrains the form of ultraviolet divergences.
The operators in the NLO Lagrangian for Galilean-invariant XEFT can be obtained by making minor modifications
in the terms of the NLO Lagrangian for original XEFT. NLO calculations in Galilean-invariant XEFT are ultraviolet
finite for arbitrary values of the masses M and m. In contrast, NLO calculations in original XEFT are ultraviolet
finite only if they are expanded in powers of m/M and truncated at a sufficiently low order.
We also introduced the complex on-shell (COS) renormalization prescription that takes into account the effects of

transitions to states that cannot be described explicitly in XEFT. These transitions include the decay D∗0 → D0π0,
which accounts for about 38% of the total width of the D∗0. They also include the decays of X(3872) to all final
states other than D0D̄0π0. These other decay modes may account for a substantial fraction of the total width of the
X(3872). The COS prescription requires as input the total width of the D∗0 and the total width of the X(3872),
which has not yet been measured.
We illustrated the use of Galilean-invariant XEFT by calculating the transition amplitude for D∗0D̄0 → D∗0D̄0

to NLO in the XEFT power counting. We used dimensional regularization in d spatial dimensions to regularize the
ultraviolet divergences. The NLO Lagrangian includes counterterms that can cancel terms whose energy dependence
has the form A2(E) and EA2(E), where A(E) is the LO transition amplitude. It was straightforward to verify that
the logarithmic ultraviolet divergences, which appeared as poles in d − 3, could be cancelled by the counterterms.
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The cancellation of linear ultraviolet divergences, which appeared as poles in d − 2, was not as straightforward. In
addition to the poles that could be cancelled by the counterterms, there were additional poles in d− 2 whose energy
dependence had the form A2(E) log(E∗ −E) and A(E). They cancelled each other only upon using the specific form
of the LO transition amplitude A(E) for d = 2.
We used our NLO result for the transition amplitude to calculate the D∗0D̄0 scattering length as,+ to NLO. Our

result differs in several respects from a previous result for as,+ calculated using original XEFT in Ref. [11]. One
important difference is in the effect of the D∗0 width. Our COS renormalization prescription ensures that the effect
of the D∗0 width is in accord with the universal relation between the binding energy of an S-wave bound state near
threshold and the scattering length of its constituents. The effect of the partial width of the D∗0 into D0π0 in
Ref. [11] is incompatible with the universal relation. This suggests that the resummation used in Ref. [11] to deal
with an infrared divergence at the D∗0D̄0 threshold was inadequate. There is an apparent disagreement between our
result and that of Ref. [11] in the NLO corrections to as,+ proportional to C2, but we showed that the difference is
actually due to different definitions of C2. Our NLO correction to as,+ proportional to g2 was expanded in powers of

γX/
√
2mδ, where γX is the binding momentum of the X(3872). The leading term is proportional to g2

√
2mδ, and

it agrees with that in Ref. [11] in the limit m/M → 0. The next term in our expansion is second order in γX , while
there is a term in Ref. [11] that is first order in γX . The origin of this discrepancy has not been determined.
Our Galilean-invariant formulation of XEFT removes obstacles to precise calculations of the properties of the

X(3872) resonance. Our COS renormalization prescription takes into account the 38% branching fraction of D∗0 into
D0π0 and the significant branching fraction of X(3872) into decay modes other than D0D̄0π0. In original XEFT,
there was a serious limitation on the precision from the need to truncate the expansion in m/M in order to avoid
ultraviolet divergences. Our Galilean-invariant formulation makes this expansion unnecessary. The expansion may
still be useful to obtain simple results, but it can be carried out to whatever order is required for the desired precision.
XEFT was invented to allow the effects of pion transitions on the X(3872) resonance to be taken into account

systematically. XEFT can also be used as a framework for quantifying the effects of physics beyond the DD̄π sector.
This physics include charmonium states such as the χc1(2P ), which couples to D∗D̄, and ψ(3770), which couples to
DD̄. It also includes tetraquark cc̄ mesons and hybrid cc̄ mesons. The improved precision of Galilean-invariant XEFT
increases the motivation for using this effective field theory to quantify the effects of physics beyond the DD̄π sector.
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Appendix A: Loop Integrals

In this Appendix, we evaluate the loop integrals that are required to calculate the NLO transition amplitude using
dimensional regularization. We also determine their poles in d − 2 and d − 3, where d is the number of spatial
dimensions.

