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The nucleon’s electromagnetic form factors are expressed in terms of the transverse densities of
charge and magnetization at fixed light–front time. At peripheral transverse distances b = O(M−1

π )
the densities are governed by chiral dynamics and can be calculated model–independently using chi-
ral effective field theory (EFT). We represent the leading–order chiral EFT results for the peripheral
transverse densities as overlap integrals of chiral light–front wave functions, describing the transition
of the initial nucleon to soft pion–nucleon intermediate states and back. The new representation
(a) explains the parametric order of the peripheral transverse densities; (b) establishes an inequality
between the spin–independent and –dependent densities; (c) exposes the role of pion orbital an-
gular momentum in chiral dynamics; (d) reveals a large left–right asymmetry of the current in a
transversely polarized nucleon and suggests a simple interpretation. The light–front representation
enables a first–quantized, quantum–mechanical view of chiral dynamics that is fully relativistic and
exactly equivalent to the second–quantized, field–theoretical formulation. It relates the charge and
magnetization densities measured in low–energy elastic scattering to the generalized parton distribu-
tions probed in peripheral high–energy scattering processes. The method can be applied to nucleon
form factors of other operators, e.g. the energy–momentum tensor.
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I. INTRODUCTION

Transverse densities have become an essential tool in the analysis of current matrix elements (vector, axial) and
the description of the spatial structure of hadrons [1–4]. They are defined as the two–dimensional Fourier transforms
of the invariant form factors and describe the distribution of charge and current in the hadron in transverse space
at fixed light–front time x+ ≡ t+ z. They are frame–independent (boost–invariant) and provide an objective spatial
representation of the hadron as a relativistic system. In the context of QCD the transverse densities correspond to a
projection of the generalized parton distributions (GPDs) describing the transverse spatial distribution of quarks and
antiquarks [2, 5]; as such they connect the information gained from low–energy elastic scattering with the partonic
content probed by high–momentum–transfer processes in high–energy scattering. In composite models of nucleon
structure the transverse densities can be expressed as proper densities of the light–front wave functions of the system
and are therefore a natural ground for phenomenological analysis. Considerable efforts have been devoted to extracting
the transverse charge and magnetization densities in the nucleon from the available electromagnetic (Dirac, Pauli)
form factor data and studying their properties [3, 6, 7]; see Ref. [4] for a review.
Of particular interest are the densities in the nucleon’s chiral periphery. At transverse distances b = O(M−1π ),

where the pion mass is regarded as parametrically small compared to the typical inverse hadronic size, the densities
are governed by the universal dynamics resulting from the spontaneous breaking of chiral symmetry and can be
computed from first principles using the methods of chiral effective field theory (EFT). The isovector charge and
magnetization densities, ρ1(b) and ρ2(b), arise from chiral processes in which the current couples to the nucleon
through exchange of a two–pion system with momenta O(Mπ) relative to the nucleon. A detailed investigation of
the properties of the peripheral transverse densities in leading–order (LO) relativistic chiral EFT was performed in
Ref. [8]. The densities decay exponentially with a range given by the mass of the exchanged system, 2Mπ (“Yukawa
tail”); their overall strength and the underlying power–like behavior in b are determined by coupling of the two–pion
exchange to the nucleon and exhibit a rich structure. It was found that the transverse charge density ρV1 (b) and the
modified magnetization density ρ̃V2 (b) ≡ (∂/∂b)ρV2 (b)/(2MN) are of the same order in the chiral expansion, obey an
approximate inequality ρ̃V2 (b) < ρV1 (b), and are numerically very close at the distances of interest, b >∼ 1M−1π . These
findings represent model–independent features of the nucleon’s chiral periphery and call for a simple explanation.
In Ref. [8] the peripheral densities were calculated in a dispersive representation, where they are expressed as

integrals of the imaginary parts (or spectral functions) of the invariant form factors along the cut in timelike region at
t > 4M2

π. This formulation makes it possible to use the well–known chiral EFT results for the invariant form factors
and their spectral functions for the calculation of the transverse densities. While it allows one to derive all properties
of interest, it does not provide a mechanical picture of the chiral processes as pions “moving about” the nucleon in
space and time. Such a picture could be obtained in a time–ordered representation of chiral EFT, where one works
with the concepts of instantaneous configurations, time evolution, and the wave function of the system. Since the
transverse densities are defined at fixed light–front time x+ it is natural to adopt light–front quantization [9–11] and
follow the evolution of the relevant chiral processes in light–front time. This representation might explain our earlier
findings and provide new insight into the structure of the peripheral transverse densities.
Studying the space–time evolution of chiral dynamics in light–front quantization is interesting also for methodolog-

ical reasons, unrelated to the specific questions posed by transverse densities. The typical momentum of soft pions in
the nucleon rest frame is k = O(Mπ) [the velocity is v = O(1)], and the typical energy of configurations is E = O(Mπ).
Chiral dynamics thus represents an essentially relativistic system, in which pions “appear” and “disappear” through
quantum fluctuations and the number of particles is generally not conserved. In equal–time quantization the particle
number observed at an instant changes under Lorentz boost, so that the wave function is essentially frame–dependent
and no meaningful particle–based description of the theory can be constructed. In light–front quantization the particle
number is invariant under boosts, the wave function is frame–independent, and a natural particle–based description
is obtained [11]. It represents the only known formulation that permits a consistent first–quantized particle–based
description of chiral processes. Such a representation could significantly advance our understanding of chiral dynamics.
In this article we study the nucleon’s transverse charge and magnetization densities in the chiral periphery in a

first–quantized particle–based representation of chiral dynamics based on light–front quantization. The LO chiral
EFT results for the peripheral densities are expressed in time–ordered form, as the result of a transition of the bare
nucleon to a virtual πN state mediated by the chiral EFT interactions. The densities appear as overlap integrals of the
perturbative light–front wave functions describing the N → πN transition, which are calculable directly from the chiral
Lagrangian. The new representation offers new insight into the structure of peripheral densities and reveals several
interesting properties. First, it explains in simple terms the parametric order of the peripheral charge and modified
magnetization densities, ρV1 (b) and ρ̃V2 (b), in the chiral expansion. Second, it proves the inequality |ρ̃V2 (b)| < ρV1 (b),
which had been observed numerically in the earlier study using the invariant formulation [8]. It also explains why
the inequality is approximately saturated, ρ̃V2 (b) ≈ ρV1 (b), and shows that this is related to the essentially relativistic
character of chiral dynamics. Third, the wave function overlap representation exposes the role of the pion’s orbital
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angular momentum in the peripheral transverse densities. A particularly simple picture is obtained with transversely
polarized nucleon states, where only a single pion orbital with L = 1 accounts for both densities, and the relation
between ρ̃V2 (b) and ρV1 (b) is explained by the “left–right” asymmetry induced by the orbital motion of the pion in the
preferred longitudinal direction. We emphasize that the first–quantized representation developed in the present work
is equivalent to the invariant LO chiral EFT expressions used in earlier studies, and that the new insights derived
from it reflect general properties of the nucleon’s chiral periphery. A summary of our results has been presented in
Ref. [12].
In the present work we derive the light–front representation of peripheral chiral processes by rewriting the result

obtained in Lorentz–invariant chiral EFT. This approach has the advantage that it guarantees equivalence to the
well–tested invariant formulation and avoids the use of light–front specific techniques. The πN light–front wave
function of the nucleon in chiral EFT is defined in terms of the vertex function provided by the chiral Lagrangian,
and the wave function overlap representation of the current matrix element is obtained naturally from the reduction
of the Feynman integrals. The connection with the conventional light–front time–ordered Hamiltonian approach [11]
is explained in Appendix A. Some formal aspects of chiral EFT in the time–ordered formulation were studied in
Refs. [13–15]. Our derivation also confirms the presence of an instantaneous term (or zero mode contribution) in the
light–front representation of the chiral component of the transverse charge density [14, 16]. This term has a simple
physical interpretation as describing the contribution of large–mass (non–chiral) intermediate states in time–ordered
chiral processes and is shown to be numerically small.
The light–front representation of chiral dynamics described here can be applied also to the peripheral transverse

densities of other local operators, e.g. the matter and momentum densities associated with the energy–momentum
tensor, and to the peripheral GPDs probed in high–energy scattering processes. We derive the wave function overlap
representation of the light–front “plus” momentum density of peripheral pions in the nucleon, which determine the
chiral component of the nucleon’s parton densities at transverse distances b = O(M−1π ). This establishes a formal
connection between our chiral EFT results for the peripheral transverse densities and the nucleon’s quark/antiquark
content. The light–front momentum density of peripheral pions could in principle also be probed directly in peripheral
high–energy scattering processes.
The plan of this article is as follows. In Sec. III we review the transverse density representation of the current

matrix element, the peripheral chiral contributions in the invariant formulation [8], and derive the light–front overlap
representation of the current matrix element. In Sec. IV we investigate the properties of the peripheral πN light–front
wave function, including the choice of nucleon spin states and the coordinate representation. In Sec. V we express
the transverse densities ρV1 and ρ̃V2 as overlap integrals of the coordinate–space πN light–front wave functions and
study their properties. Using longitudinal nucleon spin states we discuss the parametric order of the densities, derive
the inequality between them, and evaluate them numerically. We also present the expressions for transverse nucleon
spin states and show that they correspond to a simple mechanical picture of a pion with L = 1 orbiting around the
nucleon in the rest frame. This picture concisely summarizes the dynamical content of the LO chiral EFT contribution
and represents the main result of this work. We also compute the instantaneous (contact term) contribution to the
densities and show that it is numerically small. In Sec. VI we connect the transverse densities with the peripheral
parton content of the nucleon in QCD. We derive the wave function overlap representation of the pion plus momentum
distribution (“pion GPD”) in chiral EFT, which determines the nucleon’s peripheral parton densities [17, 18], and
show that the transverse charge density is recovered by integrating the peripheral quark/antiquark densities over the
parton momentum fraction x.

