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In models like axion monodromy, temporal features during inflation which are not associated with
its ending can produce scalar, and to a lesser extent, tensor power spectra where deviations from
scale-free power law spectra can be as large as the deviations from scale invariance itself. Here the
standard slow-roll approach breaks down since its parameters evolve on an efolding scale ∆N much
smaller than the efolds to the end of inflation. Using the generalized slow-roll approach, we show that
the expansion of observables in a hierarchy of potential or Hubble evolution parameters comes from
a Taylor expansion of the features around an evaluation point that can be optimized. Optimization
of the leading-order expression provides a sufficiently accurate approximation for current data as
long as the power spectrum can be described over the well-observed few efolds by the local tilt and
running. Standard second-order approaches, often used in the literature, ironically are worse than
leading-order approaches due to inconsistent evaluation of observables. We develop a new optimized
next-order approach which predicts observables to 10−3 even for ∆N ∼ 1 where all parameters in
the infinite hierarchy are of comparable magnitude. For models with ∆N � 1, the generalized
slow-roll approach provides integral expressions that are accurate to second order in the deviation
from scale invariance. Their evaluation in the monodromy model provides highly accurate explicit
relations between the running oscillation amplitude, frequency and phase in the curvature spectrum
and parameters of the potential.

I. INTRODUCTION

In a general inflationary model, temporal scales that
are not directly associated with the end of inflation leave
their imprint in cosmological observables. For canonical
single field models, these arise from features in the po-
tential which leave the curvature and gravitational wave
power spectra nearly scale invariant but no longer scale-
free power laws. Current observations constrain devi-
ations from scale-free power law spectra only as well as
deviations from scale invariance itself [1]. Therefore these
constraints only impact models with large features.

In the standard slow-roll approximation, the leading-
order effect would be a running of the tilt of which the
amplitude is quadratic in the small deviation from scale
invariance. It is common to test for a finite value of such a
parameter in data sets like the Planck CMB power spec-
tra [1]. Yet the running of the tilt is only constrained
at the ∼ 10−2 level, the same level as the tilt from scale
invariance itself. Interpreting these constraints requires
going beyond the standard approximation where slow-
roll parameters are taken to be both nearly constant
and strongly hierarchical (e.g. [2–5]). Using the stan-
dard second-order approach on such data, as is common
in the literature (e.g. [1, 6–9]), can provide misleading
results for models where the running of the tilt is not
exactly constant or the potential purely cubic.

On the other hand, if the observed power spectra are
well characterized by the local tilt and running of the
tilt, which are the first two terms in a Taylor expansion
of a continuous feature, then a slow-roll hierarchy still
exists and can be used to predict observables accurately
(cf. [10]). It is simply that the efolding scale of the feature
∆N , while still greater than unity, is much less than the

number of efolds to the end of inflation.

In this paper, we use the generalized slow-roll (GSR)
approach [10–16] to extend the validity of the standard
slow-roll approximation. Here the deviations from scale
invariance are only assumed to be small in amplitude
not in temporal frequency. With GSR, we explore the
relationship between features in the potential and the
hierarchy of slow-roll parameters. Based on a temporal
Taylor expansion, we develop optimized approaches for
the evaluation of curvature and gravitational wave power
spectra from inflation. We test these approaches in the
axion monodromy model [17] where low frequency cases
produce a slowly varying running of the tilt [18–20] and
high frequency cases imprint oscillations in the power
spectra [21, 22].

The paper is organized as follows. In §II, we review
the GSR approach and iterate it to second order in the
amplitude of deviations from scale invariance to describe
power spectra in terms of integrals over the temporal his-
tory of inflation. We consider first order terms in §III and
show how the Taylor expansion of the temporal history
is related to observables and to the hierarchy of slow-roll
parameters of the potential and Hubble evolution. Op-
timized evaluation of the leading-order Taylor term [11]
provides predictions and inflation potential reconstruc-
tions that are accurate to next-to-leading order. These
suffice for models with running of the tilt that is nearly
constant across the observable scales. In §IV, we gen-
eralize the optimized approach to second order and an
optimized next-to-leading-order approximation and con-
trast these approaches with the standard second-order
approximation which inconsistently treats these evalu-
ations. We illustrate these optimized evaluation tech-
niques for monodromy in both the low and high frequency
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regime in §V. We discuss these results in §VI and pro-
vide relationships between the various parameterizations
in the Appendix.

II. GENERALIZED SLOW ROLL

The GSR approach is ideal for studying and extend-
ing the validity of the standard slow-roll approximation
as it assumes only that the amplitude of deviations from
a de Sitter expansion are small with no assumptions on
their temporal frequency or equivalently on the smooth-
ness of the potential [10, 11, 13, 14]. In this approach,
we iteratively solve the exact Mukhanov-Sasaki equation
for the evolution of the inflaton mode function or field
fluctuation in the spatially flat gauge δφ = y/a

√
2k

d2y

dx2
+

(
1− 2

x2

)
y =

(
f ′′ − 3f ′

f

)
y

x2
, (1)

to obtain the comoving curvature power spectrum

∆2
R = lim

x→0

∣∣∣∣xyf
∣∣∣∣2 . (2)

Here ′ = d/d ln η, x = kη and η is the (positive, decreas-
ing) conformal time to the end of inflation and the de-
viations from de Sitter expansion are given by variations
in

f2 =
8π2εH
H2

(aHη)
2
, (3)

where the Hubble slow-roll parameter is defined by

εH = −d lnH

dN
=

1

2

(
dφ

dN

)2

, (4)

with N as the (negative, increasing) number of efolds
relative to the end of inflation.

The fundamental assumption in this approach is that
the mode function y remains close to its de Sitter form

y0(x) =

(
1 +

i

x

)
eix, (5)

and we will loosely refer to this property as requiring the
amplitude of deviations from de Sitter or scale invari-
ance encoded in f to be small (see [23–26] for exceptional
cases). If so, we can take the formal Green function so-
lution to Eq. (1),

y(x) = y0(x)−
∫ ∞
x

du

u2

f ′′ − 3f ′

f
y(u)Im[y∗0(u)y0(x)], (6)

replace y → y0 on the right-hand side and iteratively
improve the solution.

To first order in the de Sitter deviations, this procedure
results in [27]

ln ∆2
R(k) ≈ I0 = G(lnx∗) +

∫ ∞
x∗

dx

x
W (x)G′(lnx), (7)

where x∗ � 1,

G = −2 ln f +
2

3
(ln f)′, (8)

and

W (x) =
3 sin(2x)

2x3
− 3 cos(2x)

x2
− 3 sin(2x)

2x
. (9)

While we assume a canonical scalar field throughout, all
of the GSR-based results here and below can be read-
ily generalized to P (X,φ) theories and the effective field
theory that parameterizes them [16, 28].

The function W determines exactly how inflaton fluc-
tuations freeze into curvature fluctuations as they pass
the horizon. We can make the connection more explicit
by integrating Eq. (7) by parts to obtain [27]

I0 ≈ −
∫ ∞

0

dx

x
W ′(x)G(lnx). (10)

Note that G is a function of time ln η alone and denot-
ing it as a function of lnx is simply a convenient choice
of its zero point for a given k. Scale dependence of the
power spectrum arises only if G′ 6= 0 and hence its value
quantifies the deviations from de Sitter results. These
typically must be

Ḡ′ = O
(

1

N

)
(11)

in order for features not to prematurely end inflation.
The overbar here represents an average over several efolds
and denotes the fact that only the integral of G′ needs
to be small or equivalently that transient effects do not
necessarily end inflation. This average as we shall see is
closely related to the average tilt of the curvature spec-
trum. In fact Eq. (10) is valid even if the inflaton poten-
tial contains discontinuities or delta function sources in
G′ where the local tilt and average tilt differ substantially.
Given that limx→0W

′ = 0, this form also conserves cur-
vature fluctuations outside the horizon and gives a man-
ifestly positive definite power spectrum, and it remains a
controlled approximation for up to order unity deviations
[14] unlike related variants [11, 13].

In particular, linearity in Ḡ′ should not be conflated
with the constancy of G′. If we define ∆N as the typical
efolding scale of its variation, then

G′′ = O
(

1

∆N

)
G′ = O

(
1

N∆N

)
(12)

rather than 1/N2 as the standard slow-roll approxima-
tion assumes by requiring that the only temporal feature
during inflation be associated with its end. We shall show
in §III that if 1 < ∆N � |N |, a slow-roll hierarchy of
successively smaller derivative parameters still exists, but
order counting needs to be generalized using a consistent
Taylor expansion of G between observables. If ∆N � 1,
the hierarchy is inverted so that computing observables
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requires resumming an infinite series or equivalently the
direct integration of Eq. (10). In this regime observ-
ables depend on the continuous function G (see §V B),
and model-independent approaches seek to reconstruct
that function rather than measure a series of parameters
[29–31].

These O(1/N∆N) effects should be distinguished from
the true 1/N2 ones. In the GSR approximation, these
come from terms that are quadratic in the deviation from
de Sitter solutions G′. Iterating the Green function ap-
proach, we obtain [13, 14]

∆2
R ≈ eI0

[(
1 +

1

4
I2
1 +

1

2
I2

)2

+
1

2
I2
1

]
, (13)

where the first-order term I0 is defined in Eq. (7) and the
second-order corrections are

I1 =
1√
2

∫ ∞
0

dx

x
G′(lnx)X(x),

I2 = −4

∫ ∞
0

dx

x

(
X +

1

3
X ′
)
f ′

f

∫ ∞
x

du

u2

f ′

f
, (14)

with

X(x) =
3

x3
(sinx− x cosx)2. (15)

In the following sections we keep order counting in 1/N
and 1/∆N distinct.