1. Reduction to momentum integrals

The loop integrals have D∗, D, and π propagators. Every loop has a D propagator, and it is convenient to take
its energy and momentum to be the loop integration variables. A D propagator has a denominator of the form
p0 − p2/(2M) + iǫ. The integral over p0 can be evaluated by closing the contour around the pole at p0 = p2/(2M),
which puts the D on its energy shell. With dimensional regularization in d spatial dimensions, the measure for a
momentum integral is

∫

p

≡ Λ3−d

∫

ddp

(2π)d
, (A1)

where Λ is the renormalization scale. Tensor reduction can be used to reduce the loop momentum integrals to scalar
integrals. Whenever possible, it is best to express the momentum-dependent terms in the numerator as a linear
combination of the propagator denominators. After canceling terms in the numerator with propagators, the loop
integrand reduces to a product of propagators.
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The propagators in the loop integrand depend on the complex D∗0 energy E∗ and on the masses m and M of the
π0 and D0. The loop integrals depend on the masses through the reduced D∗D̄ kinetic mass µ defined in Eq. (3a)
and the reduced Dπ mass µπ defined in Eq. (3b). It is convenient to express the dependence on the masses in terms
of µ and the ratio r = µπ/µ defined in Eq. (4).
In loop integrals that have cuts with DD̄π intermediate states, after integrating over the D and D̄ energies, the

pion propagator depends on the momenta p and q of the D and D̄ and on the masses m and M . In evaluating the
loop integral, it is often convenient to express the pion propagator in a form that depends on reduced masses instead
of masses:

i

E − (p+ q)2/(2m)− (p2 + q2)/(2M) + iǫ

=
i

E − (q +
√
1− r p)2/(2µπ)− p2/(2µ) + iǫ

. (A2)

Unlike the first expression for the pion propagator in Eq. (A2), the second expression is not manifestly invariant under
the interchange p↔ q.

2. One-loop momentum integrals

The one-loop momentum integrals whose integrands are a D∗ propagator raised to an integer power have the form

Jn(E) =

∫

p

1

[p2 − 2µ(E − E∗)]n
. (A3)

The analytic result for this integral is

Jn(E) =
Λ3−dΓ(n− d/2)

(4π)d/2
[2µ(E∗ − E)]d/2−n. (A4)

The branch cut in E is determined by the negative imaginary part of the complex energy E∗.
The one-loop momentum integrals whose integrands are a π propagator raised to an integer power have the form

In(E) =

∫

p

1

[p2 − 2µπE − iǫ]n
. (A5)

The analytic result for this integral is

In(E) = rd/2−nΛ
3−dΓ(n− d/2)

(4π)d/2
[

e−iπ 2µE
]d/2−n

. (A6)

where r = µπ/µ is the ratio of the reduced masses defined in Eq. (4). The branch cut in E is specified by the iǫ
prescription in Eq. (A5). Since we choose the zero of energy to be at the D0D̄0π0 threshold, we need only consider
positive values for the real part of E.
The one-loop momentum integrals whose integrands have a single π propagator and a D∗ propagator raised to an

integer power are

Ln(E, p) =

∫

q

1

[q2 − 2µ(E − E∗)]n
(2µ)−1

(p+ q)2/(2m) + (p2 + q2)/(2M)− E − iǫ . (A7)

The function L0 can be expressed in terms of the integral I1 given by Eq. (A6):

L0(E, p) = r I1(E − p2/2µ). (A8)

This result can be obtained most easily by using the expression for the pion propagator on the right side of Eq. (A2),
and then shifting the integration variable q. The function L1 can be expressed as a Feynman parameter integral:

L1(E, p) = r−d/2Λ
3−dΓ(2− d/2)

(4π)d/2

∫ 1

0

dx
(

x+ (1− x)r
)2

×
[

− 2(x+ (1− x)r)µ(E − (1 − x)E∗) + xp2
]d/2−2

. (A9)
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We will need the expansions of these functions to first order in p2:

L0(E, p) = rI1(E)

[

1− (d− 2)p2

4µE

]

+O(p4), (A10a)

L1(E, p) =
J1(E)− I1(E)

2µ∆

[

1 +
r
[

4r(1 − r)E + (4− 4r − d)∆
]

p2

2dµ∆2

]

−r(d− 2)
[

4(1− r)E − d∆
]

I1(E)p2

8dµ2E∆2
+O(p4), (A10b)

where ∆ = (1− r)E−E∗. The expansion for L0 can be obtained most easily by expanding the expression in Eq. (A8)
in powers of p2. The expansion for L1 can be obtained most easily by expanding the integrand in Eq. (A7) in powers
of p and averaging over angles to reduce it to scalar integrals. The scalar integrals can be expressed in terms of the
integrals Jn and In given by Eqs. (A4) and (A6). They can all be reduced algebraically to J1 and I1.