II. TRANSVERSE DENSITIES

The transition matrix element of the electromagnetic current between nucleon states is parametrized in terms of
two invariant form factors (we follow the notation and conventions of Ref. [8])

〈N(p2, σ2)|Jµ(x)|N(p1, σ1)〉 = ū2

[
γµF1(t)−

σµν∆ν

2MN
F2(t)

]
u1 e

i∆x, (2.1)

where p1,2 are the nucleon 4–momenta, σ1,2 the spin quantum numbers, u1 ≡ u(p1, σ1) etc. the nucleon bispinors,
normalized to ū1u1 = ū2u2 = 2MN , and σµν ≡ 1

2 [γ
µ, γν]. The 4–momentum transfer is defined as

∆ ≡ p2 − p1, (2.2)

and the dependence of the matrix element on the space–time point x where the current is measured is dictated by
translational invariance. The Lorentz–invariant momentum transfer is

t ≡ ∆2 = (p2 − p1)
2, (2.3)
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FIG. 1. Interpretation of the transverse densities of the electromagnetic current in a nucleon state with spin quantized in
the transverse y–direction, Eq. (2.6). ρ1(b) describes the spin–independent (or left–right symmetric) part of the plus current
density; cos φ ρ̃2(b) describes the spin–dependent (or left–right asymmetric) part.

with t < 0 in the physical region for electromagnetic scattering. The Dirac and Pauli form factors, F1 and F2, are
invariant functions of t and can be discussed independently of any reference frame.
In the context of the light–front description of nucleon structure one naturally considers the form factors in a frame

where the momentum transfer vector lies in the transverse (x–y) plane,

∆µ ≡ (∆0,∆x,∆y,∆z) = (0,∆T , 0), ∆T = (∆x,∆y), t = −∆
2
T , (2.4)

and represents them as Fourier transforms of certain spatial densities [3, 4]

F1,2(t = −∆
2
T ) =

∫
d2b ei∆T ·b ρ1,2(b), (2.5)

where b ≡ (bx, by) is a transverse coordinate variable and b ≡ |b|. The formal properties of the transverse densities
ρ1,2(b) and their physical interpretation have been discussed extensively in the literature [2, 4]. and are summarized
in Ref. [8]. They describe the transverse spatial distribution of the light–front plus component of the current, J+ ≡
J0+Jz, in the nucleon at fixed light–front time x+. Specifically, in a state where the nucleon is localized in transverse
space at the origin, and polarized in the y–direction, the matrix element of the current J+ at light–front time x+ = 0
and light–front coordinates x− = 0 and xT = b is given by

〈J+(b)〉localized = (...) [ρ1(b) + (2Sy) cosφ ρ̃2(b)] , (2.6)

ρ̃2(b) ≡
∂

∂b

[
ρ2(b)

2MN

]
, (2.7)

where (...) hides a trivial factor reflecting the normalization of states (see Ref. [8] for details); cosφ ≡ bx/b is the
cosine of the azimuthal angle, and Sy = ±1/2 the spin projection in the y–direction in the nucleon rest frame (see
Fig. 1). The function ρ1(b) describes the spin–independent part of the current; the function cosφ ρ̃2(b) describes the
spin–dependent part of the current in a transversely polarized nucleon.
The spin–dependent part of the current Eq. (2.6) changes sign between negative and positive values of bx, or “left”

and “right” positions when looking at the nucleon along the negative z–direction (down from z = +∞; see Fig. 1).
The density ρ̃2(b) can thus be interpreted as the left–right asymmetry of the J+ current in a nucleon polarized in the
positive y direction. This interpretation has a natural connection with composite models of nucleon structure, where
polarization in the y–direction generally induces a convection motion of the constituents around the y–axis. As a
result, the observer sees the charged constituents on the left side as “blue–shifted” (larger plus momentum), and those
on the right ride as “red–shifted” (smaller plus momentum), compared to the unpolarized case [5]. We shall refer
to this interpretation in our discussion of the peripheral chiral component in Sec. VD. We note that Eq. (2.6) and
its interpretation can be generalized to the case of arbitrary nucleon polarization states in the rest frame, including
non–diagonal transitions; see Ref. [8] for details.
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The electromagnetic current matrix element and the transverse densities have two isospin components. In the
following we are concerned with the isovector component

〈N |J |N〉V ≡ 1
2 [〈p|J |p〉 − 〈n|J |n〉] , ρV1,2 ≡ 1

2 (ρ
p
1,2 − ρn1,2). (2.8)

The isoscalar component is defined by the same expression with the + sign.

III. CHIRAL DYNAMICS IN CURRENT MATRIX ELEMENT

A. Peripheral chiral processes

At distances b = O(M−1π ) the transverse densities are governed by universal chiral dynamics and can be calculated
using methods of chiral EFT [8, 16]. The isovector charge and magnetization densities in this region arise from chiral
processes in which the current couples to the nucleon through exchange of a two–pion system in the t–channel. At
LO these are the processes described by the Feynman diagrams of Fig. 2a, where the vertices denote the pion–nucleon
couplings of the LO relativistic chiral Lagrangian [19]. They produce densities of the form

ρV1,2(b) ∼ P1,2(Mπ,MN ; b) exp(−2Mπb), (3.1)

where the the exponential decay is determined by the minimal mass of the exchanged system, 2Mπ; the pre-exponential
factors P1,2 is determined by the coupling of the exchanged system to the nucleon and exhibits a rich structure due
to its dependence on the two scales, Mπ and MN . Diagrams in which the current couples directly to the nucleon, or
to a pion–nucleon vertex, produce contributions to the densities with range O(M−1N ), or terms ∝ δ(2)(b), and do not
need to be considered in the calculation of the densities at b = O(M−1π ).1 In Ref. [8] the densities at b = O(M−1π )
resulting from the diagrams of Fig. 2a were computed in a dispersive representation, where the densities are expressed
as integrals of the imaginary parts of the form factors on the cut at t > 4M2

π, and the integral extends over the
parametric region t− 4M2

π = O(M2
π).

Now we want to represent the chiral dynamics generating the peripheral densities as actual processes evolving
in light–front time x+, and to express the densities in terms of the light–front wave functions of the chiral πN
system. This could be done by solving the dynamical problem of chiral EFT directly using light–front time–ordered
perturbation theory [11]. A more convenient approach is to take the known chiral EFT result in the relativistically
invariant formulation and rewrite it such that it corresponds to the overlap of light–front wave functions. This
approach maintains the connection with the invariant formulation and naturally generates also the instantaneous
terms (zero modes) that require special considerations in the time–ordered approach. In the LO approximation the
invariant chiral EFT result for the isovector nucleon current matrix element Eq. (2.1) at the position x = 0 is [20–23]
(the specific form here was derived in Ref. [8])

〈N2| Jµ(0) |N1〉V =

∫
d4k

(2π)4
i kµ

(k21 −M2
π + i0)(k22 −M2

π + i0)

[
g2A
F 2
π

ū2k̂2γ5(l̂ +MN)k̂1γ5u1

l2 −M2
N + i0

+
1

F 2
π

ū2k̂u1

]

+ (diagrams without ππ cut), (3.2)

where

k1,2 = k ∓∆/2 (3.3)

are the 4–momenta of the pions coupling to the vector current, and the average 4–momentum k was chosen as
integration variable. The first term in the brackets results from the triangle diagram in Fig. 2a and is proportional
to the squared πNN coupling g2A/F

2
π ; it involves the intermediate nucleon propagator with 4–momentum

l ≡ p1 − k1 = p2 − k2 (3.4)

(we use the notation k̂1,2 ≡ kµ1,2γµ, l̂ ≡ lµγµ). The second term results from the contact diagram in Fig. 2a and is

proportional to the ππNN contact coupling in the chiral Lagrangian, 1/F 2
π . As explained above, Eq. (3.2) shows only

the contribution from the ππ cut diagrams that contribute to te peripheral density.

1 The diagrams in which the current couples directly to the nucleon or to a pion–nucleon vertex renormalize the charge in the center of
the nucleon, to compensate for the peripheral charge density produced by the two–pion exchange diagrams and ensure overall charge
conservation.
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FIG. 2. (a) Feynman diagrams of LO chiral EFT processes contributing to the the two–pion cut of the isovector nucleon form
factors and the peripheral transverse densities, Eq. (3.2). The squares denote the vertices of the relativistic chiral Lagrangian
(axial vector πNN coupling, ππNN contact coupling). (b) Equivalent representation Eqs. (3.7)–(3.9). The circles denote
the pseudoscalar πNN coupling and the effective contact coupling ∝ (1 − g2A). (c) Light–front representation of the triangle
diagram. The original nucleon makes a transition to a pion–nucleon intermediate state that couples to the current. The plus
and transverse momenta are indicated.

The first term in Eq. (3.2) contains a piece in which the pole of the nucleon propagator cancels, and which is of
the same form as the second term. For deriving a wave function overlap representation it is important to extract
this piece and combine it with the second term. Expressing the pion momenta as k1,2 = p1,2 − l, cf. Eq. (3.4), using
the anticommutation relations between the gamma matrices, and the Dirac equation for the external nucleon spinors,
p̂1u1 = MNu1 and ū2p̂2 = ū2MN , we rewrite the bilinear form in the numerator of the first term in Eq. (3.2) as

ū2k̂2γ5(l̂ +MN)k̂1γ5u1 = −4M2
N ū2γ5(l̂ +MN)γ5u1 − (l2 −M2

N )[ū2k̂u1 + (terms even in k)]. (3.5)

In the second term the factor l2 −M2
N cancels the pole of the nucleon propagator. Moreover, the terms even under

k → −k in the parentheses integrate to zero because after canceling the nucleon pole the remaining integrand in
Eq. (3.2) is odd under k → −k. Altogether, we can thus replace the terms in the bracket in Eq. (3.2) by

[
. . .

]
=

[
−4M2

Ng2A
F 2
π

ū2γ5(l̂ +MN)γ5u1

l2 −M2
N + i0

+
1− g2A
F 2
π

ū2k̂u1

]
. (3.6)

The peripheral chiral EFT contribution to the current matrix element can therefore be represented as the sum of two
terms (see Fig. 2b)

〈N2| Jµ(0) |N1〉V = 〈. . .〉Vinterm + 〈. . .〉Vcontact, (3.7)

〈N2| Jµ(0) |N1〉Vinterm ≡ 4M2
Ng2A
F 2
π

∫
d4k

(2π)4
(−i) kµ ū2γ5(l̂ +MN)γ5u1

(k21 −M2
π + i0)(k22 −M2

π + i0)(l2 −M2
N + i0)

, (3.8)

〈N2| Jµ(0) |N1〉Vcontact ≡
1− g2A
F 2
π

∫
d4k

(2π)4
ikµ ū2k̂u1

(k21 −M2
π + i0)(k22 −M2

π + i0)
. (3.9)

The first term, Eq. (3.8), contains the intermediate nucleon propagator and is identical in form to the pion loop graph
with the usual pseudoscalar πNN vertex with effective coupling gπNN = MNgA/Fπ. This will allow us to derive a



8

wave function overlap representation for this term with the pseudoscalar vertex, which is free of the ambiguities of
the momentum–dependent axial vector coupling. The second term, Eq. (3.9), represents an effective contact term,
combining the explicit ππNN 4–point vertex in the chiral Lagrangian with the “non-propagating” part of the triangle
diagram. The appearance of the combination 1−g2A indicates that this term expresses internal structure of the nucleon
(for a pointlike Dirac fermion gA = 1) and that its contribution is numerically small; cf. the discussion in Sec. VF.
The two terms in the current matrix element thus have distinct physical meaning and will be discussed separately in
the following. We emphasize that the decomposition Eqs. (3.7)–(3.9) is obtained by identical rewriting of the original
Feynman integrals and does not involve additional approximations.