For tensor fluctuations, the same GSR approach holds
with the replacement of f with

f2
h =

2π2

H2
(aHη)2 (16)

in the construction of the source Gh of the tensor fluctu-
ations [15, 16]. With these substitutions, Eq. (13) then
provides the tensor power spectrum in each polarization
state ln ∆2

+,×(k).

III. OPTIMIZED LEADING- AND
FIRST-ORDER APPROXIMATION

Utilizing and extending the techniques of Ref. [11], we
elucidate the conditions under which a slow-roll hierarchy
of parameters for scalar and tensor power spectra observ-
ables exists and the relative size of terms in the series in
§III A. In §III B, we show how the next-to-leading-order
terms in the hierarchical expansion are generally large
whenever running of the tilt is comparable to the devia-
tions in the tilt itself but can be absorbed into an opti-
mization in the time of fluctuation freeze-out consistently
between observables. The resulting optimized leading-
order description suffices for scalar and tensor spectra
that can be described by a nearly constant running of
the tilt even when it is of order the deviations from scale
invariance represented by the tilt itself (cf. [10]). We re-
late this hierarchy to the Hubble slow roll parameters in
§III C and to the potential slow-roll parameters in §III D.

A. Smoothness Hierarchy

The hierarchical structure of the slow-roll parameters
stems from a smoothness assumption for the deviations
from a de Sitter expansion. For any smooth source of
deviations G(lnx) in the GSR formalism, we can Taylor
expand its form around an epoch near horizon crossing
lnxf and integrate its effect term by term. The standard
slow-roll approximation proceeds by assuming lnxf = 0
but we shall see there are advantages to tuning this evalu-
ation point to make it correspond better to the freeze-out
epoch. Note that a shift in this point corresponds to a
shift in efolds of δN ≈ −δ lnxf .

For the first-order ln ∆2
R ≈ I0 term of Eq. (10), this

leads to

ln ∆2
R ≈ G(lnxf ) +

∞∑
p=1

qp(lnxf )G(p)(lnxf ), (17)

where G(p) denotes the pth derivative of G with respect
to lnx and

qp(lnxf ) = − 1

p!

∫ ∞
0

dx

x
W ′(x)

(
ln

x

xf

)p
. (18)

These coefficients can be calculated using the generating
function [11]

F (z, xf ) =−
∫ ∞

0

dx

x
W ′(x)

(
x

xf

)z
= (2xf )−z cos

(πz
2

) 3Γ(2 + z)

(1− z)(3− z)
, (19)

so that

qp(lnxf ) =
1

p!
lim
z→0

∂pF (z, xf )

∂zp
. (20)

To clarify the dependence of these coefficients on lnxf ,
it is also useful to express qp(lnxf ) in terms of the first
term

q1(lnxf ) = lnx1 − lnxf , (21)

where

lnx1 =
7

3
− ln 2− γE . (22)

Here γE is the Euler-Mascheroni constant. Since

dqp
dq1

= − dqp
d lnxf

= qp−1, (23)

qp is a pth degree polynomial of q1. Each degree intro-
duces an extra constant of integration that is indepen-
dent of lnxf . It is convenient to define these in terms
of qp(lnx1) since q1(lnx1) = 0. The higher coefficients
become

qp(lnxf ) =
qp1(lnxf )

p!
+

p−2∑
n=0

qp−n(lnx1)

n!
qn1 (lnxf ). (24)
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The next two terms are thus given explicitly by

q2(lnxf ) =
q2
1(lnxf )

2
+

4− 3π2

72
, (25)

q3(lnxf ) =
q3
1(lnxf )

6
+

4− 3π2

72
q1(lnxf ) +

55

81
− ζ(3)

3
.

We optimize the slow-roll approximation below by choos-
ing lnxf to set certain coefficients to zero. Equation (23)
implies that setting qp(lnxf ) = 0 makes qp+1(lnxf ) take
on extremal values as a function of lnxf . Certain opti-
mizations also have the benefit that the extremum is a
minimum of |qp+1| and hence suppress the next correc-
tion.

Since

dG(p)(lnxf )

d ln k
= −G(p+1)(lnxf ), (26)

the tilt and the running of the tilt are given by

ns − 1 ≡ d ln ∆2
R

d ln k
≈ −G′(lnxf )−

∞∑
p=1

qpG
(p+1)(lnxf ),

α ≡ dns
d ln k

≈ G′′(lnxf ) +

∞∑
p=1

qpG
(p+2)(lnxf ), (27)

with the obvious continuation to the running of each suc-
cessive quantity. Since the qp coefficients are fixed given
a choice of lnxf for all ln k, we omit the lnxf argument
of qp for clarity and where no confusion will arise we
also do so below for compactness. A nearly constant tilt
in ln k requires |G′′| � |G′|, a nearly constant running
|G′′′| � |G′′|, and each gains its next-to-leading-order
correction from the q1 term.

For tensor fluctuations, we similarly have [15, 16]

ln ∆2
+,×(k) ≈ −

∫ ∞
0

dx

x
W ′(x)Gh(lnx)

≈ Gh(lnxf ) +

∞∑
p=1

qpG
(p)
h (lnxf ), (28)

which likewise determines the tensor tilt and running of
the tilt

nt ≡
d ln ∆2

+,×

d ln k
≈ −G′h(lnxf )−

∞∑
p=1

qpG
(p+1)
h (lnxf ),

αt ≡
dnt
d ln k

≈ G′′h(lnxf ) +

∞∑
p=1

qpG
(p+2)
h (lnxf ).(29)

For a sufficiently smooth G(lnx) and Gh(lnx), the se-
ries expansion of the power spectra will rapidly converge.
Since

lim
p→∞

qp
qp−1

= −1

2
, (30)

the criteria for convergence for the scalar power spectrum
is

lim
p→∞

∣∣∣∣ G(p)

G(p−1)

∣∣∣∣ < 2, (31)

LO/SO OLO ONO GSR

p 0 1 2 ∞
∆N & 50 & few & 1 all

lnxp 0 1.06 0.22 –

q1 1.06 0 0.84 –

q2 0.21 −0.36 0 –

q3 0.10 0.28 0.078 –

TABLE I. Slow-roll approximations are characterized by their
order p in a temporal Taylor expansion which determines their
applicability in describing features spanning ∆N efolds. Stan-
dard second-order (SO) approaches only improve on leading
order (LO) by keeping p > 0 in some but not all observ-
ables. Optimized evaluation (OLO/ONO) achieves consistent
pth order accuracy with only p− 1 additional parameters by
evaluating them at special values of lnxf = lnxp. The coef-
ficients qn for n > p control the error from truncation. The
GSR approximation forgoes the Taylor expansion for an inte-
gral approach.

and is similar for the tensor spectrum and tensor source
Gh. The series is dominated by the first term for
sufficiently small values for this ratio, with each suc-
cessive term suppressed by the smoothness scale ∆N ,
|G(p)/G(p−1)| = O(∆N−1). Therefore, the Taylor ex-
panded form above is applicable for features with ∆N &
1. For high frequency features where ∆N < 1/2 and the
convergence criteria are violated, the GSR integral for-
mula must be developed on a case by case basis (see §V B
for the monodromy example).

B. Optimized Leading vs. Next Order

We call an approximation scheme that just retains the
GSR I0 term and no corrections from the Taylor series,
first order in deviations from scale invariance and leading
order (LO) in the hierarchy. Namely,

ln ∆2
R ≈ G(lnxf ),

ns − 1 ≈ −G′(lnxf ),

α ≈ G′′(lnxf ), (LO) (32)

and similarly for the tensor observables. One that adds
p = 1 terms we call next(-to-leading)-order (NO) in the
hierarchy. These distinctions still allow us to choose the
evaluation epoch lnxf which can be exploited to make a
specific LO approximation as accurate as the generic NO
approximation.

In the standard slow-roll approximation, one takes
lnxf = lnx0 ≡ 0 and to NO

ln ∆2
R ≈ G(0) + q1(0)G′(0),

ns − 1 ≈ −G′(0)− q1(0)G′′(0),

α ≈ G′′(0) + q1(0)G′′′(0). (33)

Here we have restored the lnxf argument of qn for clarity.
Since q1(0) ≈ 1.06 (see Table I), if α is comparable to
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ns − 1 then the NO corrections are comparable to LO
and are therefore required for accuracy.

On the other hand, since all observables follow this
same Taylor series form, this NO approximation is equiv-
alent to shifting the evaluation epoch by q1(0). This
brings the evaluation point to

lnx1 = q1(0) ≈ 1.06, (OLO) (34)

which using Eq. (21) is equivalent to setting

q1(lnxf ) = q1(lnx1) = 0. (35)

We call this the optimized leading order (OLO) approx-
imation. By adopting this optimization, we gain all of
the benefits of a next order approximation without any
of the complexity. From this point forward, unless we
specify otherwise, the LO approximation will refer to the
standard LO approximation of lnxf = 0.

Beyond the NO approximation of Eq. (33), this shift
does not resum the terms in the Taylor series since for
p > 1

qp(0) 6= qp1(0)

p!
(36)

or equivalently for the OLO evaluation point qp(lnx1) 6=
0. Furthermore |q2(lnx1)| is a local maximum of
|q2(lnxf )| so that zeroing the NO correction comes at
the expense of maximizing the next-to-NO correction.
For a low frequency ∆N � 1, i.e. for a strong hierar-
chy |G(p)/G(p−1)| � 1, this is a small price to pay. For
∆N ∼ 1, high accuracy requires going beyond the OLO
optimization. In §IV we will optimize the NO approxi-
mation itself by zeroing the next-to-NO correction from
q2. We shall see that this has the added benefit that one
can choose the solution that is a local minimum of |q3|.