3. Two-loop momentum integrals

The two-loop momentum integrals whose integrands have a π propagator and one or two D∗ propagators raised to
integer powers are

Klmn(E) =

∫

p

∫

q

1

[p2 − 2µ(E − E∗)]m[q2 − 2µ(E − E∗)]n

× (2µ)−l

[(p+ q)2/(2m) + (p2 + q2)/(2M)− E − iǫ]l . (A11)

The momentum integrals with a π propagator and a single D∗ propagator can be expressed as integrals over a single
Feynman parameter:

K110(E) = rd/2
Λ6−2dΓ(2− d)

(4π)d

∫ 1

0

dx (1 − x)−d/2[2µ(xE∗ − E)]d−2, (A12a)

K120(E) = rd/2
Λ6−2dΓ(3− d)

(4π)d

∫ 1

0

dxx(1 − x)−d/2[2µ(xE∗ − E)]d−3, (A12b)

where r = µπ/µ. The momentum integrals with a π propagator and two D∗ propagators can be expressed as an
integral over two Feynman parameters:

K111(E) = rd/2
Λ6−2dΓ(3− d)

(4π)d

∫ 1

0

dww[2µ(wE∗ − E)]d−3

×
∫ 1

0

dt
[

1− w + rw2t(1 − t)
]−d/2

. (A13)

This function depends on r through the prefactor rd/2 and through the integral over t. For a given dimension d,
K111(E) can be expanded in powers of r. The expansion is not straightforward, because there are negative powers of
r that arise from the w → 1 endpoint region.

4. Poles in d− 2

In a dimensionally regularized loop integral, poles in d − 2 are associated with linear ultraviolet (UV) divergences
in 3 spatial dimensions. An UV pole in d− 2 can arise from a factor of Γ(1− d/2) or Γ(2− d) obtained by integrating
over a loop momentum. In the two-loop momentum integrals K110 and K120 defined in Eqs. (A12), the integral over
the Feynman parameter x also gives an UV pole in d− 2.
The one-loop momentum integrals J1 and I1 given by Eqs. (A4) and (A6) have single poles in d− 2. We will need

the pole and the constant term:

J1(E) −→ − Λ

2π

[

1

d− 2
+

1

2
log

2µ(E∗ − E)

Λ
2

]

, (A14a)

I1(E) −→ − Λ

2π

[

1

d− 2
+

1

2

(

log
2µE

Λ
2

+ log r − iπ
)]

. (A14b)
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The momentum scale Λ in the logarithms is

Λ =
√
4πe−γ/2Λ, (A15)

where γ is Euler’s constant. We will need the constant term in the integral J2 given by Eq. (A4):

J2(E) −→ Λ

8πµ(E∗ − E)
. (A16)

We will also need the pole term in the integral L0 in Eq. (A8):

L0(E, p) −→ −
rΛ

2π(d− 2)
. (A17)

The two-loop momentum integral K110 defined in Eq. (A12a) has a double and single pole in d−2, while K120 defined
in Eq. (A12b) has only a single pole:

K110(E) −→ 2rΛ2

(4π)2

[

1

(d− 2)2
+

1

d− 2

(

log
−2µ(E − E∗)

Λ
2

+
1

2
log r

)]

, (A18a)

K120(E) −→ rΛ2

(4π)2(d− 2)µ(E − E∗)
. (A18b)

5. Integrals at the D
∗0
D̄

0 threshold

If the one-loop integral Jn(E) given by Eq. (A4) is analytically continued to d = 3 and then evaluated at E = E∗,
it has an infrared divergence for n ≥ 3/2. However if it is evaluated at E = E∗ and then analytically continued to
d = 3, it vanishes because the integral has no momentum scale:

Jn(E∗) = 0, (A19)

The two-loop integrals Klmn(E) defined in Eq. (A11) can be evaluated analytically at the threshold E = E∗. The
integrals K110(E∗), K120(E∗), and K111(E∗) each has a single pole in d − 3. Their values near d = 3, including the
pole in d− 3 and the finite term, are

K110(E∗) =
(−2)r3/2(2µE∗)

(4π)3

(

1

d− 3
− 2 +

1

2
log r + log

2µE∗

Λ
2
− iπ

)

, (A20a)

K120(E∗) =
4r3/2

(4π)3

(

1

d− 3
+

1

2
log r + log

2µE∗

Λ
2
− iπ

)

, (A20b)

K111(E∗) =
(−4)r
(4π)3

[

arccos
(√
r
)

√
1− r

(

1

d− 3
− 2 + log r + log

2µE∗

Λ
2
− iπ

)

+
d

dd
2F1(

1

2
d− 1, 1

2
d− 1, 1

2
d; 1− r)

∣

∣

∣

d=3

]

. (A20c)

The momentum scale Λ in the logarithms is defined in Eq. (A15). The pole in K110(E∗) is the sum of an UV pole
and an infrared pole in d− 3.