B. Overlap representation

The intermediate–nucleon term of the current matrix element can be represented as an overlap integral of light–front
wave functions. We derive this representation through a suitable three–dimensional reduction of the Feynman integral
Eq. (3.8). To this end we go to a class of frames where the momentum transfer has only transverse components, cf.
Eq. (2.4), such that (see Fig. 2c)

p+1 = p+2 ≡ p+, p2T − p1T = ∆T , p−1 =
M2

N + p2
1T

p+
, p−2 =

M2
N + p2

2T

p+
. (3.10)

The plus component p+ > 0 is a free parameter, whose choice selects a particular frame in a class of frames related
by longitudinal boosts. Likewise, the overall transverse momentum remains unspecified; only the difference p2T −p1T

is required to be equal to the momentum transfer ∆T . We introduce light–front components of the loop momentum
k± ≡ k0 ± kz and kT ≡ (kx, ky),

∫
d4k =

1

2

∫
dk+

∫
dk−

∫
d2kT , (3.11)

and express k+ in terms of the boost–invariant pion momentum fraction y,

k+ = yp+. (3.12)

The integrand of Eq. (3.8) has simple poles in k−, at the values determined by the mass shell conditions for the pion
and nucleon 4–momenta. The two poles of the pion propagators and the one of the nucleon propagator lie on opposite
sides of the real axis if 0 < y < 1. The integral over k− can thus be taken by closing the contour around the nucleon
pole. At the nucleon pole the pion virtualities take the values

k21 −M2
π = − (kT + ȳp1T )

2

ȳ
− y2M2

N

ȳ
−M2

π < 0, (3.13)

k22 −M2
π = − (kT + ȳp2T )

2

ȳ
− y2M2

N

ȳ
−M2

π < 0, (3.14)

where

ȳ ≡ 1− y. (3.15)

These virtualities can be related to the invariant mass differences between states in the light–front time–ordered
formulation, in which the external nucleon makes a transition to an intermediate πN state and back (see Fig. 2c).
The invariant mass difference for the transition from the initial nucleon state with plus momentum p+ and transverse
momentum p1T to a pion with yp+ and kT + p1T and a nucleon with ȳp+ and −kT is given by

∆M2(y,kT ,p1T ) ≡
(kT + p1T )

2 +M2
π

y
+

k2
T +M2

N

ȳ
−M2

N − p2
1T (3.16)

=
(kT + ȳp1T )

2 +M2
π

y
+

(kT + ȳp1T )
2 +M2

N

ȳ
−M2

N . (3.17)

The invariant mass difference for the transition from the final nucleon state with p+ and p2T to a pion with yp+ and
kT + p2T and a nucleon with ȳp+ and −kT is given by the same expressions with p1T → p2T . It is easy to see that

− k21 −M2
π

y
= ∆M2(y,kT ,p1T ), (3.18)

−k22 −M2
π

y
= ∆M2(y,kT ,p2T ). (3.19)
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Equations (3.18) and (3.19) allow us to interpret the pion propagators in the Feynman integral as invariant mass
denominators. [The origin of the expression Eq. (3.16) and its connection with the “energy denominator” in light–
front time–ordered perturbation theory are explained in Appendix A; this information is not needed for the calculations
performed here but important for general understanding.]
Further, at the pole of the nucleon propagator the numerator of Eq. (3.8) can be factorized. Since at the pole the

4–momentum l is on the mass shell, the matrix l̂ +MN coincides with the projector on physical nucleon spin states
and can be represented as

(MN + l̂)on−shell =
∑

σ=±1/2

u(l, σ) ū(l, σ), (3.20)

where u(l, σ) is a set of nucleon 4–spinors; the choice of polarization states will be specified below. We thus can write
the bilinear form in the numerator as [reverting to the full notation u1 ≡ u(p1, σ1) and u2 ≡ u(p2, σ2)]

− ū2γ5(l̂ +MN )γ5u1|on−shell =
∑

σ=±1/2

u(p2, σ2)iγ5ū(l, σ) ū(l, σ)iγ5u(p1, σ1). (3.21)

Here it is understood that the on-shell 4–momentum l is expressed in terms of the remaining integration variables y
and kT ,

l+ = ȳp+, l− =
|kT |2 +M2

N

ȳp+
, lT = −kT . (3.22)

The bilinear forms appearing on the right–hand side of Eq. (3.21) can be related to the vertex functions for anN → πN
transition with specified on-shell nucleon momenta and spin and its complex conjugate. Defining the pseudoscalar
vertex function for the transition from the initial nucleon state with momentum p+ and p1T and spin σ1 to a nucleon
with momentum ȳp+ and −kT and spin σ as

Γ(y,kT ,p1T ;σ, σ1) ≡ gAMN

Fπ
ū(l, σ)iγ5u(p1, σ1), (3.23)

the vertex for the transition to the final state is given by

gAMN

Fπ
u(p2, σ2)iγ5ū(l, σ) =

gAMN

Fπ
[ū(l, σ)iγ5u(p2, σ2)]

∗ = Γ∗(y,kT ,p2T ;σ, σ2), (3.24)

and multiplying Eq. (3.21) by the squared coupling constant we obtain

g2AM
2
N

F 2
π

ū2γ5(l̂ +MN )γ5u1|on−shell =
∑

σ=±1/2

Γ∗(y,kT ,p2T ;σ, σ2)Γ(y,kT ,p1T ;σ, σ1). (3.25)

We now define the light–front wave function of the initial state in the process of Fig. 2c as

Ψ(y,kT ,p1T ;σ, σ1) ≡
Γ(y,kT ,p1T ;σ, σ1)

∆M2(y,kT ,p1T )
; (3.26)

the wave function for the final state is given by the same expression with p1T → p2T and σ1 → σ2 (i.e., it is the same
function but evaluated at a different argument). It is then straightforward to compute the integral over k−, and the
intermediate–nucleon part of the current matrix element Eq. (3.8) becomes

〈N2| J+(0) |N1〉Vinterm ≡ 〈N(p+,p2T , σ2)| J+(0) |N(p+,p1T , σ1)〉Vinterm

=
(2p+)

2π

∫
dy

yȳ

∫
d2kT
(2π)2

∑

σ

Ψ∗(y,kT ,p2T ;σ, σ2) Ψ(y,kT ,p1T ;σ, σ1). (3.27)

The original Feynman integral is represented as an overlap integral of the light–front wave functions describing the
transition from the initial nucleon state N1 to a πN intermediate state and back to the final nucleon state N2.
Equation (3.27) will be our starting point for the analysis of the transverse densities.
The wave function Eq. (3.26) is defined in terms of the vertex function obtained from the chiral Lagrangian

and the invariant mass difference of the N → πN transition. Appendix A shows that this object is identical to the
traditional light–front wave function, defined as the transition matrix element between the initial nucleon state and the
intermediate pion–nucleon state in light–front time–ordered perturbation theory. Regarding isospin the wave function
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Eq. (3.26) is normalized such that it describes the transition p → π0 + p, for which the coupling is gπ0pp ≡ gπNN =
gAMN/Fπ. For the transitions p → π++n and n → π−+p, which actually contribute to the isovector electromagnetic

current matrix element, the couplings follow from isospin invariance and are gπ+np = gπ−pn =
√
2 gπNN . The isospin

factor
√
2×

√
2 = 2 is included in the prefactor of Eq. (3.27).

As explained above, we are interested in the current matrix element only in the (unphysical) region of momentum
transfers in the vicinity of the two–pion threshold in the t–channel, t−4M2

π = O(M2
π), and consider the wave function

representation Eq. (3.27) only in this parametric domain. The restriction to this domain will appear naturally when
going over to the coordinate representation and considering the region of transverse distances b = O(M−1π ).

IV. CHIRAL LIGHT–FRONT WAVE FUNCTION

A. Nucleon spin states

To proceed with the evaluation of the overlap formula Eq. (3.27) we need to specify the nucleon spin states and
obtain explicit expressions for the vertex functions Eq. (3.23) and (3.24). Equation (3.27) can be evaluated with any
choice of nucleon spin states (external and internal); the resulting expressions and their interpretation depend on the
choice, of course. It is natural to choose the nucleon spin states as light–front helicity states [11]. For a nucleon state
with light–front momentum p+ and pT the light–front helicity spinors are obtained by subjecting the Dirac spinors
in the rest frame [p+(RF) = MN , pT (RF) = 0] first to a longitudinal boost from MN to p+, and then to a transverse
boost from 0 to pT . The spinors thus defined are invariant under longitudinal boosts and transform in a simple
manner under transverse boosts. An explicit representation of the light–front helicity spinors is [10, 11]

u(p, σ) ≡ u(p+,pT , σ) =
1√
2p+

[
p+γ− + (MN − γT · pT )γ

+
]
(

χ(σ)

0

)
, (4.1)

where p denotes the on-shell 4–momentum vector (p2 = M2
N), σ = ±1/2, and χ(σ) are rest frame 2–spinors for

polarization in the positive and negative z–direction,

χ(σ = 1/2) =

(
1
0

)
, χ(σ = −1/2) =

(
0
1

)
. (4.2)

The spinors are normalized such that ūu = 2MN and satisfy the completeness relation Eq. (3.20). Using these spinors
to evaluate the pseudoscalar vertex Eq. (3.23) one gets2

Γ(y,kT ,p1T ;σ, σ1) =
2igAMN

Fπ
√
ȳ

[yMN Sz(σ, σ1) + (kT + ȳp1T ) · ST (σ, σ1)] , (4.3)

and similarly for the vertex with p2T and σ2. Here Sz and ST ≡ (Sx, Sy) are the components of the 3–vector
characterizing the spin transition matrix element in the rest frame

Si(σ, σ1) ≡ χ†(σ)(12σ
i)χ(σ1) (i = x, y, z), (4.4)

where σi are the Pauli matrices. Use of this compound variable results in a compact representation of the light–front
spin structure in close correspondence to non-relativistic quantum mechanics.
The vertex Eq. (4.3) contains two structures with different orbital angular momentum (see Fig. 3). The first term

on the right–hand side is diagonal in the light–front helicity, because

Sz(σ, σ1) = σ δ(σ, σ1) (4.5)

when the rest frame spinors are eigenspinors of σz , cf. Eq. (4.2). It describes a transition N → πN in which the
nucleon light–front helicity is preserved and the πN state has orbital angular momentum projection Lz = 0. The
second term is off-diagonal in light–front helicity, because σx and σy have only off-diagonal elements. It corresponds
to a transition in which the nucleon helicity is flipped and the πN system has orbital angular momentum projection
Lz = 1. This is immediately obvious from the fact that this term is proportional to the transverse momentum
kT + ȳp1T , which transforms as 2–dimensional vector under rotations around the z–axis.

2 The sign of the three–dimensional expressions for the vertex function depends on the convention for the matrix γ5. We use the
Bjorken–Drell convention γ5 = iγ0γ1γ2γ3.
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FIG. 3. (a) Spin structure of the N → πN light–front wave function in chiral EFT. The light–front helicity corresponds to
the z–projection of the nucleon spin in the rest frame. The helicity–conserving component has orbital angular momentum
projection Lz = 0, the helicity–flip component has Lz = 1. (b) Wave function overlap representation of the transverse densities
ρV1 (b) and ρ̃V2 (b) in the light–front helicity representation, Eq. (5.4).

B. Transverse rest frame

Equation (3.27) represents the current matrix element as an overlap integral of the light–front wave functions of the
initial and final nucleon states with overall transverse momenta p1T and p2T . For further analysis is will be convenient
to express these wave functions in terms of the wave function at zero overall transverse momentum (transverse rest
frame), such that the overlap integral becomes a quadratic form in a single function. This can be accomplished using
the transformation properties under transverse boosts. As can be seen from Eqs. (3.26), (3.17) and (4.3), the wave
function at overall transverse momentum p1T is related to that at zero transverse momentum by

Ψ(y,kT ,p1T ;σ, σ1) = Ψ(y,kT + ȳp1T , 0;σ, σ1) ≡ Ψ(y,kT + ȳp1T ;σ, σ1). (4.6)

The expression for the rest frame wave function can be obtained by setting p1T = 0 in Eqs. (3.17) and (4.3). For
reference we quote the explicit formulas:

Ψ(y, k̃T ;σ, σ1) ≡
Γ(y, k̃T ;σ, σ1)

∆M2(y, k̃T )
, (4.7)

∆M2(y, k̃T ) ≡
k̃2
T +M2

π

y
+

k̃2
T +M2

N

ȳ
−M2

N , (4.8)

Γ(y, k̃T ;σ, σ1) =
2igAMN

Fπ
√
ȳ

[
yMN Sz(σ, σ1) + k̃T · ST (σ, σ1)

]
, (4.9)

where we use k̃T to denote the transverse momentum argument. Similar formulas apply to the outgoing wave function
with transverse momentum p2T and spin σ2. The current matrix element Eq. (3.27) can therefore equivalently be
expressed in terms of the rest frame wave function,

〈N2| J+(0) |N1〉Vinterm =
(2p+)

2π

∫
dy

yȳ

∫
d2kT
(2π)2

∑

σ

Ψ∗(y,kT + ȳp2T ;σ, σ2) Ψ(y,kT + ȳp1T ;σ, σ1). (4.10)

We shall use this expression in our theoretical studies in the following.