It is important to note that this series of optimizations
is not equivalent to truncating at a fixed order in 1/∆N .
Since

G(p) ≡ dpG

d lnxp
= O

(
1

N∆Np−1

)
, (37)

dropping O(1/N∆N) would eliminate G′′ in all observ-
ables including α and dropping O(1/N∆N2) would re-
tain the q1 correction for ns−1 but not α. By truncating
at the same order in the Taylor expansion of each observ-
able, we have ensured that they are all consistently eval-
uated at the same effective epoch when the corrections
are resummed. We shall see that this feature is crucial
for ensuring consistency between observables. Table I
summarizes the various approximations and their appli-
cability.

Since derivatives with respect to ln η and ln k are in-
terchangeable, the accuracy of this truncation at NO or
equivalently OLO is directly related to the accuracy with
which the power spectrum can be described by the local

tilt and running around a given pivot scale k0

ln ∆2
R(k) ≈ lnAs + [ns(k0)− 1] ln

(
k

k0

)
+
α(k0)

2
ln2

(
k

k0

)
. (38)

If the observed power spectrum is a good fit to this form
over at least the ∆N ∼ few that are observationally well
constrained, then OLO will also provide a good approx-
imation. Omitted corrections are suppressed relative to
OLO by 1/∆N2 for each observable.*1 We shall quantify
this consideration in §V A.

C. Hubble Slow Roll Parameters

Although the G(p)(lnxf ) terms can themselves be
thought of as the hierarchy of slow-roll parameters that
are the most directly related to observables, it is useful
to reexpress them in terms of the more familiar Hubble
slow-roll parameters εH and

δp ≡
1

Hpφ̇

(
d

dt

)p+1

φ, (39)

or equivalently derivatives of lnH with respect to efolds
through the hierarchy relations

d ln εH
dN

= 2(εH + δ1),

d ln δp
dN

=
δp+1

δp
+ pεH − δ1. (40)

Using these relations we can express G(p) in terms of the
Hubble slow-roll parameters εH , δp as detailed in the Ap-

pendix. In particular, the hierarchy of G(p) derivatives
is equivalent to the hierarchy of δp parameters. Equa-
tion (40) says that a hierarchical scaling with |δp+1/δp| <
1 requires the fractional change in δp per efold to be small
in addition to εH , |δ1| � 1. In particular, the Taylor ex-
pansion in G(p) becomes a summation over the hierarchy
δp (see the Appendix)

G(p) ≈ (−1)p
(

2δp +
2

3
δp+1

)
+O

(
1

N2

)
, (41)

for p ≥ 2. For order counting purposes

εH , δ1 = O
(

1

N

)
, δp = O

(
1

N∆Np−1

)
. (42)

Although our expressions for observables in terms of
G are explicitly O(G′) = O(N−1) due to the linearity

*1 The apparent contradiction with the power law example in
Ref. [10] is due to numerical problems in their calculation [E.
Stewart (private communication)]. Their feature model calcula-
tion is also in error.
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of Eq. (17), we can choose whether or not to keep non-
linear terms in the conversion of Hubble slow-roll pa-
rameters to G. Different choices will differ by O(N−2)
and hence include a subset of second-order corrections
arising from the evaluation of the first-order GSR term.
Our convention will be to convert the OLO expression to
O(N−1) in ln ∆2

R and ns−1 but retain O(N−2) terms in
α. This is to maintain backward compatibility with the
standard slow-roll approximation where leading order for
α is assumed to be O(N−2). We also drop terms that are
O(N−2/∆N). Thus, our leading-order expression spans
the range of possibilities from ∆N � |N | to ∆N ∼ |N |,
i.e. large to small running of the tilt. In this sense, our
OLO approach is more general than the optimization in-
troduced in Ref. [11] where ∆N � |N | is assumed.

With this convention the OLO scalar observables are

ln ∆2
R ≈ ln

H2

8π2εH
− 10

3
εH −

2

3
δ1

∣∣∣
x=x1

, (43)

ns − 1 ≈ −4εH − 2δ1 −
2

3
δ2

∣∣∣
x=x1

, (OLO)

α ≈ −2δ2 −
2

3
δ3 − 8ε2H − 10εHδ1 + 2δ2

1

∣∣∣
x=x1

.

Here and below the notation
∣∣
...

applies to the whole ex-
pression. These differ from the standard slow-roll approx-
imation in that δp+1 terms are not dropped just because
a lower-order δp appears.

Likewise the tensor observables become

ln ∆2
+,× ≈ ln

H2

2π2
− 8

3
εH

∣∣∣
x=x1

,

nt ≈ −2εH

∣∣∣
x=x1

,

αt ≈ −4ε2H − 4εHδ1

∣∣∣
x=x1

, (OLO). (44)

These expressions for nt and αt are the same as the stan-
dard slow-roll expressions due to the lack of a running of
nt at linear order in εH and δn.

Since OLO self-consistently accounts for both running
of the tilt and running of the running of the tilt by ab-
sorbing the next correction into the evaluation point, it
is both a simpler and better approximation than keep-
ing all O(1/N2) and O(1/N∆N) terms in the standard
slow-roll approximation as often used in the literature
(e.g. [1, 6, 7]; see §V for tests). Note also that the
standard approach is often phrased in terms of the Hub-
ble flow parameters where δp and its hierarchy equation,
Eq. (40), is replaced by

d ln εp
dN

= εp+1, (45)

so that

ε1 ≡ εH ,
ε2 = 2(εH + δ1),

ε2ε3 = 4ε2H + 6εHδ1 − 2δ2
1 + 2δ2. (46)

While the two series are algebraically equivalent when
all terms are kept, Hubble flow parameters are inconve-
nient for cases that lack a strong hierarchy [see Eq. (A17)
and Fig. 14]. Equation (45) says that for εp+1 to remain
small, the fractional change in εp over an efold must be
small. Hence order counting in powers of εp automati-
cally conflates ∆N and N as Eq. (46) illustrates. For
example in the cases considered in §V where the varia-
tions occur on ∆N � 1, these parameters would have
poles, whereas the δp do not.

D. Potential Slow Roll Parameters

We can likewise relate the G(p) hierarchy to the equiv-
alent in derivatives of the potential. Using the exact
background equations of motion for the inflaton and the
expansion

(3 + δ1)H2 dφ

dN
= −V (1),

(3− εH)H2 = V, (47)

we can relate the derivatives of the potential to the Hub-
ble slow-roll parameters

U ≡
(
V (1)

V

)2

= 2εH
(1 + δ1/3)2

(1− εH/3)2
,

V1 ≡
V (2)

V
=
εH − δ1 − δ2/3

1− εH/3
. (48)

Note that to lowest order Eq. (48) gives U ≈ 2εH and
V1 ≈ εH − δ1 − δ2/3. As shown in the Appendix, these
imply G′ ≈ 3U − 2V1. Likewise the series of higher-order
derivatives with respect to efolds is replaced by higher-
order derivatives of the potential with respect to the field

Vp ≡
(
V (1)

V

)p−1
V (p+1)

V
, (49)

where V (p) ≡ dpV/dφp. In the literature the first few
parameters are also known as εV = U/2, ηV = V1, and
ξV = V2. Terms that are quadratic in U ,Vp are higher
order in the deviation from a de Sitter expansion. How-
ever, the relative size of the Vp parameters depends on
the smoothness of the potential V (φ) just as that of δp
depends on the smoothness of H(N).

We explicitly carry out these conversions in the Ap-
pendix and outline the results relevant to the O(1/N)
expansion here. Note that to leading order Eq. (47) pro-
vides the condition for a friction dominated roll or at-
tractor solution,

dφ

dN
≈ −1

3

V (1)

H2
≈ −V

(1)

V
, (50)

which also converts the two senses of derivatives

d

d ln η
≈ V (1)

V

d

dφ
, (51)
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or

dU
d ln η

≈ 0,
dVp
d ln η

≈ Vp+1, (52)

and thus

G(p) ≈ −2Vp +O(N−2), (53)

for p ≥ 2. The Taylor series in G(p) has a one-to-one
relationship to the same series in Vp (see the Appendix
for details). The convergence criteria for the Taylor ex-
pansion in Eq. (31) likewise becomes a direct condition
on the potential slow-roll parameters

lim
p→∞

∣∣∣∣ G(p)

G(p−1)

∣∣∣∣ = lim
p→∞

∣∣∣∣ VpVp−1

∣∣∣∣ < 2. (54)

We can interpret this condition by approximating

Vp
Vp−1

≈ − dφ
dN

V (p+1)

V (p)
≈ −d lnV (p)

dN
. (55)

Thus the convergence condition is that the fractional
variation in V (p) experienced by the field across an efold
is small.