6. Integrals near d = 3

The one-loop integrals J1 and J2 at d = 3 are

J1(E) = − 1

4π
[2µ(E∗ − E)]1/2, (A21a)

J2(E) = − 1

8π
[2µ(E∗ − E)]−1/2. (A21b)
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The one-loop integrals I1 and I2 at d = 3 are

I1(E) = ir1/2
1

4π
[2µE]1/2, (A22a)

I2(E) = −ir−1/2 1

8π
[2µE]−1/2. (A22b)

The two-loop momentum integrals Klmm(E) near d = 3 are expressed in terms of Feynman parameter integrals in
Eqs. (A12) and (A13). In order to obtain expressions for these functions near d−3, it is necessary to make subtractions
of the integrands to make them integrable at x = 1. The resulting expression for K110(E), including the pole in d− 3
and the finite term, is

K110(E) =
4r3/2µ

(4π)3

[

(

1

d− 3
− 2 +

1

2
log r + log

2µ(E − E∗)

Λ
2

− iπ
)

(E − 2E∗)

−2E∗ −
1

2

∫ 1

0

dx (1− x)−3/2(E − xE∗) log
E − xE∗

E − E∗

]

. (A23)

The pole with its residue evaluated at E = E∗ is also the UV pole in d− 3 of K(E∗). The difference between the pole
of K(E∗) in Eq. (A20a) and this pole is the infrared pole in d − 3 of K(E∗). The UV poles in d− 3 of K120(E) and
K111(E) are the same as the poles in their values at E∗ given in Eqs. (A20b) and (A20c). The differences between
their values at E in Eqs. (A12b) and (A12b) and their values at E∗ are finite:

K120(E) = K120(E∗) +
4r3/2

(4π)3

[

log
E − E∗

E∗

− 1

4

∫ 1

0

dxx(1 − x)−3/2 log
E − xE∗

E − E∗

]

,

(A24a)

K111(E) = K111(E∗)−
r3/2

(4π)3

∫ 1

0

dw
w√

1− w(1 − w + rw2/4)
log

E − wE∗

(1− w)E∗

. (A24b)

7. Threshold expansions

Threshold expansions for the two-loop integrals Klmn(E) near d = 3 cannot be obtained simply by expanding the
expressions in Eqs. (A23), (A24a), and (A24b) in powers of E−E∗, because this generates infrared divergences in the
Feynman parameter integrals. The threshold expansion for K111(E) for general d can be obtained in a straightforward
way by expanding the defining integral in Eq. (A11) in powers of E − E∗. The expansion through second order in
E − E∗ is

K111(E) = K111(E∗) + [K211(E∗) + 2K121(E∗)] 2µ(E − E∗)

+ [K311(E∗) + 2K221(E∗) +K122(E∗) + 2K131(E∗)] [2µ(E − E∗)]
2

+O
(

(E − E∗)
3
)

. (A25)

The reason the threshold expansion of K111(E) is straightforward is that the only momentum region that contributes
is where both loop momenta are of order (µ|E∗|)1/2.
In contrast, the integrals K110(E) and K120(E) have contributions from regions where one loop momentum is of

order (µ|E − E∗|)1/2. These contributions have an expansion in non-integer powers of E − E∗. By inserting the
alternative expression for the pion propagator in Eq. (A2) into the defining integral for Klm0(E) in Eq. (A11) and
then shifting the momentum q, it can be expressed as

Klm0(E) = rl
∫

p

1

[p2 − 2µ(E − E∗)]m

∫

q

1

[q2 − 2µπE∗ + r(p2 − 2µ(E − E∗))− iǫ]l
. (A26)

The expansion of the pion propagator in powers of p2− 2µ(E −E∗) produces a sum of products of one-loop integrals
of the form Il+k(E∗)Jm−k(E). With dimensional regularization, the terms with k ≥ m are zero because the integral
over p has no scale. The threshold expansion for Klm0(E) is the sum of the terms with the noninteger powers
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(E − E∗)
d/2−m+k and the terms with integer powers that can be obtained by expanding the integrand of Eq. (A26)

in powers of E − E∗. The expansions of K110(E) and K120(E) through second order in E − E∗ are

