
ar
X

iv
:1

50
3.

04
90

0v
1 

 [
he

p-
ph

] 
 1

7 
M

ar
 2

01
5

Origin of Hierarchical Structures of

Quark and Lepton Mass Matrices

Yoshio Koidea and Hiroyuki Nishiurab

a Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

E-mail address: koide@kuno-g.phys.sci.osaka-u.ac.jp
b Faculty of Information Science and Technology, Osaka Institute of Technology, Hirakata,

Osaka 573-0196, Japan

E-mail address: hiroyuki.nishiura@oit.ac.jp

Abstract

It is shown that the so-called “Yukawaon” model can give a unified description of masses,

mixing and CP violation parameters of quarks and leptons without using any hierarchical

(family number-dependent) parameters besides the charged lepton masses. Here, we have

introduced a phase matrix P = daig(eiφ1 , eiφ2 , eiφ3) with the phase parameters (φ1, φ2, φ3)

which are described in terms of family number-independent parameters, together with using

only the charged lepton mass parameters as the family number-dependent parameters. In this

paper, the CP violating phase parameters δqCP and δℓCP in the standard expression of VCKM

and UPMNS are predicted as δqCP ≃ 72◦ and δℓCP ≃ −76◦, respectively, i.e. δℓCP ∼ −δqCP .

PCAC numbers: 11.30.Hv, 12.15.Ff, 14.60.Pq, 12.60.-i,

1 Introduction

1.1 What is the Yukawaon model

One of the big subjects in the particle physics is to investigate the origin of flavors. There

is an attractive idea that the flavor physics is understood from the point of view of a family

symmetry [1]. However, the symmetry has to be explicitly broken by the Yukawa coupling

constants Yf (f = ν, e, u, d) if we suppose the family symmetry to be a continuous symmetry.

Therefore, the symmetry is usually considered as a discrete symmetry. If we adhere to the basic

idea that the flavor symmetry should be a continuous symmetry which is unbroken at the start,

we are forced to consider that the Yukawa coupling constants are effective coupling constants

Y eff
f which are given by vacuum expectation values (VEVs) of scalars (“Yukawaons”) Yf with

3× 3 components [2]:

(Y eff
f ) j

i =
yf
Λ
〈Yf 〉 j

i (f = u, d, ν, e), (1.1)

where Λ is an energy scale of the effective theory. In the Yukawaon model, all the flavons [3] are

expressed by 3× 3 components of U(3). We consider no substructures of it such as 2× 2 and so

on.
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In the Yukawaon model, we assume a U(3) family symmetry, and take the following would-

be Yukawa interactions:

HY =
yν
Λ
(ℓ̄L)

i(Ŷν)
j
i (νR)jHu +

ye
Λ
(ℓ̄L)

i(Ŷe)
j
i (eR)jHd + yR(ν̄R)

i(YR)ij(ν
c
R)

j

+
yu
Λ
(q̄L)

i(Ŷu)
j
i (uR)jHu +

yd
Λ
(q̄L)

i(Ŷd)
j
i (dR)jHd, (1.2)

where ℓL = (νL, eL) and qL = (uL, dL) are SU(2)L doublets. Hu and Hd are two Higgs

doublets. The third term in Eq.(1.2) leads to the so-called neutrino seesaw mass matrix [4]

Mν = ŶνY
−1

R Ŷ T
ν , where Ŷν and YR correspond to the Dirac and Majorana mass matrices of

neutrinos, respectively. Hereafter, for convenience, we use notation Â, A and Ā for fields with

8+ 1, 6 and 6∗ of U(3), respectively.

In order to distinguish each Yukawaon from the others, we assume that Ŷf have different R

charges from each other by considering R-charge conservation [a global U(1) symmetry in N = 1

supersymmetry (SUSY)]. Of course, the R-charge conservation is broken at an energy scale Λ,

at which the U(3) family symmetry is broken. For R parity assignments, we inherit those in the

standard SUSY model, i.e. R parities of yukawaons Ŷf (and all flavons) are the same as those

of Higgs particles (i.e. PR(fermion) = −1 and PR(scalar) = +1), while quarks and leptons are

assigned to PR(fermion) = +1 and PR(scalar) = −1.