Although the OLO approximation again follows di-
rectly from evaluating G(p) in terms of these parameters,
it is useful to restore the general evaluation epoch lnxf
to clarify its relationship to the field position on the po-
tential. Equations (17) and (27) become

∆2
R ≈

V

12π2U

[
1 +

(
3q1 −

7

6

)
U − 2

∞∑
p=1

qpVp

]
,

ns − 1 ≈ −3U + 2V1 + 2

∞∑
p=1

qpVp+1,

α ≈ −2V2 − 2

∞∑
p=1

qpVp+2 − 6U2 + 8UV1, (56)

where the potential terms are evaluated at the field po-
sition φ(lnxf ) which we will write as lnxf as shorthand
notation. In this language, optimization of lnxf is equiv-
alent to optimization of the field position at which to
evaluate the potential parameters. From the field po-
sition lnxf = lnx0 = 0, a shift in evaluation point to
lnx1 = q1(0) causes a shift of

δφ ≈ −V
(1)

V
δN ≈ V (1)

V
q1(0) (57)

or a change in potential parameters

δV ≈ V (1)δφ ≈ UV q1(0),

δU ≈ 2
V (1)

V
(V1 − U)δφ ≈ 2U(V1 − U)q1(0),

δVp ≈
V

V (1)
Vp+1δφ ≈ Vp+1q1(0) (58)

that cancel the NO corrections in the hierarchy. In fact
starting from an arbitrary lnxf we can define

Ṽp(lnxf ) ≡ Vp(lnxf ) + q1(lnxf )Vp+1(lnxf )

≈ Vp(lnx1). (59)

For the OLO choice, Ṽp(lnx1) = Vp(lnx1), and for al-

ternate lnxf , Ṽp(lnxf ) differs from Vp(lnx1) only by

next-to-NO corrections. Ṽn will be useful for compar-
ing higher-order approximations in §IV. In fact for an
arbitrary order we could define Ṽp ≡ Vp +

∑
qnVn+p to

absorb the appropriate number of correction terms into
an effective potential parameter.

Thus the OLO approximation simply amounts to shift-
ing the evaluation point in field space by the same
amount for all observables. Maintaining this consistency
condition is important in testing models. Aside from this
evaluation point, the OLO approximation (lnxf = lnx1)
takes the same form as the standard LO approximation
(lnxf = 0),

∆2
R ≈

V

12π2U

(
1− 7

6
U
)
,

ns − 1 ≈ −3U + 2V1,

α ≈ −2V2 − 6U2 + 8UV1, (O/LO). (60)

Though identical in form, the standard approximation
assumes V2 is O(N−2) making α suppressed with respect
to ns − 1 and absent in its leading-order prediction, not
because of resummation to a new evaluation point but
because of its truncation at O(N−1). Again, the advan-
tage of this OLO is that not only is it as simple as the
standard LO slow-roll prescription, but it consistently in-
corporates the NO corrections that run the tilt and run
the running of the tilt. Corrections to it are suppressed
by O(1/∆N2).

We shall see that the same is not true for approaches
that correct for evolution at a fixed order in powers of
∆N ∼ N as is often used in the literature (e.g. [3, 8, 9]).
For instance if α is of order ns − 1, the standard second-
order approach is really only appropriate for strictly con-
stant α or equivalently a purely cubic potential where the
cubic term is large but no higher terms are important.
Importantly, in OLO we absorb the effect of the quar-
tic term V3 in the optimized evaluation of α to correct
for the running of its value between horizon crossing and
freeze-out. In the second-order approach, tilt is run to
the freeze-out point, but running is not. One would then
infer an incorrect relationship between the derivatives of
the potential and hence potentially incorrectly falsify a
true model that is not purely cubic from observations.
Thus, a second-order approach is both more complicated
and less general than the OLO approach. We illustrate
this in §V A for the monodromy example.

For tensor fluctuations, conversion of G
(p)
h to the po-
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tential parameters gives

∆2
+,×(k) ≈ V

6π2

[
1− 7

6
U
]
,

r ≈ 8U ,
nt ≈ −U ,
αt ≈ −2U2 + 2UV1, (O/LO) (61)

where the only NO correction is in the power spectrum
itself,

δ∆2
+,×(k) =

V

6π2
q1U , (NO). (62)

Here again OLO has the same accuracy as NO since
q1(lnx1) = 0. In particular the consistency relation
r ≈ −8nt remains unchanged regardless of the evalua-
tion point lnxf .

Finally, the OLO approximation provides a simple in-
verse relationship between the observables r, ns and α
and the potential parameters

U ≈ r

8
,

V1 ≈
ns − 1

2
+

3r

16
,

V2 ≈ −
α

2
+

1

4
(ns − 1)r +

3r2

64
, (OLO). (63)

Even if r is not accurately measured, strong upper limits
where r � 8|1 − ns|/3 allow a reconstruction of V1 and
V2.

Equivalently, those observables allow a local recon-
struction of the potential to cubic order around the field
value where x(φ0) = x1

V

V0
≈ 1+

√
U(φ−φ0)+

V1

2
(φ−φ0)2+

V2

6
√
U

(φ−φ0)3. (64)

The potential amplitude V0, or the energy scale of infla-
tion, can likewise be determined from measuring ∆2

+,×
or equivalently ∆2

R and r as is well known.

IV. OPTIMIZED NEXT- AND SECOND-ORDER
APPROXIMATION

The OLO approximation of the previous section is ac-
curate at first order in the deviations from scale invari-
ance O(1/N) and next-to-leading order (NO) in a hier-
archy of slow-roll parameters separated by ∆N , the tem-
poral scale of features during inflation. For cases where
∆N ∼ 1 and the hierarchy is weakly convergent or if
higher accuracy is desired for future observations, we can
generalize this approach. In §IV A we consider next-to-
NO in the hierarchy and an O(1/N2) in the de Sitter
deviations. In §IV B, we develop a new optimized NO
(ONO) approximation that retains the simplicity of the
NO approximation. This also allows us to contrast OLO
and ONO with the standard second order (SO) approach
which conflates ∆N and N in §IV C.

A. General Expression

In terms of the hierarchy of slow-roll parameters, the
next-to-NO approximation involves keeping terms to or-
der p = 2 in the Taylor expansion of G in Eq. (17)

I0 ≈ G(lnxf ) +

2∑
p=1

qpG
(p)(lnxf ). (65)

To also include all O(1/N2) effects, we evaluate the
second-order terms I1 and I2 from Eq. (14). In these
corrections, G′ and f ′/f can be taken as constants eval-
uated at lnxf as their evolution introduces terms of
O(1/N2∆N) which we omit. Combining these pieces,
we obtain

ln ∆2
R(k) ≈ G(lnxf ) + q1G

′(lnxf ) + q2G
′′(lnxf )

+
π2

8
[G′(lnxf )]2 − 4

[
f ′

f
(lnxf )

]2

. (66)

The same expression is valid for tensors with the appro-
priate replacements as before.

Since the variation in ln k of the last two I1 and I2
terms in Eq. (66) is itself O(1/N2∆N), we do not in-
clude their impact on ns or α. The only O(1/N2) terms
that appear for those quantities come from the nonlinear
relationship between G(p) and slow-roll parameters. This
justifies our inclusion of such terms in α in the OLO ap-
proximation since there are no further corrections from
intrinsically second-order GSR effects.

As shown in the Appendix, in terms of the potential
slow-roll parameters we obtain

∆2
R ≈

V

12π2U

[
1 +

(
3q1 −

7

6

)
U − 2q1V1 − 2q2V2

+

(
3q2 −

2

3
q1 −

103

9
+

3π2

2

)
U2

+

(
−4q2 +

2

3
q1 + 15− 2π2

)
UV1

+

(
4q2 −

2

3
q1 −

13

3
+

2π2

3

)
V2

1

]
,

ns ≈ 1− 3U + 2V1 + 2q1V2 + 2q2V3

+

(
6q1 −

17

6

)
U2 −

(
8q1 −

5

3

)
UV1 +

2

3
V2

1 ,

α ≈ −2V2 − 2q1V3 − 2q2V4 − 6U2 + 8UV1, (67)
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for the scalar expression and

∆2
+,× ≈

V

6π2

[
1 +

(
q1 −

7

6

)
U

+

(
−q2 +

4

3
q1 −

8

3
+
π2

6

)
U2

+

(
2q2 − 2q1 +

17

9

)
UV1

]
,

r ≈ 8U − 16q1U(U − V1),

nt ≈ −U +

(
2q1 −

5

2

)
U2 − 2(q1 − 1)UV1,

αt ≈ −2U(U − V1), (68)

for the tensor expression. These are the master equations
for all next-to-NO in the hierarchy and second order in
1/N approximations. They of course also include lower-
order approximations such as LO, OLO and SO with the
appropriate zeroing of terms.

B. Optimized Evaluation

We can again optimize the evaluation epoch lnxf to
make the optimized NO approximation as accurate as
a general next-to-NO approximation. We therefore take
q2(lnx2) = 0 in Eq. (25) and pick the solution that min-
imizes the next correction |q3|,

q2(lnx2) ≡ 0,

q1(lnx2) =

√
3π2 − 4

6
≈ 0.84,

lnx2 = lnx1 − q1(lnx2) ≈ 0.22, (ONO). (69)

We call the evaluation of Eqs. (67) and (68) with these
values the optimized next-order (ONO) approximation.
Note that this has the effect of zeroing the highest Vp
term in each observable.

For a strong hierarchy ∆N � 1, despite the shift in
the actual evaluation point to lnx2, observables remain
effectively evaluated at lnx1 since

I0 = G(lnx2) + q1(lnx2)G′(lnx2) + . . .

= G(lnx2) + (lnx1 − lnx2)G′(lnx2) + . . .

= G(lnx1)− 1

2
(lnx1 − lnx2)2G′′(lnx1) + . . .