C. Coordinate representation

It is instructive to study the rest frame light–front wave function in the transverse coordinate representation.
The coordinate–space wave function allows us to identify the parametric regime of peripheral distances where chiral
dynamics is valid and to calculate the transverse densities directly in coordinate space. We define the coordinate–space
wave function as the transverse Fourier transform of the momentum–space wave function at fixed plus momentum
fraction y,

Φ(y, rT , σ, σ1) ≡
∫

d2k̃T
(2π)2

eirT ·k̃T Ψ(y, k̃T ;σ, σ1). (4.11)
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The vector rT is the difference in the transverse positions of the π and N (relative transverse coordinate), such that
the wave function describes the physical transverse size distribution of the πN system. Because of the spin structure
of the vertex Eq. (4.7) the coordinate–space wave function can be expressed in terms of two transverse radial wave
functions (i.e., scalars with respect to rotations around the z–axis),

Φ(y, rT , σ, σ1) = −2iSz(σ, σ1) U0(y, rT ) +
2 rT · ST (σ, σ1)

rT
U1(y, rT ), (4.12)

where rT ≡ |rT | is the modulus of the transverse coordinate. Following Sec. IVA these are the components with
orbital angular momentum projection Lz = 0 and 1. The Fourier integral is easily calculated by writing the invariant
mass in the denominator of the momentum–space wave function, Eq. (4.8), in the form

∆M2 =
k̃2
T +M2

T

yȳ
, (4.13)

MT ≡ MT (y) ≡
√
ȳM2

π + y2M2
N , (4.14)

which is the y–dependent effective mass governing the transverse momentum dependence. We obtain

U0(y, rT )

U1(y, rT )

}
=

gAMN y
√
ȳ

2πFπ

{
yMN K0(MT rT )

MT K1(MT rT )

}
, (4.15)

where K0 and K1 are the modified Bessel functions. At large values of the argument they behave as

K0,1(MT rT ) ∼
√

π

2

e−MT rT

√
MT rT

(MT rT ≫ 1). (4.16)

The coordinate–space wave functions fall off exponentially at large transverse distances rT , with a width that is given
by the transverse mass Eq. (4.14) and depends on the pion momentum fraction y. This behavior can directly be
traced to the singularity of the momentum–space wave function at zero invariant mass, ∆M2 = 0, which occurs at

complex values of the transverse momentum, k̃2
T = −M2

T , cf. Eq. (4.13).
The parametric domain in which we are interested in the coordinate–space wave function is

y = O(Mπ/MN), rT = O(M−1π ). (4.17)

In momentum space this corresponds to the region where the pion’s light–front momentum components in the nucleon
rest frame are

k̃+ = yMN = O(Mπ), |k̃T | = O(Mπ), (4.18)

and also k̃− = (|k̃T |2 + M2
π)/k̃

+ = O(Mπ), such that all components of the pion’s 4–momentum are O(Mπ) (“soft
pion”). In this region chiral dynamics is applicable, and the approximations made in evaluating the peripheral
contributions to the current matrix element are self-consistent. Equation (4.14) shows that for momentum fractions
y = O(Mπ/MN)

MT (y) = O(Mπ) [y = O(Mπ/MN )], (4.19)

so that the exponential range of the coordinate–space wave function is indeed of the order O(M−1π ), cf. Eq. (4.16).
We note that for y = O(1) the effective mass Eq. (4.14) is MT = O(MN ), so that the range of the wave function

Eq. (4.15) is O(M−1N ). While the wave is still formally defined by Eq. (4.15), it does not correspond to a chiral
long–distance contribution in this case. This region does not contribute to the peripheral transverse densities, as the
wave functions for y = O(1) are exponentially small if the distance is kept at values rT = O(M−1π ). In the calculations
in Sec. V we can thus formally integrate up to y = 1 without violating the parametric restriction Eq. (4.17).
It is interesting to compare the parametric order of the light–front helicity–nonflip (Lz = 0) and flip (Lz = 1)

components of the coordinate–space wave function inMπ/MN . Inspection of Eq. (4.15) shows that for y = O(Mπ/MN )
and rT = O(Mπ), Eq. (4.17),

U0/U1 = O(1). (4.20)
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FIG. 4. Peripheral chiral light–front wave function in coordinate representation. (a) Radial wave functions U0 and U1, Eq. (4.15)
as functions of the pion momentum fraction y, at fixed transverse separation rT = 1.0M−1

π . (b) Radial wave functions U1 as
function of y at several transverse separations, rT = (1.0, 1.5, 2.0)M−1

π .

The helicity–nonflip and flip components are thus of the same order in the region of interest.3 Regarding the numerical
values we note that

U0(y, rT ) < U1(y, rT ) (0 < y < 1, rT > 0), (4.21)

because MT (y) > yMN , cf. Eq. (4.14), and K1(z) > K0(z) for all z > 0. The radial wave functions thus obey a
numerical inequality at all values of the argument.
Figure 4 shows a plot of the peripheral radial wave functions U0,1(y, rT ) as functions of the pion momentum fraction

y. Plot (a) compares U0 and U1 at a fixed transverse separation. One sees that the Lz = 0 and Lz = 1 components
become equal at y → 1 (i.e., at values several times Mπ/MN), but show different power-like behavior at y → 0, as
is already apparent from the analytic formulas Eq. (4.15). One also sees that the inequality Eq. (4.21) is satisfied.
Plot (b) shows the Lz = 1 wave function U1 at several transverse separations. One sees that values of y ∼ 1 are
strongly suppressed with increasing transverse separation, and that the maximum of the wave function in y shifts
to smaller values, in accordance with general expectations. At rT = several times M−1π the wave function – and
in particular the probabilities – are strongly concentrated at pion momentum fractions y = O(Mπ/MN), and the
parametric approximations are borne out by the numerical results.

V. PERIPHERAL TRANSVERSE DENSITIES

A. Overlap representation

We now want to express the peripheral transverse densities in the nucleon in terms of the chiral light–front wave
functions. For this we first need to obtain explicit expressions for the invariant form factors in terms of the spin
components of the current matrix element Eq.(2.1). Taking the nucleon spin states in Eq.(2.1) as light–front helicity
states, cf. Eq. (4.1), and choosing a frame where the momentum transfer has only transverse components, cf. Eq. (2.4),
the matrix element of the plus component of the current has the form

〈N2| J+(0) |N1〉 ≡ 〈N(p+,p2T , σ2)| J+(0) |N(p+,p1T , σ1)〉

= (2p+)

[
δ(σ2, σ1) F1(−∆

2
T ) + i (∆T × ez) · ST (σ2, σ1)

F2(−∆
2
T )

MN

]
. (5.1)

3 At exceptionally small pion momentum fractions y ≪ Mπ/MN that the helicity–nonflip component of the wave function vanishes faster
than the helicity–flip one, U0/U1 → 0. This scenario is realized in the “molecular” region described in Ref. [8].
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where ST is defined as in Eq. (4.4) in terms of the rest–frame 2–spinors describing the initial and final nucleon, and
ez is the unit vector in z–direction. The form factors F1 and F2 are then obtained from the diagonal and off-diagonal
matrix elements as4

F1(−∆
2
T )

F2(−∆
2
T )





=

1

2p+

∑

σ1σ2

〈N2| J+(0) |N1〉






1

2
δ(σ1, σ2)

2MN

∆2
T

(−i)(∆T × ez) · ST (σ1, σ2)





. (5.2)

For the intermediate–nucleon part of the current matrix element we now substitute the overlap representation in
terms of the light–front wave functions in the transverse rest frame, Eq. (4.10). Using the coordinate representation
the overlap integral becomes diagonal in the transverse relative coordinate rT and takes the form

〈N2| J+(0) |N1〉Vinterm =
(2p+)

2π

∫
dy

yȳ

∫
d2rT e−iȳrT∆T

∑

σ

Φ∗(y, rT ;σ, σ2) Φ(y, rT ;σ, σ1). (5.3)

Notice that the momentum transfer ∆T is Fourier–conjugate not to rT itself but to ȳrT , which is a general feature of
light–front kinematics. It is now straightforward to evaluate the spin sums in Eq. (5.2) and obtain the invariant form
factors in terms of the Lz = 0 and 1 components of the coordinate–space wave function Eq. (4.12). We immediately
quote the results for the isovector transverse densities ρV1 and ρ̃V2 , Eq. (2.7):

ρV1 (b)

ρ̃V2 (b)



 =

1

2π

∫
dy

yȳ3





[U0(y, b/ȳ)]
2 + [U1(y, b/ȳ)]

2

−2U0(y, b/ȳ) U1(y, b/ȳ)



 . (5.4)

The form of Eq. (5.4) is explained by the spin structure of the transitions (see Fig. 3b). The light–front wave
function has a nucleon helicity–conserving (U0) and a helicity–flipping component (U1). The current matrix element
with the same nucleon helicity in the initial and final state requires the combination of two helicity–conserving or two
helicity–flipping wave functions (U2

0 or U2
1 ), whereas the matrix element with different nucleon helicities in the initial

and final state requires combination of one helicity-conserving and one helicity-flipping wave function (U0U1).
The transverse charge density ρV1 (b) also receives a contribution from the effective contact term in the current

matrix element, Eq. (3.9). This contribution cannot be represented as an overlap of πN light–front wave functions
and has to be added to Eq. (5.4) as a separate term. The exact form of this term and its interpretation are discussed
in Sec. VF. The numerical contribution of the contact term turns out to be very small at distances b = few M−1π , so
that the entire ρV1 is to good approximation given by the wave function overlap Eq. (5.4). We may therefore compare
the properties of the densities ρV1 and ρ̃V2 on the basis of Eq. (5.4) (the contact term is absent in ρ̃V2 ).

B. Chiral order and inequality

The overlap representation Eq. (5.4) reveals several interesting properties of the chiral component of the peripheral
transverse densities. First, because the light–front helicity–conserving and –flipping wave functions appear in the
same order of the chiral expansion (their coefficients involve the same power of Mπ/MN), cf. Eq.(4.20), we conclude
that the peripheral densities ρV1 and ρ̃V2 are of the same order in the chiral expansion,

ρ̃V2 (b)/ρ
V
1 (b) = O(1) [b = O(M−1π )]. (5.5)

While this circumstance was noted earlier in the dispersive approach [8], where it is encoded in the chiral order of
the spectral functions of the form factors near threshold, the overlap representation exhibits it more directly and
provides a more immediate physical explanation. Notice that the original transverse magnetization density ρV2 is
parametrically larger than ρ̃V2 by a power of MN/Mπ, because the spatial derivative in Eq. (2.7) “counts” as O(Mπ)
in the region b = O(M−1π ), and thus

ρV2 (b)/ρ
V
1 (b) = O(MN/Mπ). (5.6)

The parametric equality of ρV1 and ρ̃V2 , Eq. (5.5), allows for non-trivial dynamical relations between the two densities
and provides additional motivation for working with ρ̃V2 rather than ρV2 .