K110(E) = K110(E∗) + rI1(E∗)J1(E) + [K210(E∗) +K120(E∗)] 2µ(E − E∗)

+ [K310(E∗) +K220(E∗) +K130(E∗)] [2µ(E − E∗)]
2 +O

(

(E − E∗)
3
)

, (A27a)

K120(E) = K120(E∗) + rI1(E∗)J2(E) − r2I2(E∗)J1(E) + [K220(E∗) + 2K130(E∗)] 2µ(E − E∗)

+ [K320(E∗) + 2K230(E∗) + 3K140(E∗)] [2µ(E − E∗)]
2 +O

(

(E − E∗)
3
)

. (A27b)

The integer powers of E−E∗ in the threshold expansions in Eqs. (A25) and (A27) are determined by the two-loop
integrals Klmn(E∗). By inserting the alternative expression for the pion propagator in Eq. (A2) into the defining
integral for Klmn(E) in Eq. (A11), its value at the threshold E = E∗ reduces to

Klmn(E∗) = rl
∫

p

1

[p2]m

∫

q

1

[q2]n[(q +
√
1− r p)2 + rp2 − 2rµE∗ − iǫ]l

. (A28)

The denominators of the integral over q can be combined by introducing a Feynman parameter. After evaluating the
integral over q, the integral over p can also be evaluated analytically. The integral over the Feynman parameter gives
a hypergeometric function;

Klmn(E∗) =
rd−m−n

(4π)3

(

1

4πΛ2

)d−3
Γ(l +m+ n− d)Γ(d/2−m)Γ(d/2− n)

Γ(l)Γ2(d/2)

× 2F1(d/2−m, d/2− n, d/2, 1− r)
[

e−iπ 2µE∗

]d−l−m−n
. (A29)

If n = 0, the hypergeometric function reduces to rm−d/2. Inserting the expression for Klmn(E∗) in Eq.(A29) into
Eqs. (A27a), (A27b), and (A25), the threshold expansions through second order in E − E∗ are

K110(E) = K110(E∗) + rI1(E∗)J1(E)

+
2r3/2(2µE∗)

(4π)3

(

1

d− 3
+ 1 +

1

2
log r + log

2µE∗

Λ
2
− iπ

)

E∗ − E
E∗

+
r3/2(2µE∗)

3(4π)3

(

E∗ − E
E∗

)2

+O
(

(E − E∗)
3
)

, (A30a)

K120(E) = K120(E∗) + rI1(E∗)J2(E)− r2I2(E∗)J1(E)

− 4r3/2

3(4π)3
E∗ − E
E∗

+
2r3/2

15(4π)3

(

E∗ − E
E∗

)2

+O
(

(E − E∗)
3
)

, (A30b)

K111(E) = K111(E∗) +
4

(4π)3

(

(2 − r)arccos
(√
r
)

√
1− r

+ 2
√
r

)

E∗ − E
E∗

+
2r−1

(4π)3

(

(2− 4r + r2)
arccos

(√
r
)

√
1− r

+
2(3− 4r)

3

√
r

+8 2F1

(

− 1

2
,− 1

2
, 3
2
, 1− r

)

)(

E∗ − E
E∗

)2

+O
(

(E − E∗)
3
)

. (A30c)

The function arccos(
√
r ) in Eq. (A30c) has an expansion in odd powers of r1/2:

arccos
(√
r
)

=
π

2

(

1− 2

π
r1/2 − 1

3π
r3/2 + . . .

)

. (A31)

The hypergeometric function in Eq. (A30c) has an expansion in powers of r:

2F1

(

− 1

2
,− 1

2
, 3
2
, 1− r

)

=
3π

8

(

1− 1

6
r +

1

24
r2 + . . .

)

. (A32)
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FIG. 9: Pion-exchange diagrams for D∗0D̄0
→ D∗0D̄0. They consist of the tree diagram A1, the one-loop diagrams A2 and

A3 in which either the incoming or the outgoing charm mesons interact through a LO transition amplitude, and the two-loop
diagram A4 in which they both interact through LO transition amplitudes. The absence of arrows on the charm mesons lines
in the loop for the diagram A4 implies a sum over the two possible directions of the arrows.