= G(lnx1) + q2(lnx1)G′′(lnx1) + . . . (70)

where . . . represents G(3) terms and higher. Evaluation
at lnx2 simply increases the accuracy by including the
first correction to this approximation. Since lnx1 is a
maximum of |q2| this correction can become important
for ∆N ∼ 1. Furthermore lnx2 is a minimum of |q3| and
so even the G(3) error is minimized in ONO (see Table I).

In terms of the reconstruction of U ,V1,V2 from ns, α, r
the system is no longer closed due to the appearance of
q1V3 in α. As in the case of I0 above, this term repre-
sents the leading-order effect of a shift in the evaluation

of V2 back to φ(lnx1) from φ(lnx2). We can therefore

define instead the reconstructed parameters as the Ṽp of
Eq. (59) which can equally well be predicted from any
given model for comparison. Moreover in the quadratic
terms the difference between employing Vp and Ṽp is at
most O(1/N2∆N) which we neglect. Thus the master

equation can be written entirely in terms of Ṽp. Iterat-
ing the inversion we obtain

U ≈ r

8
− q1

8
(ns − 1)r − q1

64
r2,

Ṽ1 ≈
ns − 1

2
+

3r

16
− (ns − 1)2

12

+

(
q1

16
− 11

96

)
(ns − 1)r +

(
3q1

128
− 7

768

)
r2,

Ṽ2 ≈ −
α

2
+

1

4
(ns − 1)r +

3r2

64
, (ONO), (71)

for the potential reconstruction.

C. Standard Second Order

We can also contrast the OLO and ONO approxima-
tions with the standard second-order approach. The
standard second-order approach is not simply a choice
of lnxf = 0 in the master equations. By conflating ∆N
with N , it truncates at a fixed order in both. In other
words it assumes Vp = O(1/Np) and so in the O(1/N2)
expansion,

V3,V4, . . . = 0, (SO),

q1 ≈ 1.06, q2 ≈ 0.21 (72)

in Eqs. (67) and (68). Thus, the standard second-order
(SO) approximation implicitly assumes that the poten-
tial is cubic in form (see the Appendix for the relationship
to the second-order Hubble flow approximation). Since
truncation at a fixed Vp is not the same as truncation at
a fixed order in the Taylor expansion, this means that
different observables are effectively evaluated at an in-
consistent lnxf or field position. We shall see that this
makes SO an even worse approximation than OLO for
cases where ∆N � |N | and the potential is not cubic.

In particular, dropping q1V3 terms in α but keeping
q1V2 terms in ns − 1 leads to the reconstruction

U ≈ r

8
− q1

8
(ns − 1)r − q1

64
r2,

V1 ≈
ns − 1

2
+

3r

16
+
q1

2
α− (ns − 1)2

12

−
(

3q1

16
+

11

96

)
(ns − 1)r −

(
3q1

128
+

7

768

)
r2,

V2 ≈ −
α

2
+

1

4
(ns − 1)r +

3r2

64
, (SO), (73)

which is not simply a redefinition of q1 in Eq. (71).
In particular α now appears in the formula for V1. For

a purely cubic potential, these differences simply reflect
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a different expansion point φ0 for the reconstruction in
Eq. (64). However for a potential that contains quartic
corrections, the SO reconstruction can lead to inconsis-
tencies between the parameters {U ,V1,V2} that do not
simply reflect evaluation at a different field value for the
potential. We now turn to an illustrative example of such
a model.

V. MONODROMY CASE STUDY

Axion monodromy inflation [17] provides a well-
motivated theoretical model where the various approx-
imation schemes discussed in the previous sections can
be tested. The monodromy potential is the sum of a
smooth and oscillatory part

V (φ) = V̄ (φ) + δV (φ), (74)

for which we take the simplest case

V̄ (φ) = λφ,

δV (φ) = Λ4 cos

(
φ

f
+ θ

)
. (75)

Depending on the frequency of this oscillation, the cur-
vature power spectrum may gain a large local running of
the tilt [18, 20] or high frequency features for which the
slow-roll parameters have an inverted hierarchy and lose
their ability to characterize observables directly [21].

In §V A, we study the low frequency case and test the
accuracy of the LO, OLO, ONO and SO approximations.
We develop optimized GSR approximations for the high
frequency case in §V B, extending results of Ref. [21] for
second-order corrections in the large amplitude limit as
well as establishing the connection of the running ampli-
tude, frequency, and phase of the oscillation to parame-
ters of the potential.

A. Low Frequency Oscillations

In the low frequency regime, the slow-roll parameters
are hierarchical and yet the running of tilt can be large
and nearly constant across the well-measured few efolds
of the cosmic microwave background (CMB) and large-
scale structure. In this case, the OLO and ONO slow-
roll expressions should provide a good approximation for
observables whereas we have argued that the standard
SO expressions do not.

For tests of these approximations, we choose the pa-
rameters of the potential such that the smooth piece pro-
vides a power spectrum amplitude and tilt of the right
order at some fiducial scale k0,

∆̄2
R(k0) = Ās = 2.5× 10−9,

n̄s = 0.97, (76)

FIG. 1. Low frequency ω = 1/3 oscillations in the curva-
ture power spectrum ∆2

R under the leading-order (LO) and
optimized leading-order (OLO) approximations. While the
LO approximation introduces a large error in the power spec-
trum compared to numerics, the OLO results show that they
can be corrected by simply shifting the relationship between
ln k and φ. Here the amplitude of the oscillation is set to
αmax = −0.01.

which determines

φ0 =

√
3

1− n̄s
,

λ =
12π2

φ3
0

Ās. (77)

As shown by the OLO approximation, fluctuations freeze
out at

k0η(φ0) = x1 ≈ 2.89, (78)

which provides a conversion between k0 and φ0 which we
use as a definition throughout. The parameter f deter-
mines the frequency of the oscillation and thus the sepa-
ration between terms in the slow-roll hierarchy. Since∣∣∣∣ VpVp−1

∣∣∣∣ ≈ 1

fφ0
=
|dφ/dN |

f
≡ ω � 1, (79)

we fix f by a choice of ω ∼ ∆N−1. Given Eq. (54),
the series expansion in p converges if ω < 2. Thus in
the low frequency regime ω � 1, the optimized slow-roll
approach should be a good approximation.

We set the phase of the oscillation so that α is at an
extrema αmax at k0,

θ =
π

2
−Mod(φ0/f, 2π), (80)
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FIG. 2. Low frequency ω = 1/3 oscillations in ns, α and r
under the LO and OLO approximations as in Fig. 1. The
OLO approximation again provides an excellent approxima-
tion that corrects the shift in the LO results even in this case
where ω, the hierarchical separation between α and ns− 1, is
not much less than unity.

for low frequency oscillations. Finally we set the ampli-
tude of the oscillations Λ4 by relating it to the running
of the tilt at the k0 extrema

Λ4 = −1

2
λφ2

0f
3αmax. (81)

In practice we choose αmax = −0.01 in our examples.
Since Λ4 increases as ω → 0 at fixed αmax and ns − 1,
higher-order terms in δV eventually become important.
Therefore, we use αmax simply as a proxy for choosing Λ4

rather than associating it with the actual value of α at k0.
Likewise, Ās and n̄s also receive higher-order corrections
and are used here simply to set parameters.

By solving the exact Mukhanov-Sasaki equation (1)
with Bunch-Davies initial conditions (5), we can compare
the power spectra observables to the various slow-roll ap-
proximations and integral approaches.

We start by considering an example with ω = 1/3.
In Fig. 1, we compare the standard LO and OLO ap-
proximation of Eq. (60) against the numerical calculation
for the curvature power spectrum ∆2

R. The OLO ap-
proximation reproduces the numerical calculation at the
10−3 level, while the LO approximation misestimates the
power spectrum by a considerable amount. On the other
hand, we know analytically that the two differ simply in
that the power spectrum is shifted by ∆ ln k ≈ − lnx1.
Since the relationship between k and φ depends on the
physics of reheating, this type of error just introduces an

FIG. 3. Low frequency ω = 1/3 oscillation trajectories in
the ns-α plane under the LO and OLO approximations as
in Fig. 1. Both LO and OLO trajectories are good approx-
imations to the numerical results emphasizing that the LO
results differ simply in the evaluation point along the tra-
jectory, parametrically evaluated here for the same range in
observed wavenumber k.

efold shift in those inferences rather than on the shape
of the potential.

These considerations apply to ns, α, and r as illus-
trated in Fig. 2. The OLO approximation is highly accu-
rate with differences from the numerics at the 10−3 level
or less, whereas the LO results are all shifted by the same
amount as the power spectrum.

This joint shift of all observables means that for the LO
approximation all four observables are consistent with
arising from the same potential as would be inferred from
the better OLO approximation. For example, we show
trajectories in the ns-α plane in Fig. 3. The difference
between the two approximations now appears simply as
a different starting and ending point on the same trajec-
tory.

The importance of consistency becomes clear when
comparing potential reconstruction between the LO and
OLO approximations in Eq. (63). In Fig. 4, we show
reconstruction using the exact, numerical results for ns,
α, and r as a function of ln k as if they were precisely
measured from data. Again the OLO approximation is
highly accurate for reconstruction, whereas the LO ap-
proximation shows a shift in φ due to the change in the
evaluation epoch

Consistency in the evaluation epoch between observ-
ables leads to consistency in the potential reconstruction.
In Fig. 5, we show trajectories in the V1-V2 plane. The
difference between the LO and OLO approximations is
again the starting and ending point on the trajectory.
Both approximations would reconstruct potentials that
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FIG. 4. Low frequency ω = 1/3 potential reconstruction in
U,V1,V2 under the LO and OLO approximations as in Fig. 1.
Here the numerical results for ns, α, r are used in each case.
The OLO approximation is accurate at the 10−3 level whereas
the LO approximation produces a systematic but consistent
shift in field position.

were consistent with the true potential at the same level
of accuracy. Though the values of V1 and V2 that they
recover do differ, they are consistent with a shifted eval-
uation on the potential.