4 The identification of the different spin components can be done conveniently by writing both sides of Eq. (5.1) as bilinear forms in the
nucleon two–spinors, stripping off the two-spinors, and treating the equation as a 2× 2 matrix equation. The different components can
then be projected out by taking appropriate traces of both sides.
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Second, we observe an inequality between the peripheral transverse densities,

|ρ̃V2 (b)| ≤ |ρV1 (b)|. (5.7)

It follows from the inequality obeyed by the quadratic forms in the integrands of the y–integral in Eq. (5.4), U2
0 +U2

1 ≥
2U0U1. While Eq. (5.7) was observed accidentally in the numerical calculations of Ref. [8], its mathematical proof
and physical explanation become possible with the wave function overlap representation provided here. Recalling
that ρV1 (b) and ρ̃V2 (b) represent the spin–independent and –dependent components of the “plus” current at transverse
position b in a nucleon localized at the origin and polarized along the y–direction, cf. Eq. (2.6) and Fig. 1, we see that
the inequality Eq. (5.7) implies the positivity condition

〈J+(b)〉localized ≥ |ρV1 (b)| − |ρ̃V2 (b)| ≥ 0. (5.8)

This property appears natural when one realizes that the plus current at b = O(M−1π ) results from peripheral pions,
and that the current carried by an on–shell pion is proportional to its 4–momentum, 〈π+(k)| J+ |π+(k)〉 = 2k+ > 0.
Such a “quantum–mechanical” picture of the peripheral densities will be explored further in Sec. VE.

C. Numerical evaluation

We now want to use the overlap representation Eq. (5.4) to study the numerical behavior of the transverse densities.
Figure 5 shows the integrands of ρ1(b) and −ρ̃2(b) as functions of the pion momentum fraction y at a fixed transverse
distance b = 1.0M−1π . One sees that the integrands are concentrated around values y ∼ Mπ/MN . Contributions from
y > 0.5 are very strongly suppressed because the wave function is evaluated at separations rT = b/(1 − y) that are
substantially larger than b, and the wave function decays exponentially at large rT with a range that itself decreases
with increasing y. One also sees that the integrands for the densities ρV1 and −ρ̃V2 are close to each other at large values
of y and differ only at y → 0, such that they are numerically close throughout the dominant region of integration.
This follows from the similarity of the wave functions U0 and U1, cf. Fig. 4a, and implies that ρV1 (b) ≈ −ρ̃V2 (b) at
distances b = few timesM−1π .
The transverse densities obtained by performing the y–integral in Eq. (5.4) are shown in Fig. 6. One sees that

ρ̃V2 < 0, and that the absolute value of the spin–dependent density is smaller than the spin–independent one, |ρ̃V2 | < ρV1 ,
as required by Eq. (5.7). The inequality is almost saturated at distances b ∼ 1M−1π , as suggested by the integrands
shown in Figure 5, but at larger distances |ρ̃V2 | becomes significantly smaller than ρV1 . We note that the numerical
densities obtained from the wave function overlap representation Eq. (5.4) exactly reproduce those calculated in the
dispersive approach of Ref. [8], which provides a test of the calculational procedures.5

5 In Fig.8 of Ref. [8] the function represented by the dashed line is −ρ̃2(b), not ρ̃2(b) (the plot is labeled incorrectly). The dispersive
calculation gives ρ̃2(b) < 0, as does the wave function representation of the present work.
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D. Transverse polarization

Further insight into the peripheral transverse densities can be gained by considering the case of transversely polar-
ized nucleon states. Transverse polarization naturally explains the similarity of the spin–independent and –dependent
densities, ρV1 (b) and ρ̃V2 (b), at distances b ∼ fewM−1π (cf. Fig. 6) and enables a simple quantum–mechanical interpre-
tation in the nucleon rest frame.
Transversely polarized nucleon states in the light–front formulation are obtained by preparing a transversely po-

larized state (say, in the y–direction) in the rest frame and performing the longitudinal and transverse boosts to the
desired light–front momentum (cf. Sec. IVA). With the general formula Eq. (4.1) this is accomplished simply by
choosing the rest–frame 2–spinors as eigenspinors of the y–spin operator Sy = σy/2,

χtr(τ = 1/2) =
1√
2

(
1
i

)
, χtr(τ = −1/2) =

1√
2

(
i
1

)
(5.9)

(here and in the following we use τ = ±1/2 to denote the y–spin eigenvalues). The vertex function calculated with
the transversely polarized 4–spinors obtained in this way is of the same form as Eq. (4.3); only the structures Sz and
ST = (Sx, Sy) are replaced by the contraction of the spin operators with the transversely polarized spinors

Si
tr(τ, τ1) ≡ χ†tr(τ)(

1
2σ

i)χtr(τ1) (i = x, y, z). (5.10)

Notice that now the y–component is diagonal,

Sy
tr(τ, τ1) = τ δ(τ, τ1), (5.11)

while the z and x components have off–diagonal terms. We define the light–front wave function for the N → πN
transition for nucleon states characterized by their transverse spin projections τ1 and τ , in complete analogy to
Eqs. (4.7)–(4.9),

Ψtr(y, k̃T ; τ, τ1) ≡
Γtr(y, k̃T ; τ, τ1)

∆M2(y, k̃T )
, (5.12)

Γtr(y, k̃T ; τ, τ1) =
2igAMN

Fπ
√
ȳ

[
yMN Sz

tr(τ, τ1) + k̃T · Str,T(τ, τ1)
]
. (5.13)

Similar expressions are obtained for the πN → N with transverse spin projections τ and τ2.
The coordinate–space wave functions for transverse nucleon polarization are introduced through Eq. (4.11) in the

same way as for longitudinal polarization and denoted by Φtr. The general decomposition Eq. (4.12) applies to the
Fourier transform of the transversely polarized wave function as well, as it relies only on the functional dependence

of the momentum–space wave function on k̃T , not on the specific form of the spin structures. Using the algebraic
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relation between the spin structures for y– and z–polarization it is straightforward to express the transversely polarized
coordinate–space wave function in terms of the longitudinally polarized radial wave functions U0 and U1:

Φtr(y, rT , τ = +1/2, τ1 = +1/2) = sinαU1, (5.14)

Φtr(y, rT , τ = −1/2, τ1 = −1/2) = − sinαU1, (5.15)

Φtr(y, rT , τ = +1/2, τ1 = −1/2) = U0 + cosαU1, (5.16)

Φtr(y, rT , τ = −1/2, τ1 = +1/2) = −U0 + cosαU1, (5.17)

rT = (rT cosα, rT sinα), U0,1 ≡ U0,1(y, rT ).

With the radial wave function U0 and U1 given by the explicit expressions of Eq. (4.15), these relations completely
determine the transversely polarized coordinate–space wave function.
In the transversely polarized representation the rotational symmetry around the z–axis is encoded in relations

between the transverse spin components of the wave function. In the explicit formulas Eqs. (5.14)–(5.17) these relations
manifest themselves in that the four transverse spin components are expressed in terms of only two independent radial
functions. One sees that the components satisfy

Φtr(y, rT , +, +) = −Φtr(y, rT , −, −), (5.18)

Φtr(y, rT , +, −) = −Φtr(y, −rT , −, +). (5.19)

The relation Eq. (5.19) between the transverse spin–flip components has a simple physical interpretation in the
nucleon rest frame. In the wave function with initial nucleon transverse spin τ1 = +1/2 and intermediate nucleon spin
τ = −1/2, the pion in the intermediate state has orbital angular momentum L = 1 with projection Ly = +1 on the
y–axis. Likewise, in the wave function with τ1 = −1/2 and τ = +1/2, the pion has Ly = −1. The two components
thus differ only in that the pion rotates in the opposite sense around the y–axis, and one can be turned into the other
by inverting the direction of the x–axis, i.e., replacing cosα → − cosα in Eqs. (5.16) and (5.17).
The connection between the transversely and longitudinally polarized light–front wave functions generally depends

on the angle of the transverse coordinate vector rT , as required by rotational invariance. A particularly simple
connection is obtained at points on the negative or positive x–axis, where sinα = 0 and cosα = −1 or +1. Considering
the transverse spin–flip wave function on the negative and positive x–axis (“left” and ”right” when looking at the
nucleon in the z–direction from +∞, see Fig. 1), and introducing the short–hand notation

Uleft(y, rT ) ≡ Φtr(y, −rTex, τ = −1/2, τ1 = +1/2), (5.20)

Uright(y, rT ) ≡ Φtr(y, +rTex, τ = −1/2, τ1 = +1/2), (5.21)

we obtain from Eq. (5.17)

Uleft(y, rT ) = −U0(y, rT ) − U1(y, rT ), (5.22)

Uright(y, rT ) = −U0(y, rT ) + U1(y, rT ). (5.23)

Note that the functions Uleft and Uright are derived from a single y–spin component of the wave function but refer to
a specific spatial direction.
We can now derive a simple representation of the transverse densities in terms of the transversely polarized light–

front wave function. Using the overlap representation Eq. (5.4) in terms of the the longitudinally polarized wave
functions, and substituting them by the “left” and “right” transverse spin–flip wave functions according to Eqs. (5.22)
and (5.23), we obtain6

ρV1 (b)

ρ̃V2 (b)



 =

1

4π

∫
dy

yȳ3





[Uleft(y, b/ȳ)]
2 + [Uright(y, b/ȳ)]

2

−[Uleft(y, b/ȳ)]
2 + [Uright(y, b/ȳ)]

2



 . (5.24)

This result can be explained easily by referring to the interpretation of the transverse densities as current matrix
elements in a nucleon state localized in transverse space, cf. Sec. II, Fig. 1, and Ref. [8]. According to Eq. (2.6) in

6 For simplicity we derive the representation Eq. (5.24) from Eq. (5.4), using the relation between the longitudinally and transversely
polarized wave functions at the special points b = ±bex. Equation (5.24) could equivalently be derived by converting the original current
matrix element Eq. (5.1) to the transverse spin representation and repeating the steps of Sec. VA. In the latter approach one could
choose any orientation of the vector b; the rotational invariance of the densities would be guaranteed by the conditions Eqs. (5.18) and
(5.19).



18

 0

 0.01

 0.02

 0.03

 0  0.2  0.4  0.6  0.8  1

 f 
(y

) 
 [

M
π2  ]

y

Multiplied by 1/y/(1−y)3/(4π)

rT  =  b/(1−y)

b  =  1.0 Mπ
−1

U 2
left

U 2
right

FIG. 7. Integrands of the transverse densities ρV1
and ρ̃V2 in the transversely polarized wave func-
tion overlap representation Eq. (5.24), at a distance
b = 1.0M−1

π . Solid line: [Uleft(y, b/ȳ)]
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a nucleon state with y–spin projection +1/2 (i.e., τ1 = τ2 = +1/2) the dependence of the matrix element on the
coordinate b is of the form

〈J+(b)〉Vlocalized = (...)
[
ρV1 (b) + cosφ ρ̃V2 (b)

]
, (5.25)

where φ is the angle of b relative to the x–axis. The densities are functions of b = |b|, and the angular dependence
is given entirely by cosφ. By choosing the direction of b along the positive and negative x–axis (cosφ = ±1), the
individual densities can be expressed as

〈J+(bex) + J+(−bex)〉Vlocalized = (...) ρV1 (b), (5.26)

〈J+(bex) − J+(−bex)〉Vlocalized = (...) ρ̃V2 (b). (5.27)

This structure is exactly analogous to Eq. (5.24), with the integral over |Uleft(y, b/ȳ)|2 and |Uleft(y, b/ȳ)|2 representing
the current densities at b = ±bex, respectively.
The explicit form of the “left” and ”right” transverse spin–flip wave function, Eqs. (5.20) and (5.21), is readily

obtained from Eqs. (5.22), (5.23) and (4.15):

Uleft(y, rT )

Uright(y, rT )

}
= −gAMN y

√
ȳ

2πFπ

{
[yMN K0(MT rT ) +MTK1(MT rT )]

[yMN K0(MT rT )−MTK1(MT rT )]

}
(5.28)

∼ −gAMN y
√
ȳ

2
√
2πFπ

{
(yMN +MT )

(yMN −MT )

}
e−MT rT

√
MT rT

(rTMT ≫ 1). (5.29)

The last expression is obtained with the asymptotic form of the modified Bessel functions, Eq. (4.16), and applies at
MT rT ≫ 1. Parametrically the two functions are of the same order in Mπ/MN in the region y = O(Mπ/MN ) and
rT = O(M−1π ). Numerically one observes that

|Uleft(y, rT )| ≫ |Uright(y, rT )| (y ∼ few times Mπ/MN ), (5.30)

because MT (y) ≈ yMN in this region of y. This is illustrated by Fig. 7, which shows the contributions of |Uleft|2 and
|Uright|2 to the integrands of the transverse densities in Eq. (5.24). The strong suppression of the “right” compared
to the “left” wave function is the reason for the similarity of the densities ρV1 (b) and ρ̃V2 (b) at b = O(M−1π ).