Appendix B: Diagrams for NLO Transition Amplitude

In this Appendix, we give results for the individual diagrams that contribute to the transition amplitude +iAij/2
for D∗0D̄0 → D∗0D̄0 in the C = + channel, with the external legs amputated and the initial and final D̄0 on their
energy shells. In the center-of-momentum frame, the amplitude Aij(E,p,p′) is a function of the total energy E and
the relative momenta p and p′ of the incoming and outgoing charm mesons, respectively. The LO amplitude is the
solution to the Lippmann-Schwinger integral equation shown in Figure 8. The amplitude at NLO can be expressed as

Aij(E,p,p′) = (2π/µ)A(E)δij +
∑

n

Aij
n (E,p,p

′), (B1)

where the sum is over the NLO diagrams and the amplitude A(E) in the LO term is

A(E) =
µ/(2π)

−C−1
0 − 2µJ1(E)

. (B2)

The one-loop momentum integral J1 is given in Eq. (A4). In the physical dimension d = 3, the amplitude A(E)
reduces to the expression in Eq. (39). The NLO diagrams for the transition amplitude can be organized into five sets
of 4 diagrams labeled A, B, C, and D.

1. Pion-exchange diagrams

There are four diagrams that involve the emission of a pion by D∗0 and its absorption by D̄0. The four pion-
exchange diagrams, which are labelled A1, A2, A3, and A4, are shown in Fig. 9. The amplitude for the tree diagram
A1 is a tensor in the vector indices i and j that depends on the relative momenta p′ and p:

Aij
A1

(E,p,p′) =

(

g2

4mf2
π

) −2
E − (p2 + p′2)/(2M)− (p+ p′)2/(2m) + iǫ

×
(

M

M +m
p+ p′

)i(
M

M +m
p′ + p

)j

. (B3)
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This can be expressed in a form that depends on the masses only though reduced masses:

Aij
A1

(E,p,p′) =

(

g2

4mf2
π

)

(−2)(
√
1− r p+ p′)i(

√
1− r p′ + p)j

E − p2/(2µ)− (p′ +
√
1− r p)2/(2µπ) + iǫ

, (B4)

where r = µπ/µ. Unlike the expression in Eq. (B3), the expression in Eq. (B4) is not manifestly invariant under the
simultaneous interchanges p ↔ p′ and i ↔ j. The amplitude for the diagram A1 vanishes in the zero-momentum
limit p,p′ → 0.
The amplitudes for the one-loop diagrams A2 and A3 in Fig. 9 are tensors in the indices i and j that depend on

the relative momenta p′ and p, respectively. They can be decomposed into transverse and longitudinal components.
The Feynman rule for the LO transition amplitude is given in Eq. (44). The amplitudes for the diagrams A3 and A2
are

Aij
A3

(E,p) =

(

g2

4mf2
π

)

4πµ2

(d− 1)
√
1− r p2

A(E)

×
{

[

− (∆(E, p) + rp2/µ)L0(E, p)− 2µ(∆(E, p)2 − 2rE∗p
2/µ)L1(E, p)

+r(∆(E, p) + p2/µ)J1(E)
]

(δij − pipj/p2)
+(d− 1)

[

∆(E, p)L0(E, p) + 2µ∆(E, p)(∆(E, p) + rp2/µ)L1(E, p)

−r(∆(E, p)− (1− r)p2/µ)J1(E)
]

pipj/p2
}

, (B5a)

Aij
A2

(E,p′) = Aij
A3

(E,p→ p′). (B5b)

The one-loop integrals J1, L0, and L1 are given by Eqs. (A4), (A8), and (A9), and ∆ is a linear function of E and p2:

∆(E, p) = (1− r)E − E∗ − p2/(2µ). (B6)

The expression for the amplitude Aij
A3

(E,p) in Eq. (B5a) has terms proportional to δij/p2, pipj/p4, and pipj/p2 that
are not analytic functions of the momentum vector p in the neighborhood of p = 0. The limit p→ 0 can be obtained
by using the expansions for L0(E, p) and L1(E, p) to first order in p2 given in Eqs. (A10). The nonanalytic terms
cancel in the limit p → 0. The diagram A2 has the same zero-momentum limit. The sum of the amplitudes for the
diagrams A2 and A3 in the zero-momentum limit is

Aij
A2+A3

(E, 0) =

(

g2

4mf2
π

)

16πr
√
1− r µ[(E − E∗)J1(E)− rEI1(E)]

d[(1 − r)E − E∗]
A(E) δij . (B7)

The one-loop integral I1 is given in Eq. (A6).
The two-loop diagram A4 in Fig. 9 is the sum of a diagram in which a pion is emitted by D∗0 and absorbed by D̄0

and a diagram in which a pion is emitted by D̄∗0 and absorbed by D0. The amplitude for this diagram is diagonal in
the vector indices i and j and depends only on E:

Aij
A4

(E) =

(

g2

4mf2
π

)

(−16π2)rµ

d
√
1− r

[

2K110(E) − 2µ(2E∗ − rE)K111(E)

−(2− r)J1(E)2
]

A2(E) δij . (B8)

The two-loop integrals K110 and K111 are given in Eqs. (A12a) and (A13).