This should be contrasted with the standard second-
order (SO) approximation. In Fig. 6, we show the SO and
ONO approximations for ∆2

R from Eqs. (67) and (68).
Both approximations do an excellent job of correcting
residual errors in the LO and OLO approximations in
the power spectrum itself. For ns, α, r, Fig. 7 shows that
ONO further improves the error in their predictions from
OLO to well below 10−3. Residual errors are largest for
α due in large part to the neglect of the O(1/N2∆N)
term 8q1UV2 in Eq. (67) and would decrease for smaller
choices of ω. On the other hand, SO only corrects LO for
ns − 1 and r leaving the large fractional error in α that
was present at LO.

Ironically this means that the SO approximation per-
forms worse than LO in an important sense. In Fig. 8,
we highlight the problem for the trajectories in the ns-α
plane. Unlike the LO approximation, the SO approxima-
tion predicts pairs of these observables that are strongly
inconsistent with the true trajectory.

Likewise for potential reconstruction, the ONO ap-
proximation improves the reconstruction to better than
the 10−4 level. In fact by defining fully self-consistent
corrected potential parameters Ṽn from Eq. (59), recon-
struction is actually more accurate than the power spec-

FIG. 5. Low frequency ω = 1/3 oscillation trajectories in
the V1-V2 plane under the LO and OLO approximations as
in Fig. 1. Both LO and OLO trajectories are good approx-
imations to the numerical results emphasizing that the LO
results err simply in the evaluation point along the trajectory,
parametrically evaluated here for the same range in observed
wavenumber k.

trum prediction since it absorbs O(1/N2∆N) terms into
the definition. On the other hand, while the SO approx-
imation corrects the shift of the LO approximation in U
and V1, it does not for V2 as shown in Fig. 9. The con-
sequence is that in the V1-V2 plane shown in Fig. 10 the
SO approximation reconstructs points that are not con-
sistent with being anywhere on the trajectory of the true
potential. This can lead to incorrect falsification of the
true model from observations.

Perhaps surprisingly, the OLO and ONO approxima-
tions still perform well for ω = 1 where all terms in the
infinite Vn series are of the same order. This is related
to the fact that the Taylor series still converges, albeit
slowly, for even larger values up to ω < 2. In Fig. 11, we
show their predictions for ns − 1, α and r. For the pre-
cision of current measurements, the OLO approximation
actually still suffices. For higher precision measurements,
the ONO approximation now makes relatively important
corrections to the scalar observables and performs well
at the 10−3 level.

Finally, the accuracy of the OLO and ONO approxima-
tions are directly related to the accuracy with which the
local tilt and running describe the global power spectrum
across the observed efolds through Eq. (38). In Fig. 12,
we show that in the ω = 1/3 case where the OLO approx-
imation suffices this approximation is very accurate over
a large range in efolds. For the ω = 1 case, the approxi-
mation only holds for the central ∼ 4 efolds and likewise
the ONO corrections to OLO become important. Thus,
if the observations are a good fit to the local model, then
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FIG. 6. Low frequency ω = 1/3 oscillations in the curvature
power spectrum ∆2

R under the standard second-order (SO)
and optimized next-order (ONO) approximations. In both
cases, the second-order corrections are sufficient to correct
errors in Fig. 1 to below the 10−3 level (bottom panel).

OLO is a good approximation, and ONO provides the
means to improve its accuracy if necessary in the future.
If the local model is a bad fit to the data, then ∆N . 1/2
(or ω & 2), and no slow-roll hierarchy of parameters can
describe the spectrum accurately.

B. High Frequency Oscillations

For ω > 2, the slow-roll hierarchy does not converge
with a finite number of terms. Nonetheless, the GSR
expansion remains valid so long as the deviations from
scale invariance, controlled by the amplitude not the fre-
quency of the oscillation, remains small. We must, how-
ever, evaluate the GSR integrals in Eqs. (7) and (14) di-
rectly. Given that in the high frequency limit Vp increases
with p, we can no longer naively use their relationships
with G(p) given in the Appendix. Reference [14] showed
that, even in the high frequency limit,

G′ = 3U − 2V1 + εHO(G′) +O(δ2
1). (82)

We can therefore establish the leading-order connection
to the potential in the usual way. Namely for the oscil-
latory part,

δG = 3
δV

V̄
− 2

δV (1)

V̄ (1)
. (83)

Moreover, this leading-order result remains valid even
for large amplitude, high frequency oscillations since G′

FIG. 7. Low frequency ω = 1/3 oscillations for the error in ns,
α and r relative to numerics under the SO and ONO approx-
imations. ONO further improves OLO but SO only corrects
LO in ns and r compared with Fig. 2. α remains shifted in
SO and breaks the internal consistency of the observables.

is linear in the highest derivative term V (2) (or δ2) and
hence linear in Λ4 in that limit. This extended valid-
ity will be important in the consideration of quadratic
terms below. It can be demonstrated by integrating δG′

assuming that the field rolls according to the smooth po-
tential. Even large amplitude high frequency oscillations
give highly suppressed effects on the field position which
we can neglect.

Under this approximation for the roll, we can convert
field position to time relative to some fiducial evaluation
point η∗ as

φ ≈ φ∗ +
√

2ε̄H ln(η/η∗) ≈ φ∗ +
1

φ∗
ln(x/kη∗) (84)

to obtain the leading-order contribution from the oscilla-
tions δ ln ∆2

R(k) ≈ δI0(k), where

δI0 ≈ −
2Λ4

λf

∫ ∞
0

dx

x
W ′(x)

[
sin (ω∗lnx+ ψ)

+
3f

2φ∗
cos (ω∗lnx+ ψ)

]
, (85)

with ω∗ = (fφ∗)
−1 and

ψ(k) =
φ∗
f
− ω∗ ln(kη∗) + θ. (86)

As in the optimized slow-roll calculations, the epoch η∗
and the associated field value φ∗ can be optimized to
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FIG. 8. Low frequency ω = 1/3 oscillation trajectories in the
ns-α plane under the SO and ONO. ONO improves OLO but
SO is worse than the LO (cf. Fig. 3 and also Fig. 14 for the
second-order Hubble flow result).

make the approximations as accurate as possible for a
given k. It does not have to coincide with the fixed η0

and φ0, associated with horizon crossing for k0.
We can evaluate both terms in the integral using

Eq. (19),∫ ∞
0

dx

x
W ′(x)eiω∗ ln x

= −2−iω∗ cosh
(πω∗

2

) 3Γ(2 + iω∗)

(1− iω∗)(3− iω∗)

=

√
9πω∗ coth(πω∗/2)

2(9 + ω2
∗)

ei(π/2−β). (87)

The phase factor β(ω∗) can be expressed exactly in terms
of the Γ function formula. Note that it takes on simple
limiting forms

lim
ω∗→0

β =
3π

2
− ω∗ lnx1,

β∞ ≡ lim
ω∗→∞

β = ω∗[1− ln(ω∗/2)]− π

4
. (88)

Here lnx1 ≈ 1.06 is the same factor that enters into
the OLO approximation for reasons that will be clear
below. The large ω∗ limit corresponds to the resonant
or stationary phase solution of x = ω∗/2 for the phase
factor 2x−ω∗ lnx [21]. To clarify the connection between
these limits, it is useful to have a simple approximation
to the exact β(ω∗) and we find that

β(ω∗) ≈ β∞ +
7π

4

1√
1 + 1.59ω0.92

∗ + ω2
∗

(89)

to better than 0.03 accuracy everywhere.

FIG. 9. Low frequency ω = 1/3 potential reconstruction error
in U ,V1,V2 under the SO and ONO approximations. ONO re-
constructs the potential to extremely high accuracy (∼ 10−4),
but SO corrects only U and V1 compared with Fig. 4 leaving
V2 with large fractional errors. For ONO, we plot δṼ1, δṼ2.

Putting these results together, we obtain

δI0(k) = −A
[
cos(ψ − β)− 3f

2φ∗
sin(ψ − β)

]
, (90)

where

A =
12Λ4

λf
√

1 + (3fφ∗)2

√
π

8
fφ∗ coth

(
π

2fφ∗

)
. (91)

This should be compared to the result from Ref. [21],

δ∆2
R = Ās

(
k

k0

)n̄s−1

A cos [ω ln(k/k0) + ϕ] , (92)

where ϕ is considered a free phase parameter. Since this
form is primarily used for the purpose of fitting a func-
tional form for the deviations to data, in this comparison
differences in the form are more important than those in
the association of A, ω, and ϕ with parameters in the
potential. On the other hand, our treatment has the ad-
vantage of preserving all of those relations.

For example, Ref. [21] ignores corrections of order
f/φ∗ ≈ 2εH/ω∗ as they are not relevant for high fre-
quency oscillations, but these may be absorbed into a
redefinition of amplitude and phase. More importantly
they take

δ ln ∆2
R ≈

δ∆2
R

∆̄2
R

(93)
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FIG. 10. Low frequency ω = 1/3 oscillation trajectories in
the V1-V2 plane under the SO approximation as in Fig. 1. SO
is worse than LO (cf. Fig. 5) and can lead to an incorrect
falsification of the true model.

which is valid in the |A| � 1 limit but causes differences
that cannot be reabsorbed into fits at large A. Note
that Eq. (92) does not guarantee a positive definite power
spectrum.