E. Quantum–mechanical picture

We can interpret our findings in a simple quantum–mechanical picture of peripheral transverse nucleon structure in
the rest frame. For this purpose we imagine that the N → πN transition takes place in ordinary time, and that the



19

z

y
x x

b

y

y

z

initial/final state

left

right

intermediate state

L

τ = −

= 1/2
= +1

2τ
1τ

1/2

FIG. 8. Quantum–mechanical picture of peripheral transverse densities in LO chiral EFT. The bare nucleon with y–spin
projection τ1 = +1/2 in the rest frame (left) makes a transition to a pion–nucleon state with τ = −1/2 and Ly = +1 (right),
and back to a bare state with τ2 = +1/2. The peripheral transverse densities ρV1 (b) and ρ̃V2 (b) are the left–right average and
left–right asymmetry of the plus current (viewed from z = +∞) at the positions y = 0 and x = ∓b.

wave function has the usual 3–dimensional rotational symmetry. For a non-relativistic system there would be a direct
correspondence between the equal–time and the light–front wave functions; see e.g. Ref. [24]. The chiral πN system is
essentially relativistic, k = O(Mπ), and one should not expect a similar connection between the wave functions here.
Nevertheless the intuitive quantum–mechanical picture of the chiral process explains all the essential features of the
peripheral transverse densities. In any case its content is backed up by light–front wave function formulas, which are
exact also in the relativistic case.

Consider a nucleon in the rest frame, in a spin state polarized in the positive y–direction (Sy = +1/2). In the
interaction picture implied by chiral EFT, we may think of this physical nucleon as a pointlike bare nucleon coupled
to soft pions, described by a wave function. The LO contribution to the peripheral charge and current densities in
the proton isospin state arises from the component with a single peripheral positively charged pion. This component
corresponds to the chiral process where the initial (bare) proton makes a transition to a state with a (bare) neutron and
a peripheral positive pion, and back to the final bare nucleon (see Fig 8). The y–spin projection quantum numbers of
the initial/final nucleon state are τ1 = τ2 = +1/2, and that of the intermediate nucleon state is denoted by τ . Because
of parity conservation the wave function of the π+n system has orbital angular momentum L = 1. Conservation of the
total angular momentum projection on the y–axis allows only the states with Ly = 0 and τ = +1/2 (spin–conserving),
and with Ly = +1 and τ = −1/2 (spin–flip). We are interested in the densities in the x–z plane (y = 0), to which
the state with Ly = 0 cannot contribute, as its wave function vanishes in the direction perpendicular to the y–axis,
P1(cos θ) = 0 for θ = π/2 (P1 is the Legendre polynomial of degree 1). This leaves the state with Ly = +1 and
τ = −1/2 as the only contribution to the densities in question It explains why in the light–front formulation we were
able to express the transverse densities completely in terms of the transverse spin–flip wave function, cf. Eqs. (5.20)
and (5.21).

The peripheral densities in the x–z plane thus arise from configurations in which the positive pion “orbits” around
the neutron with angular momentum Ly = +1. Since the pion itself has no spin, the current it produces is the
convection current caused by the orbital motion of the charge. Because the chiral EFT interactions between the
pion and the nucleon have a short range ≪ M−1π , the peripheral pion can be regarded as free while the current
is measured. The 4–vector current carried by a free pion with momentum k and charge +1 is Jµ = 2kµ, where
k0 ≡ Eπ =

√
|k|2 +M2

π , so that its plus component is positive for all momenta, J+ = 2k+ = 2(Eπ + kz) > 0. This
explains the positivity property of the current density, Eq. (5.8).

Now according to Sec. II and Eq. (2.6) the transverse densities ρV1 and ρ̃V2 are the left–right average and left–right
asymmetry of the J+ current density produced by the peripheral pion. It is obvious that a positively charged pion
orbiting with Ly = +1 produces a larger J+ density on the left (where it moves in the positive z direction) than on
the right (where it moves in the negative z direction). This explains why ρ̃V2 (b) < 0 (see Fig. 6). The magnitude of
the asymmetry is determined by the effective pion momenta and the relativistic effects implied by the projection on
fixed light–front time. If the motion of the pion were non-relativistic, with characteristic velocity v = k/Mπ ≪ 1, the
plus momentum carried by the pion would be k+ = Mπ[1 +O(v)]; i.e., it would be dominated by the pion mass and
independent of the direction of the pion momentum. Since furthermore the probability to find a pion would be the
same on the left and on the right side of the x axis (because of rotational symmetry around the y–axis) the ratio of
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left and right current densities at the same distance b = |b| would be

〈J+(−bex)〉localized
〈J+(+bex)〉localized

= 1 +O(v). (5.31)

The light–front wave function representation of Sec. VD shows that the asymmetry is much larger than the non-
relativistic estimate Eq. (5.31),

〈J+(−bex)〉localized
〈J+(+bex)〉localized

=

∫
dy

yȳ3
|Uleft(y, b/ȳ)|2

∫
dy

yȳ3
|Uright(y, b/ȳ)|2

≫ 1. (5.32)

The numerical value of the ratio is ∼ 9 at b = 1M−1π and ∼ 4 at b = 5M−1π (see Fig. 7). This highlights the
essentially relativistic nature of the motion of pions in chiral dynamics. The power of the light–front formulation is
that it permits a first–quantized representation even of such essentially relativistic systems.

F. Contact term

The transverse charge density ρV1 (b) also receives a contribution from the effective contact term in the current
matrix element, Eq. (3.9). This contribution cannot be represented as an overlap of πN light–front wave functions
and needs to be added separately to that from the intermediate πN state, Eq. (5.4),

ρV1 (b) = ρV1 (b)interm [from Eq. (5.4)] + ρV1 (b)contact. (5.33)

It is readily computed by evaluating the Feynman integral Eq. (3.9) as a four–dimensional integral, using the fact
that it depends only on the momentum transfer ∆µ as external 4–vector. One obtains [8]

ρV1 (b)contact =
(1− g2A)M

4
π

192π3F 2
π

{
[K2(Mπb)]

2 − 4[K1(Mπb)]
2 + 3[K0(Mπb)]

2
}
. (5.34)

The contact term density is negative because 1−g2A < 0. It is of the same parametric order as the one from intermediate
πN states, as can be seen by comparing Eq. (5.34) with Eqs. (5.4) and (4.15) and noting that at distances b = O(M−1π )
the integral is dominated by pion momentum fractions y = O(Mπ/MN). The numerical contribution of the contact
term density turns out to be very small in the region of interest, b = few M−1π , ranging from about −10% of the
intermediate πN contributions at b = 1M−1π to −4% at b = 5M−1π (see Fig. 9). Thus the entire ρV1 is to good
approximation given by the wave function overlap Eq. (5.4), which justifies our earlier comparison of the properties
of ρV1 and ρ̃V2 on the basis of Eq. (5.4) (the contact term is absent in ρ̃V2 ).
Some comments are in order regarding the interpretation of the contact term in the context of the light–front

description. In the intermediate πN contribution to the current matrix element the typical energy denominators are
∆M2(y,kT ,p1T, 2T ) = O(MπMN), cf. Eqs. (3.18) and (3.19), and the typical pion light–front energies in the nucleon
rest frame are k−1,2 = O(Mπ). These are configurations that exist for a large light–front time interval ∆x− = O(M−1π )
and can be regarded as particle states in the chiral EFT. The contact term describes contributions to the peripheral
density from intermediate states with invariant mass differences that are not chirally small, i.e., that do not vanish in
the limit Mπ → 0. These states lie “outside” the chiral EFT, and their contribution is represented by a local operator.
The appearance of the combination 1 − g2A in the coefficient of the local operator is natural [8]. For a nucleon

without internal structure one would have gA = 1, and the effective contact term would be absent. The deviation of
gA from unity is the result of the “compositeness” of the nucleon, which in turn is related to the presence of inelastic
states in πN scattering. The combination 1− g2A can thus be regarded as the effect of non-chiral intermediate states
in the πN scattering amplitude, in agreement with the above interpretation.7 Further properties of the contact term,
such as its relation to the form of the πNN coupling (pseudoscalar, axial vector) are discussed in Ref. [8].
The contact term formally corresponds to a contribution of light–front zero modes (vanishing pion plus momentum)

to the current matrix element. An advantage of our approach, starting from invariant integrals, is that it allows us
to identify and calculate these contributions in a straightforward manner. The zero mode contributions could also
be calculated in the time–ordered formulation of chiral EFT, by considering the current matrix in a frame where the
current transfers plus momentum, ∆+ 6= 0, and taking the limit ∆+ → 0 at the end of the calculation.

7 The connection between g2
A

− 1 and inelastic states in πN scattering is expressed in general terms by the Adler–Weisberger current
algebra sum rule [25, 26].
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VI. CHIRAL GENERALIZED PARTON DISTRIBUTIONS

A. Peripheral pion distribution

In QCD the transverse structure of the nucleon is expressed in terms of coordinate–dependent parton densities,
which are defined as the Fourier transforms of the generalized parton distributions and describe the density of partons
(quarks, antiquarks, gluons) with a given light–front plus momentum fraction x at transverse position b. In this
context the transverse charge and current densities are obtained as integrals of the transverse densities of charged
partons (quarks minus antiquarks) over x. Chiral dynamics governs not only the peripheral charge and current
densities but also the x–dependent distributions of partons at b ≡ |b| = O(M−1π ) and x = O(Mπ/MN ). Detailed
studies of the peripheral parton densities due to chiral dynamics have been performed in Refs. [17, 18]. Here we
show that the x–integral of these peripheral parton densities reproduces the transverse charge and current densities
calculated in chiral EFT. We also express the plus momentum distribution of peripheral pions in the nucleon in terms
of the πN light–front wave functions introduced in Sec. III.
The basic object in the study of peripheral partonic structure is the light–front plus momentum distribution of soft

pions in the nucleon. Following Refs. [17, 18] we define the GPDs of soft pions in the nucleon in terms of the matrix
element of the bilinear light–ray operator in the pion field

p+
∞∫

−∞

dξ−

2π
eiyp

+ξ−/2 〈N(p2, σ2)|
[
∑

ab

ǫ3ab πa(−ξ/2)
↔

∂
+πb(ξ/2) |ξ+=0, ξT=0

]
|N(p1, σ1)〉

= ū2

[
γ+ HV

π (y, t) − EV
π (y, t)

2MN
σ+ν∆ν

]
u1, (6.1)

where ξ is the 4–vector of the space–time separation of the fields and
↔

∂ µ ≡ (
→

∂ µ−
←

∂ µ)/2. Equation (6.1) applies
in the parametric regime of pion momentum fractions y = O(Mπ/MN ) and momentum transfers t = O(M2

π) and is
to be evaluated in chiral EFT. The pionic operator on the left–hand side has isovector quantum numbers, and the
matrix element is understood in the sense of Eq. (2.8). The GPDs are denoted by HV