2. D
∗ propagator correction diagrams

There are two NLO diagrams involving a correction to a D∗ propagator. The two diagrams, which are labelled B1
and B2, are shown in Figure 10. The diagram B1 has a D∗ self-energy subdiagram inserted into the D∗ propagator.
It can be reduced to

Aij
B1

(E) =

(

g2

4mf2
π

)

(−32π2)rµ

d

[

K110(E)− 2µE∗K120(E)
]

A2(E) δij . (B9)
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FIG. 10: D∗ propagator correction diagrams for D∗0D̄0
→ D∗0D̄0. The two-loop diagram B1 has a D∗ self-energy subdiagram

inserted into the D∗ propagator. The one-loop diagram B2 has a D∗ self-energy counterterm inserted into the D∗ propagator.

The two-loop integrals K110 and K120 are given in Eqs. (A12). The diagram B2 has a D∗ propagator counterterm
inserted into the D∗ propagator. The Feynman rule for the self-energy counterterm is given in Eq. (31). With the
complex on-shell renormalization scheme for the D∗0 propagator, the diagram B2 can be reduced to

Aij
B2

(E) =

(

g2

4mf2
π

)

(−16π2)r2µ

d
I1(E∗)

[

4µE∗J2(E)− dJ1(E)
]

A2(E) δij . (B10)

The one-loop integrals Jn are given in Eq. (A4).

3. ∇
2 vertex diagrams

There are four NLO diagrams with a ∇2 vertex. The four diagrams, which are labelled C1, C2, C3, and C4, are
shown in Fig. 11. The amplitude for the first diagram C1 is just the ∇2 vertex in Eq. (15):

Aij
C1

(E, p, p′) = (−C2/2)
(

p2 + p′
2
)

δij . (B11)

The factor of p2 + p′
2
depends on the relative momenta of the incoming and outgoing charm mesons. If there is a

contact interaction between the incoming charm mesons, p is replaced by a loop momentum k. The amplitude for the
diagram C2 in which the incoming charm mesons interact through a LO transition amplitude can be obtained from
Eq. (B11) by multiplying it by (4π/µ)J1(E)A(E) and replacing p2 by the loop-integral-weighted average of k2:

Aij
C2

(E, p′) = −2πC2J1(E)A(E)
(

〈k2〉+ p′
2
)

δij . (B12)

The loop-integral-weighted average of k2 is defined by

〈k2〉 =
∫

k
k2/[E − E∗ − k2/(2µ)]

∫

k
1/[E − E∗ − k2/(2µ)]

. (B13)

With dimensional regularization, the loop-integral-weighted average is very simple:

〈k2〉 = 2µ(E − E∗). (B14)

The amplitude for the diagram C3 is obtained from Eq. (B12) by replacing p′ by p. The amplitude for the diagram
C4 is

Aij
C4

(E) = −16π2C2J1(E)2A2(E)〈k2〉δij . (B15)

The sum of the four diagrams C1, C2, C3, and C4 has a multiplicative factor 1 + 4πJ1A that can be simplified by
using the expression for A0(E) in Eq. (B2):

Aij
C (E, p, p

′) =
πC2

µC0

[

(p2 + p′
2
)A(E) + 16πµ(E − E∗)J1(E)A2(E)

]

δij . (B16)
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FIG. 11: The ∇
2 vertex diagrams for D∗0D̄0

→ D∗0D̄0. They consist of the ∇
2 vertex C1, the one-loop diagrams C2 and

C3 in which either the incoming or the outgoing charm mesons interact through a LO transition amplitude, and the two-loop
diagram C4 in which they both interact through LO transition amplitudes.