In terms of the phase, Eq. (92) defines only the k de-
pendence rather than the absolute relationship between
ϕ and θ given by our treatment. The dependence of the
phase on k in Eq. (86) is consistent with Eq. (92) if we
choose the evaluation epoch as η∗ = 1/k0,

ψ ≈ φ∗
f
− ω∗ ln(k/k0) + θ. (94)

The advantage of the more general Eq. (90) is that we
are not required to do so. Using a fixed evaluation epoch
omits the evolution of quantities like ε̄H between that
epoch and the true freeze-out epoch which depends on k.
In the more refined treatment of Ref. [22], these effects
are absorbed into a running or drift of the frequency.
Note that this type of running does not invalidate our
use of the slow-roll approximation in Eq. (84) which only
requires constant ε̄H during freeze-out of a given k rather
than across many efolds of k and hence N space.

We can instead parallel and extend our low frequency
treatment by allowing the freeze-out epoch for the oscil-
latory piece δV to depend on k in potentially a different
way than for V̄ . We start by reexamining the low fre-
quency case where the two freeze-out epochs should be
the same. Indeed, if we take the evaluation point as
kη∗ = x1, the lnx1 phase shift in β in Eq. (88) cancels
with the opposite shift in ψ in Eq. (86) so that

lim
ω∗→0

(ψ − β) =
φ∗
f

+ θ +
π

2
, kη∗ = x1. (95)

FIG. 11. Intermediate frequency ω = 1 oscillation in ns, α,
and r under the OLO and ONO approximations. OLO is
still sufficiently accurate for current measurements, but ONO
provides notable corrections and preserves 10−3 accuracy in
observables.

Equation (90) in the ω � 1 limit is then exactly the OLO
approximation using Eq. (83):

δI0 ≈ δG|x=x1 , (OLO) (96)

≈ 2Λ4

λf

[
sin

(
φ∗
f

+ θ

)
+

3f

2φ∗
cos

(
φ∗
f

+ θ

)]
.

Note that here φ∗ is a function of k due to the opti-
mized evaluation, and the explicit dependence can either
be directly computed given the background solution or
characterized by the running of the frequency from some
central value at k0 [22].

For high frequency oscillations ω � 1, we increase ac-
curacy by shifting the evaluation point η∗ to the station-
ary phase point

lim
ω∗→∞

(ψ − β) =
φ∗
f
− ω∗ + θ +

π

4
, kη∗ =

ω∗
2
. (97)

Optimized evaluation again means that φ∗(k) is given by
the solution to

kη(φ∗) =
ω∗
2

=
1

2fφ∗
. (98)

To cover both low and high frequency cases, we can com-
bine the two freeze-out criteria as

kη∗ = max
(
x1,

ω∗
2

)
. (99)
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FIG. 12. Local, ns − α parameterization of the power spec-
trum from Eq. (38) compared to numerics for the low and
intermediate frequency cases. Accuracy of the local approxi-
mation is directly related to the hierarchical structure of the
slow-roll parameters and hence that of the OLO truncation
of the hierarchy. For ω = 1/3 both suffice, whereas for ω = 1
both require correction from higher terms in their respective
Taylor series.

For the second-order corrections in the ω � 1 limit,
the ONO approximation applies and captures all terms.
In the opposite limit of ω � 1, quadratic terms in A can
be more relevant since a large amplitude oscillation does
not produce large changes to the well-constrained average
tilt and running. In this large amplitude and frequency
limit, the dominant second-order correction is due to I1
[14] where a similar resonance occurs in the stationary
phase approximation. Thus, the oscillatory part of the
power spectrum is well approximated by

δ ln ∆2
R ≈ δI0 + 2Ī1δI1 + δI2

1 , (GSR) (100)

where the smooth and oscillatory parts of I1 are given by

Ī1 =
π

2
√

2
(1− n̄s), (101)

and

δI1 =
1√
2

∫ ∞
0

dx

x
δG′(lnx)X(x). (102)

Repeating the same steps as for I0, we have integrals

FIG. 13. High frequency ω = 20 oscillation in the curvature
power spectrum ∆2

R under the analytic GSR integral approx-
imation as compared with numerical calculations for a model
with A ∼ 0.2 amplitude oscillations (top). Differences are
less than 10−2 with a significant correction coming from the
quadratic terms (Q) which mainly change the phase and am-
plitude of the oscillation as well as shift the normalization
parameter ln Ās (bottom).

that can be evaluated using∫ ∞
0

dx

x
X ′(x)eiω∗ ln x

= −2−iω∗i sinh
(πω∗

2

) 3Γ(2 + iω∗)

(1− iω∗)(3− iω∗)

= −

√
9ω∗π tanh(πω∗/2)

2(9 + ω2
∗)

e−iβ , (103)

to obtain

δI1 =
A√
2

tanh
(πω∗

2

)[
sin(ψ − β) +

3f

2φ∗
cos(ψ − β)

]
.

(104)
Note that the δI2

1 correction contains squared or 2ω∗ fre-
quency contributions that cannot fully be absorbed into
the form of Eq. (92). However to quadratic order in A,
the combination of the I0 and I1 differences in form be-
tween Eqs. (100) and (92) can be absorbed into a redef-
inition of Ās, A and the oscillation phase for ω � 1.
To see this note that, aside from the phase ψ − β, these
quadratic differences are given by

Q =
δI2

0

2
+ 2Ī1δI1 + δI2

1 (105)

and
√

2δI1 and δI0 are related by a phase shift of
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π/2 such that their squares sum to a constant since
tanh(πω∗/2)→ 1.

As an example, we choose ω = 20 and Λ4 = 1.78 ×
10−13 which gives A(k0) ≈ 0.2. Other parameters are
set as in the low frequency case. We use the ONO ap-
proximation to determine Ās, n̄s, and ᾱ for the smooth
potential and add its contribution using Eq. (38) to com-
pare the total

ln ∆2
R = ln ∆̄2

R

∣∣∣
ONO

+ δ ln ∆2
R (106)

to numerical results. Note that, by implementing the
ONO approximation, where V̄ is evaluated at kη(φ2) =
x2, we use two field positions φ∗ and φ2 for each k which
allows us to simultaneously optimize for the oscillatory
and smooth parts of the potential.

In Fig. 13, we show that even for this large ampli-
tude oscillation, Eq. (100) is accurate to better than
10−2 without any adjustment to the phase, frequency
or amplitude of oscillations. Note that, as expected, the
quadratic terms in Q, while significant in establishing the
good agreement with numerics, takes the form of a con-
stant plus an oscillatory piece of the same frequency as
the leading-order contribution. Thus, it can be absorbed
into a redefinition of parameters in Eq. (92) and the de-
pendence of the oscillation phase ψ − β on k. For even
larger values of the amplitude A, this is no longer possi-
ble and so accurate expressions will require calculations
to cubic and higher order in A

VI. DISCUSSION

By utilizing the GSR approximation, we have provided
a systematic study of the evaluation and interpretation
of power spectra where a relatively large local running
arises from features in the potential. This approach as-
sumes only that the average deviation from scale invari-
ance is small and associated with the number of efolds to
the end of inflation as 1/N . The frequency of temporal
features 1/∆N can be much larger than 1/N . We intro-
duced the GSR slow-roll hierarchy parameters G(p) which
are directly related to observables and elucidate their re-
lation to the standard hierarchies of parameters in the
potential and Hubble flow. This parameterization works
for P (X,φ) models as well with a suitable generalization
of the conformal time to the sound horizon.

For models with 1 < ∆N � N , a slow-roll hierarchy
of parameters still exists, but the running of the tilt α is
only smaller than ns−1 by a factor of ∆N notN . In these
models, the leading-order slow-roll calculation gains rela-
tively large corrections since a large running implies that
the slow-roll parameters are not constant. Instead the
calculation and interpretation of such models proceeds
by Taylor expanding the temporal evolution. This series
converges rapidly as long as ∆N & few, and this con-
dition also guarantees that observable power spectra are
well characterized by the local tilt and running across

the well-measured few efolds of the CMB and large scale
structure.

In fact next-to-leading-order corrections in the Taylor
series of each observable can be consistently reabsorbed
into an optimized temporal evaluation of leading-order
terms. This is because the first Taylor correction just
represents a shift in the epoch of fluctuation freeze-out
to about an efold before horizon crossing. The advantage
of this OLO approach is that the analysis of observables
proceeds exactly in the same way as a standard leading-
order analysis and only the interpretation in terms of
their correspondence to the inflationary model differs.
For the interpretation of current data fits to constant
tilt and running of the tilt, this simple approach suffices
in accuracy. In terms of potential reconstruction it re-
covers a local cubic expansion evaluated consistently at
the optimized field point.

Contrast this with a common approach in the literature
that attempts to correct for the evolution with a second-
order expansion under the assumption that ∆N ∼ N .
In this case the tilt is corrected for evolution between
horizon crossing and freeze-out but the running of the
tilt, which is assumed to be intrinsically second order,
is not. In this case, the observables are effectively eval-
uated at inconsistent epochs. Potential reconstruction
from a second-order approach likewise produces incon-
sistencies which could potentially lead to an incorrect
falsification of the true model from the observations. For
models with large running it can only be consistently
applied to a purely, rather than locally, cubic potential.
Ironically then the second-order analysis provides a more
complicated but less general approach compared with the
leading-order analysis as we explicitly demonstrate using
a low frequency axion monodromy model.