π and EV
π in accordance with

the standard convention [27], and are defined in the interval −1 < y < 1. It is easy to see that the pionic light–ray
operator is symmetric under ξ → −ξ, whence the isovector GPDs are even functions of y,

HV
π (y, t) = HV

π (−y, t), EV
π (y, t) = EV

π (−y, t). (6.2)

Note that for ξ = 0 the pionic operator reduces to the local vector current of the pion field,

J+(0) =
∑

ab

ǫ3ab πa(0), ∂+πb(0), (6.3)
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the matrix element of which determines the chiral ππ cut contribution to the Dirac and Pauli form factors and was
calculated in Sec. III A. When integrating Eq. (6.1) over y the exponential factor produces a delta function which
enforces ξ− = 0 and thus ξ = 0, so that the matrix element of the light–ray operator becomes that of the local vector
current. In this sense Eq. (6.1) is just a particular representation, differential in the pion plus momentum fraction y,
of the chiral ππ cut in the current matrix element.
The transverse coordinate–dependent (or impact parameter–dependent) distributions of soft pions in the nucleon

are then defined in analogy to the transverse charge and current densities, Eq. (2.5), as

HV
π (y, t = −∆

2
T )

EV
π (y, t = −∆

2
T )



 =

∫
d2b ei∆T b





fV
1π(y, b)

fV
2π(y, b)



 . (6.4)

It is convenient to introduce a modified helicity–flip distribution in analogy to ρ̃2, Eq. (2.7),

f̃V
2π(y, b) ≡

∂

∂b

[
fV
2π(y, b)

2MN

]
. (6.5)

The functions fV
1π(y, b) and f̃V

2π(y, b) describe the isovector transverse spatial distribution of pions with plus momentum
fraction y and refer to the parametric regime b = O(M−1π ) and y = O(Mπ/MN ). The interpretation of these spatial
distributions in a transversely polarized nucleon is analogous to that of the transverse densities ρV1 (b) and ρ̃V2 (b),
cf. Eq. (2.6) and Fig. 1.

The peripheral pion distributions fV
1π(y, b) and f̃V

2π(y, b) can be calculated in LO chiral EFT in the same manner
as the transverse densities ρV1 (b) and ρ̃V2 (b), cf. Sec. III. One expresses the matrix element in Eq. (6.1) as a Feynman
integral and separates it into the intermediate nucleon contribution and an effective contact term, cf. Eqs. (3.7)–
(3.9). The intermediate nucleon contribution can then be represented as the product of the light–front wave functions
describing the transition of the initial and final nucleon to the πN intermediate state. For y > 0,

fV
1π(y, b)

f̃V
2π(y, b)



 =

1

2πyȳ3





[U0(y, b/ȳ)]
2 + [U1(y, b/ȳ)]

2

−2U0(y, b/ȳ) U1(y, b/ȳ)



 (y > 0), (6.6)

where U0,1 are the coordinate–space wave functions defined in Eqs. (4.12) and (4.15); for y < 0 one uses that
[cf. Eq. (6.2)]

fV
1π(y, b) = fV

1π(−y, b), f̃V
2π(y, b) = f̃V

2π(−y, b). (6.7)

The contact term contribution is obtained from the Feynman integral as

fV
1π(y, b)contact = δ(y) ρV1 (b)contact, (6.8)

where ρV1 (b)contact is given by Eq. (5.34). This expression clearly identifies the contact term as a light–front “zero
mode” contribution. The complete isovector pion distribution fV

1π is then given by the sum of the overlap contribution
Eq. (6.6) and the contact term Eq. (6.8). This representation of the chiral pion densities in particular implies that
[cf. Eqs. (5.4) and (5.33)]

ρV1 (b)

ρ̃V2 (b)




 =

∫ 1

−1

dy






fV
1π(y, b)

f̃V
2π(y, b)




 , (6.9)

as is obvious from the above definition of fV
1π and fV

2π. In this sense our earlier results for the peripheral transverse
densities in chiral EFT have a straightforward interpretation as y–integrals of the peripheral pion GPDs in the
nucleon. The significance of this connection lies in the fact that the peripheral pion GPDs have a more general
physical significance and can in principle be measured independently in peripheral high–energy scattering processes.

B. Charge density from peripheral partons

We can now demonstrate the connection of the chiral component of the peripheral transverse densities with the
peripheral quark/antiquark content of the nucleon in QCD. Following Ref. [18] the isovector quark/antiquark density
in the nucleon at b = O(M−1π ) generated by chiral dynamics is given by

[u− d] (x, b)chiral =
[
d̄− ū

]
(x, b)chiral =

∫ 1

x

dy

y
fV
1π(y, b) q

val
π (z) (z ≡ x/y), (6.10)
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where z = x/y represents the fraction of the pion plus momentum carried by the quark/antiquark, and qvalπ (z) is the
valence quark/antiquark density in the pion,

qvalπ (z) = ±
[
d̄− ū

]
π±

(z) = ± [u− d]π± (z) = ± 1
2

[
u− ū− d+ d̄

]
π±

(z), (6.11)

normalized such that

∫ 1

0

dz qvalπ (z) = 1. (6.12)

Equation (6.10) has the form of the usual partonic convolution formulas and relies on the approximation that the
non-chiral transverse size of the pion can be neglected on the scale O(M−1π ); i.e., the spatial distribution of peripheral
quarks/antiquarks is determined entirely by the distribution of pions in the nucleon. The transverse charge density
in the proton is generally given by the integral of the quark minus antiquark densities over x, weighted by the quark
charges (eu = 2/3, ed = −1/3),

ρp1(b) =

∫ 1

0

dx
{
eu[u− ū](x, b) + ed[d− d̄](x, b)

}
. (6.13)

The isovector density is obtained by taking half the proton–neutron difference and using isospin symmetry

ρV1 (b) ≡ 1
2 [ρ

p
1 − ρn1 ](b) = 1

2 (eu − ed)

∫ 1

0

dx [u− ū− d+ d̄](x, b) (eu − ed = 1) (6.14)

(this expression is valid even when including strange quarks in the individual proton and neutron densities). Sub-
stituting here the peripheral quark/antiquark densities generated by chiral dynamics, Eq. (6.10), and using the
normalization condition Eq. (6.12), one obtains

ρV1 (b)chiral =

∫ 1

0

dx [u− ū− d+ d̄](x, b)chiral

=

∫ 1

0

dx

∫ 1

x

dy

y
fV
1π(y, b) q

val
π (x/y)

=

∫ 1

0

dy fV
1π(y, b)

∫ y

0

dx

y
qvalπ (x/y)

=

∫ 1

0

dy fV
1π(y, b), (6.15)

which agrees with Eq. (6.9). It shows that resolving the peripheral pion into its quark/antiquark constituents and
computing the charge density from the quark/antiquark densities in the nucleon leads to the same result as computing
the charge density directly from the distribution of (pointlike) pions — as it should be in the parton picture. The
same applies, of course, to the spin–dependent density ρ̃V2 (b).
The x → 0 limit in the integral Eq. (6.14) and the role of the contact term in the charge density in the “sum rule”

Eq. (6.15) require special consideration. In the LO chiral expansion of the current matrix element and the correlator
Eq. (6.1) it is supposed that the pion plus momentum fraction is of the parametric order y = O(Mπ/MN). The
contributions from y → 0 on this scale are described by a delta function δ(y), i.e., one sees only their contribution
to the total charge density (y–integral, first moment) but cannot resolve their dependence on y. In this sense the
LO chiral expression for the peripheral parton densities is valid for x = O(Mπ/MN ) but otherwise not exceptionally
small. Now calculating the charge density requires integration down to x → 0. It is clear from the above that the
LO chiral expansion and the limit x → 0 do not commute. It explains why Eq. (6.15) captures only the non-contact
(intermediate πN) contribution to the charge density, and why the contact term has to be added separately. The LO
chiral expansion correctly accounts for the total charge density; it is just not smooth enough at y → 0 to allow for
the charge to be distributed over partons with finite x and recovered by integration over x. A resummation of chiral
EFT at parametrically small x in the logarithmic approximation has been proposed in Refs. [28–30]; this approach
“resolves” the delta function of the finite–order approximation into a finite–width function that allows integration
over x. We emphasize that the small–x problem discussed here is largely formal, and that chiral dynamics likely
does not dominate the actual small–x behavior of peripheral parton densities (for a discussion of chiral dynamics and
resummation in the light of conventional small–x physics, see Ref. [18]).
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VII. SUMMARY AND OUTLOOK

Using the light–front representation of relativistic dynamics we have expressed the LO chiral EFT results for
the nucleon’s peripheral transverse densities in “first–quantized” form, as overlap integrals of the light–front wave
functions of a chiral πN system. The new representation is exactly equivalent to the “second–quantized” field–
theoretical results and enables an intuitive understanding of chiral dynamics in close analogy to non-relativistic
quantum mechanics. It reveals an inequality between the spin–independent and –dependent transverse densities,
|ρ̃V2 (b)| < ρV1 (b), which constrains the spatial distribution of charge and magnetization in the nucleon. It also offers
a simple dynamical explanation why the inequality is almost saturated. The wave function representation permits
straightforward numerical evaluation of the transverse densities and the underlying plus momentum distributions.
It also connects the peripheral transverse charge density with the nucleon’s peripheral partonic content (GPDs)
generated by chiral dynamics.
Our studies reveal two interesting general aspects of chiral dynamics and peripheral nucleon structure. One is the

essentially relativistic character of chiral dynamics in the parametric region of pion momenta k = O(Mπ). The large
left–right asymmetry of the chiral densities in the transversely polarized nucleon is a genuine relativistic effect and
results in a ratio very different from the non-relativistic estimate. It predicts the approximate equality |ρ̃V2 (b)| ≈ ρV1 (b)
at b = few M−1π , which can be tested experimentally. In this sense measurements of the nucleon’s Dirac and Pauli
form factors can directly attest to the relativistic nature of chiral dynamics in the nucleon’s periphery (for a discussion
of the prospects for extracting the peripheral transverse densities from nucleon form factor data, see Refs. [8, 16]).
The other interesting aspect is the role of the pion’s orbital angular momentum in peripheral nucleon structure. It

is seen most clearly in the case of transverse nucleon polarization, where a single pion orbital with L = 1 accounts
for both the spin–independent and –dependent densities and explains their properties. This places chiral dynamics in
the context of contemporary studies of orbital angular momentum in relativistic systems and quantum field theory,
inspired by the nucleon spin problem (for a recent review, see Ref. [31]). The first–quantized light–front representation
is an essential tool in defining the angular momentum content of relativistic systems and interpreting the dynamics,
and is therefore natural for chiral dynamics.
The chiral two–pion exchange contribution studied in this work affects the isovector component of the nucleon

charge densities. In the isoscalar component the chiral contribution starts with three–pion exchange and is strongly
suppressed, because of its shorter range and its higher order in the chiral expansion. In this sense the isovector
component computed here determines the large–distance behavior also of the individual proton and neutron densities,
which are the sum of isovector and isoscalar components. The analysis of experimental data for the proton and
neutron form factors at low |t| should be done with dispersion–based parametrizations [32, 33], which have correct
analytic properties (singularity structure) and smoothly combine the two–pion exchange contribution with the vector
meson resonances determining the bulk of the transverse densities [34].
The methods developed in the present work can be applied to several related problems in nucleon structure. Of

particular interest would be the study of chiral dynamics in the matrix elements of the energy–momentum tensor,
whose transverse densities describe the spatial distributions of matter, momentum, and stress (or forces) in the
nucleon. This would in particular allow one to confront the “particle–based” definition of orbital angular momentum
in the light–front representation with the “field–theoretical” definition in terms of the energy–momentum tensor, and
in this way test the various angular momentum sum rules proposed in the recent literature [35–39].
The light–front wave function representation of peripheral densities could also be extended to ∆ isobar intermediate