4. D
∗

D̄ counterterm diagrams

There are four NLO diagrams that can be obtained from the diagrams in Figure 11 by replacing the ∇2 vertex by
a D∗D̄ counterterm. The four diagrams are labelled D1, D2, D3, and D4. The amplitude for the diagram D1 is just
the counterterm vertex in Eq. (16):

Aij
D1

= −[δC0 + δD0E] δij . (B17)

The amplitudes for the diagrams D2 and D3 each differs from this by a multiplicative factor 4πJ1A. The amplitude
for the diagram D4 differs by two such factors. The sum of the four diagrams D1, D2, D3, and D4 therefore has a
factor [1 + 4πJ1A]2 that can be simplified by using the expression for A0(E) in Eq. (B2):

Aij
D(E) = −4π2[δC0 + δD0E]

µ2C2
0

A2(E)δij . (B18)

The δC0 term in this expression can also be obtained from the LO transition amplitude in Eq. (B2) by replacing C−1
0

by C−1
0 − δC0/C

2
0 and expanding the amplitude to first order in δC0.

5. Complete NLO amplitude

The complete NLO term in the transition amplitude Aij(E,p,p′) is the sum of (A) the pion-exchange diagrams
in Eqs. (B3), (B5), and (B8), (B) the D∗ propagator insertion diagrams in Eqs. (B9) and (B10), (C) the ∇2 vertex
diagrams in Eqs. (B16), and (D) the D∗D̄ counterterm diagrams in Eq. (B18). In the zero-momentum limit p,p′ → 0,
the pion-exchange diagrams reduce to the sum of Eqs. (B7) and (B8) and the ∇2 vertex diagrams in Eqs. (B16) reduce
to the single term with the factor of A2(E).

6. Poles in d− 2

The momentum integrals with poles in d− 2 are given in Section A4. In the NLO term in the transition amplitude
Aij(E,p,p′), all the terms with a double pole in d− 2 have the tensor structure δij . All the terms with a single pole
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in d− 2 also have the tensor structure δij , with the exception of terms from the diagram A3 with the tensor structure

pipj/p2 and terms from the diagram A2 with the tensor structure p′
i
p′

j
/p′

2
. Upon using the identities L0 = rJ1 and

L1 = 0 for the pole terms, the diagram A3 in Eq. (B5a) reduces to

Aij
A3

(E,p) −→
(

g2

4mf2
π

)

4πr
√
1− r µ

d− 1
J1A(E)

[

δij + (d− 2)pipj/p2
]

. (B19)

Thus the single pole in d− 2 has the tensor structure δij even at nonzero momentum.
We now consider the terms with the tensor structure δij in the zero-momentum limit. The pion-exchange diagrams

A2 and A3 in Eq. (B7) and the ∇2 vertex diagrams C in Eq. (B16) have single poles in d− 2:

Aij
A2+A3

(E, 0) −→
(

g2

4mf2
π

)

(−4)r
√
1− r µΛ

d− 2
A(E) δij , (B20a)

Aij
C (E, 0, 0) −→

8πC2Λ

(d− 2)C0

(E∗ − E)A2(E)δij . (B20b)

The two-loop pion-exchange diagram A4 in Eq. (B8) and the sum of the D∗ propagator correction diagrams B1 and
B2 in Eqs. (B9) and (B10) have double and single poles in d− 2:

Aij
A4

(E) −→
(

g2

4mf2
π

)

4r
√
1− r µΛ2

[

1

(d− 2)2

+
1

d− 2

(

log
2µ(E∗ − E)

Λ
2

− r log r

4(1− r) −
1

2

)]

A2(E) δij , (B21a)

Aij
B(E) −→

(

g2

4mf2
π

)

2r2µΛ2

[

1

(d− 2)2

+
1

d− 2

(

log
2µE∗

Λ
2

+
1

2
log r +

1

2
− iπ

)]

A2(E) δij . (B21b)

7. Poles in d− 3

The only NLO diagrams for the transition amplitude that have poles in d − 3 are the two-loop pion-exchange
diagram A4 in Eq. (B8) and the D∗ self-energy insertion diagram B1 in Eq. (B9). The momentum integrals with
poles in d−3 are the two-loop integrals K110, K120, and K111. The poles are given in Eqs. (A23), (A20b), and (A20c),
respectively. The pole terms are

Aij
A4

(E) −→
(

g2

4mf2
π

)

(−2)r2µ3

3π(d− 3)

[

r1/2√
1− r (E − 2E∗)

+
arccos(

√
r )

1− r (2E∗ − rE)

]

A2(E) δij , (B22a)

Aij
B(E) −→

(

g2

4mf2
π

)

(−2)r5/2µ3

3π(d− 3)
(E + E∗)A2(E) δij . (B22b)
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