For even higher accuracy, we can keep both 1/N2 terms
and optimized next-to-leading-order terms in the hierar-
chy. This ONO approach leads to better than 10−3 accu-
racy in observables and potential reconstruction even for
∆N ∼ 1 where all of the infinite hierarchy of parameters
have the same magnitude.

Finally for ∆N � 1, the slow-roll parameters possess
an inverted hierarchy and lose their utility for predicting
observables. Even in this case the GSR approach pro-
vides accurate predictions as long as the amplitude of
deviations from time translation invariance is small re-
gardless of the frequency of temporal features. Likewise
the technique of optimizing the epoch of evaluation can
be generalized to establish precise relationships between
the potential parameters and observables.

We test this GSR approach with axion monodromy
models in the high frequency limit and provide expres-
sions that are accurate to second order in the amplitude
and optimized in the temporal evaluation. The optimized
approach also provides the direct relationship between
parameters of the potential and phenomenological tem-
plate fits to the running phase, frequency and amplitude
of oscillations in the power spectrum used in the litera-
ture. For sufficiently large amplitude deviations and/or
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future high precision measurements, relating power spec-
trum features to potential parameters requires going be-
yond the second order calculations presented here. We
leave such considerations and their impact on interpret-
ing observables to a future work.
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Appendix A: Parameter Relations

To relate the three different parameterizations of the
slow-roll hierarchy G(p), {εH , δp} and {U ,Vp} used in the
main text, we establish here the relationship between
the GSR, Hubble slow-roll, and potential slow-roll ap-
proaches.

We expand expressions to O(1/N2) under the assump-
tion that

{εH ,U} = O
(

1

N

)
,

{G(p), δp,Vp} = O
(

1

N∆Np−1

)
. (A1)

with 1 � ∆N ≤ |N |. Unlike the standard slow-
roll approximation, we therefore keep terms that are
O(1/N∆Np) but still drop those that are O(1/N2∆Np)
for p ≥ 1. For example we keep V2 and UV1 but omit
UV2.

The relationship between the GSR and Hubble slow-
roll variables involves the conversion between conformal
time and efold

dN

d ln η
= −aHη. (A2)

This quantity can be parameterized by using Eqs. (4) and
(40) to obtain

dH

dN
= −εHH,

d2H

dN2
= −εH(εH + 2δ1)H. (A3)

Integrating the Taylor expansion of H around N to find

η =
∫ 0

N
dN/eNH, we obtain

aHη ≈ 1 + εH + 3ε2H + 2εHδ1. (A4)

Using this relation, the definition of f from Eq. (3), and
the Hubble slow-roll hierarchy equation (40), we obtain
for the GSR scalar parameters

ln f2 ≈ ln

(
8π2εH
H2

)
+ 2εH + 5ε2H + 4εHδ1,

f ′

f
≈ −δ1 − 2εH − 4ε2H − 3εHδ1,

G′ ≈ 4εH + 2δ1 +
2

3
δ2 +

32

3
ε2H +

28

3
εHδ1 −

2

3
δ2
1 ,

G′′ ≈ −2δ2 −
2

3
δ3 − 8ε2H − 10εHδ1 + 2δ2

1 ,

G(p) ≈ (−1)p+1

(
2δp +

2

3
δp+1

)
, (p > 2) (A5)

and for the tensor parameters

ln f2
h ≈ ln

(
2π2

H2

)
+ 2εH + 5ε2H + 4εHδ1,

f ′h
fh
≈ −εH − 3ε2H − 2εHδ1,

G′h ≈ 2εH +
22

3
ε2H +

16

3
εHδ1,

G′′h ≈ −4ε2H − 4εHδ1,

G
(p)
h ≈ 0, (p > 2). (A6)

For the relationship with the potential parameters, we
iteratively solve Eq. (48)

U = 2εH +O(N−2),

V1 = εH − δ1 −
δ2
3

+O(N−2) (A7)

along with

Vp = −dVp−1

dN
+O(N−2)

= (−1)p
(
δp +

δp+1

3

)
+O(N−2) (A8)

for p ≥ 2. Notice that this is the same combination that
enters into G(p) in Eq. (A5). Inverting these relations we
obtain

εH =
U
2

+O(N−2),

δ1 =
U
2
−
∞∑
n=0

(
1

3

)n
Vn+1 +O(N−2),

δp =

∞∑
n=0

(
1

3

)n
Vn+2 +O(N−2). (A9)

We then plug these back into the exact Eqs. (47) and
(48) and use

V ′

V

dU
dφ

= 2U(V1 − U),

V ′

V

dVp
dφ

= Vp+1 + [(p− 1)V1 − pU ]Vp, (A10)
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to obtain

3H2

V
≈ 1 +

U
6
− U

2

12
+
UV1

9
,

εH
U
≈ 1

2
− U

3
+

∞∑
n=1

(
1

3

)n
Vn +

4

9
U2 − 5

6
UV1 +

5V2
1

18
,

δ1 ≈
U
2
−
∞∑
n=0

(
1

3

)n
Vn+1 −

2

3
U2 +

4

3
UV1 −

V2
1

3
,

δ2 ≈
∞∑
n=0

(
1

3

)n
Vn+2 + U2 − 5

2
UV1 + V2

1 ,

δp ≈ (−1)p
∞∑
n=0

(
1

3

)n
Vn+p, (p > 2) (A11)

where we have performed one more iteration of εH to ob-
tain εH/U toO(N−2) since it appears in the denominator
of ∆2

R.

As noted above, an advantage of the potential slow-roll
parameters is that in the Taylor expansion for G′ mixed
p terms in δp go away when rewritten in Vp,

G ≈ ln

(
V

12π2U

)
− 7

6
U − 21

8
U2 +

7

3
UV1 −

1

9
V2

1 ,

G′ ≈ 3U − 2V1 +
17

6
U2 − 5

3
UV1 −

2

3
V2

1 ,

G′′ ≈ −2V2 − 6U2 + 8UV1,

G(p) ≈ −2Vp, (p > 2), (A12)

for the scalars and

Gh ≈ ln

(
V

6π2

)
− 7

6
U − 55

24
U2 +

17

9
UV1,

G′h ≈ U +
5

2
U2 − 2UV1,

G′′h ≈ −2U2 + 2UV1,

G
(p)
h ≈ 0, (p > 2), (A13)

for the tensors.

With these relations, the full O(N−2) expressions with
∆N � 1 for the curvature power spectrum observables,

ln ∆2
R(k) ≈ G(lnxf ) +

∞∑
p=1

qpG
(p)(lnxf )

+
π2

8
[G′(lnxf )]2 − 4

[
f ′

f
(lnxf )

]2

,

ns − 1 ≈ −G′(lnxf )−
∞∑
p=1

qpG
(p+1)(lnxf ),

α ≈ G′′(lnxf ) +

∞∑
p=1

qpG
(p+2)(lnxf ), (A14)

become

∆2
R ≈

V

12π2U

[
1 +

(
3q1 −

7

6

)
U − 2

∞∑
p=1

qpVp

+

(
3q2 −

2

3
q1 −

103

9
+

3π2

2

)
U2

+

(
−4q2 +

2

3
q1 + 15− 2π2

)
UV1

+

(
4q2 −

2

3
q1 −

13

3
+

2π2

3

)
V2

1

]
,

ns ≈ 1− 3U + 2V1 + 2

∞∑
p=1

qpVp+1

+

(
6q1 −

17

6

)
U2 −

(
8q1 −

5

3

)
UV1 +

2

3
V2

1 ,

α ≈ −2V2 − 2

∞∑
p=1

qpVp+2 − 6U2 + 8UV1. (A15)

The analogous relations for the tensor observables give

∆2
+,× ≈

V

6π2

[
1 +

(
q1 −

7

6

)
U

+

(
−q2 +

4

3
q1 −

8

3
+
π2

6

)
U2

+

(
2q2 − 2q1 +

17

9

)
UV1

]
,

r ≈ 8U − 16q1U(U − V1),

nt ≈ −U +

(
2q1 −

5

2

)
U2 − 2(q1 − 1)UV1,

αt ≈ −2U(U − V1). (A16)

These expressions can be used to derive any second-order
approximation specified consistently by the order in the
hierarchy of qp(lnxf ) corrections or in the standard ap-
proach by keeping only O(1/N∆N) terms with lnxf = 0.

For example, in terms of the Hubble flow parameters
of Eq. (46), keeping the conversions in the standard ap-
proach where we assume εn = O(1/N) gives

ns − 1 = −2ε1 − ε2 − 2ε21 +

(
2q1 −

11

3

)
ε1ε2

+

(
q1 −

1

3

)
ε2ε3,

α = −2ε1ε2 − ε2ε3,

nt = −2ε1 − 2ε21 +

(
2q1 −

8

3

)
ε1ε2,

αt = −2ε1ε2, (HSO) (A17)

which reproduces the standard result used in the litera-
ture (e.g. [1, 6, 7]) with q1 = q1(0) = 7/3−ln 2−γE . Note
that because the truncation is inconsistent in the models
we consider with ∆N � |N |, these relations differ nu-
merically from the SO approximation expressed in terms
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FIG. 14. Low frequency ω = 1/3 oscillation trajectories in
the ns-α plane under the OLO and HSO approximations as
in Fig. 8. HSO like SO provides an inconsistent trajectory
and is worse than the simpler OLO approximation.

of the same truncation in the potential parameters in the
text unless the potential is cubic. Nonetheless ns−1 and
α are still inconsistently evaluated, and the Hubble flow
second order (HSO) also performs worse than the simpler
OLO approximation (see Fig. 14).
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