states. The ∆ contribution to the transverse densities was computed in the dispersive approach in Refs. [8, 16]. While
is is numerically small at distances b = fewM−1π it plays an important role in ensuring the proper scaling behavior of
the peripheral densities in the large–Nc limit of QCD, where the N–∆ mass splitting scales as M∆ −MN = O(N−1c ).
The light–front wave functions for the N → π + ∆ transition can be defined in analogy to the N → π + N ones,
cf. Eq. (3.26). Light–front time–ordered calculations with higher–spin particles are generally plagued by ultraviolet
divergences resulting from the breaking of rotational invariance. An advantage of the Lorentz–invariant approach
taken in the present work (see Sec. III), in which the light–front representation is derived from the Feynman integrals,
is that it maintains rotational invariance and avoids such divergences. It is thus particularly suited to including ∆
intermediate states.
The nucleon’s chiral component can be probed also in high–energy scattering processes in γN, eN, πN , or NN

scattering (squared center–of–mass energies s ≫ 1GeV2), by selecting reaction channels and kinematic regions where
the process happens predominantly on a pion at transverse distances b = O(M−1π ). Under certain conditions the
amplitude for such processes can be expressed in terms of the light–front wave functions of the peripheral πN system
and the amplitude for the high–energy scattering process on the pion. These are the same light–front wave functions
as those introduced in the present study of peripheral current matrix elements. Only the light–front formulation of
chiral dynamics makes it possible to establish such a connection between low–energy and high–energy processes. This
new connection greatly enlarges the number of experimental probes of chiral dynamics.
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One example is hard exclusive electroproduction of mesons on a peripheral pion, e+N → e′ + π +meson +N ′ at
Q2 ≫ 1GeV2 and x ≪ Mπ/MN , in the region where the invariant momentum transfer between the initial and final
nucleons is tNN ′ ≡ (pN−p′N )2 = O(M2

π). Here the high–energy process on the pion, e+π → e′+meson+π, probes the
quark/gluon GPDs in the pion [17]. Such measurements could be performed at a future Electron–Ion Collider (EIC)
with appropriate forward detectors for the pion and the recoiling nucleon. Another example is wide–angle quasi–elastic
scattering on a peripheral pion, π+N → π+π+N ′, in the region where tNN ′ = O(M2

π); here the high–energy process
is described by the π + π → π + π elastic scattering amplitude at squared center–of–mass energies sππ ≫ 1GeV2.
An interesting consequence of chiral dynamics is that the cross sections for such “pion exchange” processes should
have large transverse single–spin asymmetries, governed by the transverse spin dependence of the chiral πN light–
front wave function. This circumstance might further help to distinguish such processes from conventional “vacuum
exchange” processes.
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Appendix A: Light–front time–ordered formulation

In Sec. III the light–front wave function of the chiral πN system is introduced as an element of a particular 3–
dimensional reduction of the Feynman integrals for the nucleon form factor in relativistically invariant chiral EFT.
In this appendix we show that this object is identical to the conventional wave function, defined as a transition
matrix element in light–front time–ordered perturbation theory [11]. The correspondence is useful for relating our
results to more phenomenological applications of light–front time–ordered perturbation theory, and for an eventual
time–ordered formulation of chiral EFT.
In light–front quantization we consider the evolution of chiral effective field theory in light–front time x+ = t+ z.

It is governed by the Hamiltonian H ≡ P−/2, where P− ≡ P 0 − P z is the minus component of the energy–
momentum 4–vector of the field theory. In the interaction picture the Hamiltonian is split into a free part and an
interaction, H = H0 +Hint. The eigenstates of the free Hamiltonian (which we denote as |...〉0) are nucleon and pion
single–particle states, characterized by their light–front plus and transverse momenta, with eigenvalues given by the
light–front energies,

H0 |N(p, σ)〉0 =
p−

2
|N(p, σ)〉0, p− ≡ p2

T +M2
N

2p+
, (A1)

H0 |π(k)〉0 =
k−

2
|π(k)〉0, k− ≡ k2

T +M2
π

2k+
, (A2)

and are normalized as

0〈N(p′, σ′)|N(p, σ)〉0 = 2p+ (2π)3 δ(p′+ − p+) δ(2)(p′T − pT ) δ(σ
′, σ), (A3)

0〈π(k′)|π(k)〉0 = 2k+ (2π)3 δ(k′+ − k+) δ(2)(k′T − kT ). (A4)

The interactions represent an operator in the product space spanned by the single–particle states and induce transitions
between product states with different particle number. The evolution of a state at light–front time x+

1 to x+
2 is described

by the action of the time evolution operator

S(x+
2 , x

+
1 ) ≡ T exp

[
−i

∫ x+

2

x+

1

dx+Hint(x
+)

]
, (A5)

Hint(x
+) ≡ exp(iH0x

+) Hint exp(−iH0x
+), (A6)

where the time ordering is in x+ and it is assumed that the original interaction operator Hint does not explicitly
depend on x+.
Consider now the matrix element of the current operator at time x+ = 0 between physical nucleon states with plus

momenta p+1 = p+2 = p+ and transverse momenta such that p2T − p1T = ∆T , cf. Eq. (3.10). Assuming that the
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interaction is switched off adiabatically at x+ → ±∞, the matrix element is given by

〈N2| J+(0) |N1〉 ≡ 〈N(p2, σ2)| J+(0) |N(p1, σ1)〉

= 0〈N(p2, σ2)|S(∞, 0)J+(0)S(0,−∞) |N(p1, σ1)〉0. (A7)

A peripheral contribution originates from the components of the evolved nucleon state that contain a peripheral pion.
In leading order of the interaction Hint this component is a state with a nucleon and a single peripheral pion. The
corresponding contribution to the matrix element is obtained by inserting free pion–nucleon intermediate states to
the left and right of the current operator,

〈N2| J+(0) |N1〉 =
∫

dk+1
(2π)2k+1

∫
d2k1T
(2π)2

∫
dk+2

(2π)2k+2

∫
d2k2T
(2π)2

∫
dl+

(2π)2l+

∫
d2lT
(2π)2

× 0〈N(p2, σ2)|S(∞, 0) |π(k2)N(l, σ)〉0
× 0〈π(k2)| J+(0) |π(k1)〉0
× 0〈π(k1)N(l, σ)|S(0,−∞) |N(p1, σ1)〉0. (A8)

The amplitude for the transition from the initial free nucleon state to the pion–nucleon intermediate state at time
x+ = 0 is

0〈π(k1)N(l, σ)|S(0,−∞)LO |N(p1, σ1)〉0

= 0〈π(k1)N(l, σ)| (−i)

∫ 0

−∞

dx+Hint(x
+) |N(p1, σ1)〉0

= 0〈π(k1)N(l, σ)|Hint |N(p1, σ1)〉0 (−i)

∫ 0

−∞

dx+ ei(k
−

1
+l−−p−

1
−i0)x+/2

= − 0〈π(k1)N(l, σ)|Hint |N(p1, σ1)〉0
1
2 (k
−
1 + l− − p−1 )

(
p−1 =

p2
1T +M2

N

p+1
, k−1 =

k2
1T +M2

π

k+1
, l− =

l2T +M2
N

l+

)
, (A9)

where the infinitesimal imaginary part of the light–front energies implies that the interaction is switched on adiabat-
ically as x+ increases from −∞. The interaction Hamiltonian is the integral of the interaction Hamiltonian density,
which in turn is the negative of the interaction Lagrangian density,

Hint =
1

2

∫
dx−d2xT Hint(x)x+=0 = −1

2

∫
dx−d2xT Lint(x)x+=0. (A10)

We use translational invariance to evaluate the matrix element in Eq. (A9),

0〈π(k1)N(l, σ)|Hint |N(p1, σ1)〉0

= −1

2

∫
dx−d2xT 0〈π(k1)N(l, σ)| Lint(x) |N(p1, σ1)〉0

= −1

2

∫
dx−d2xT ei(k1+l−p1)x

0〈π(k1)N(l, σ)| Lint(0) |N(p1, σ1)〉0

= −(2π3) δ(k+1 + l+ − p+1 ) δ
(2)(k1T + lT − p1T ) 0〈π(k1)N(l, σ)| Lint(0) |N(p1, σ1)〉0. (A11)

The LO transition matrix element Eq. (A9) can thus be represented as

0〈π(k1)N(l, σ)|S(0,−∞)LO |N(p1, σ1)〉0 = 2p+1 (2π3) δ(k+1 + l+ − p+1 ) δ
(2)(k1T + lT − p1T ) Ψ, (A12)

Ψ ≡ Ψ(y,kT ,p1T ;σ, σ1) ≡ 0〈π(k1)N(l, σ)| Lint(0) |N(p1, σ1)〉0
p+1 (k

−
1 + l− − p−1 )

, (A13)

where Ψ is the light–front wave function of the πN component of the nucleon. It is invariant under longitudinal
boosts and can be regarded as a function of the independent momentum variables y = k+1 /p

+
1 ,kT = k1T −p1T = −lT ,
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and p1T . An analogous expression can be written for the complex conjugate matrix element describing the transition
from the outgoing free pion–nucleon intermediate state to the final free nucleon state.
The wave function defined by Eq. (A13) is identical to the one introduced in the context of the reduction of the

Feynman integral, Eq. (3.26). Namely, the light–front energy denominator in Eq. (A13) is just the invariant mass
difference Eq. (3.17),

p+1 (k
−
1 + l− − p−1 ) =

k2
1T +M2

π

y
+

l2T +M2
N

1− y
−M2

N − p2
1T = ∆M2. (A14)

Furthermore, the transition matrix element of the Lagrangian density in the numerator in Eq. (A13) is just the LO
πN vertex function Eq. (3.23),

0〈π(k1)N(l, σ)| Lint(0) |N(p1, σ1)〉0 = Γ(y,kT ,p1T ;σ, σ1) + terms ∝ (k−1 + l− − p−1 ). (A15)

The expression quoted here is for the p → π0 + p isospin component of the matrix element; the other components
follow from isospin invariance [cf. the comments after Eq. (3.27)].
The final result for the leading–order peripheral contribution to the current matrix in the time–ordered approach

is then obtained by (a) substituting the transition matrix elements in Eq. (A8) by the representation Eq. (A12), with

the isospin factor
√
2 for the transitions p → π+ + n and n → π− + p; (b) substituting the explicit expression for the

matrix element of the current operator between free (pointlike) charged pion states, 0〈π(±)(k2)| J+(0) |π(±)(k1)〉0 =
±(k+1 + k+2 ); (c) integrating over the redundant intermediate pion and nucleon momenta using the delta functions
in Eq. (A12). The result for the isovector component is identical to Eq. (3.27). Altogether this establishes the
correspondence between the time–ordered and the invariant calculation of the LO chiral contribution to the peripheral
densities.
Note that the transition matrix element Eq. (A15) calculated with the axial vector πNN coupling (as appears in

the original chiral Lagrangian) and the pseudoscalar coupling (as emerges from our reduction of the Feynman integral)
differ by a term ∝ (k−1 + l−−p−1 ). This term cancels the energy denominator of the wave function and therefore results
in a contact term in the matrix element, in agreement with the findings of Sec. III. One thus understands how the
effective contact term Eq. (3.9) appears in the time–ordered formulation. Calculation of the complete contact term
contribution in the time–ordered formulation would be possible with a careful limiting procedure for the instantaneous
exchanges. An advantage of our invariant formulation is that it allows us to calculate this contribution with minimum
effort.
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