A remarkable characteristic of the Yukawaon model is that it is possible to understand

the observed hierarchical structures of masses and mixings of quarks and leptons without using

any family number-dependent parameters except for the charged lepton masses. That is, all

the quark and lepton masses and mixings can be understood in terms of only the observed

charged lepton masses. In the Yukawaon model so far, our aim seems to be almost accomplished

except for the following problem only: Namely, we have obliged to introduce a phase matrix

〈P 〉 = diag(eiφ1 , eiφ2 , eiφ3) in order to give a good fitting for the Cabibbo-Kobayashi-Maskawa

(CKM) mixing matrix [5], where (φ1, φ2, φ3) have been introduced as family number-dependent

parameters. In this paper, however, we will relate those parameters (φ1, φ2, φ3) to the observed

charged lepton masses mei as discussed in Sec.4.

Relations among Yukawaon VEVs 〈Ŷf 〉 are obtained by supersymmetric vacuum conditions

from U(3) symmetric and R-charge conserved superpotential. In this article, the Yukawaon

VEVs 〈Ŷf 〉 are related to VEVs of fundamental flavons Φf with a common bilinear form to all

flavors:1

〈Ŷf 〉 = kf 〈Φf 〉〈Φ̄f 〉+ ξf1 (f = u, d, ν, e), (1.3)

1 In earlier Yukawaon models [6], the bilinear form was only for the up-quark sector, and the model could

excellently lead to the so-called tribimaximal mixing [7] in the lepton mixing under the use of only a few param-

eters. However, the model [6] (and also [8]) could not give the observed sizable mixing angle θ13. We found that

we can give the observed value sin2 2θ13 ≃ 0.1 [9] only when we consider that all VEV relations are given by a

common bilinear form Eq.(1.3) [10].
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where 1 = diag(1, 1, 1). Here, the VEV matrices 〈Φf 〉 and 〈Φ̄f 〉 are commonly related to a

fundamental flavon VEVs 〈Φ0〉 and 〈Φ̄0〉 by

〈P̄f 〉ik〈Φf 〉kl〈P̄f 〉lj = k′f 〈Φ̄0〉iα〈Sf 〉αβ〈Φ̄0〉βj ,
〈Pf 〉ik〈Φ̄f 〉kl〈Pf 〉lj = k′f 〈Φ0〉iα〈S̄f 〉αβ〈Φ0〉βj ,

(f = u, d, ν, e). (1.4)

where i and α are indices of U(3) and U(3)′, respectively. For the VEV structures of Pf and P̄f

in Eq.(1.4) and the ξf terms in Eq.(1.3), we discuss in the next section.

The VEV structures 〈Sf 〉 and 〈S̄f 〉 in Eq.(1.4) are given by 2

〈Sf 〉 = 〈S̄f 〉 = 1+ afX3, (1.5)

where

1 =







1 0 0

0 1 0

0 0 1






, X3 =

1

3







1 1 1

1 1 1

1 1 1






. (1.6)

The form of Eq.(1.6) is understood by a symmetry breaking U(3)′ →S3.

1.2 Charged lepton sector as a fundamental flavor basis

We consider that the charged lepton mass matrix is the most fundamental one compared

with other mass matrices and that the charged lepton mass values play an essential role in

understanding the flavor physics. The points of our postulation are as follows:

(i) There is a fundamental flavon Φ0, and the reference basis in the flavor physics is defined by

the diagonal basis of 〈Φ0〉 and 〈Φ̄0〉:

〈Φ0 〉 = 〈Φ̄0〉 ≡ v0 diag(x1, x2, x3). (1.7)

where xi are real parameters with x21 + x22 + x33 = 1.

(ii) In the reference basis, the U(3)′ family symmetry is broken into S3, i.e. VEVs of flavons Sf

and S̄f take the form (1.5).

(iii) The charged lepton mass matrix 〈Ŷe〉 should be diagonal and real as well as 〈Φ0〉 and 〈Φ̄0〉,
and it should be described only in terms of the fundamental parameters xi. Therefore, with

demanding simplicity too, we require

ae = 0, ξe = 0. (1.8)

This means xi ∝ m
1/4
ei (mei = (me,mµ,mτ )). In Sec.3, we use the following parameter values of

xi,

(x1, x2, x3) = (0.115144, 0.438873, 0.891141). (1.9)

2 The form (1.5) was suggested by a “democratic universal seesaw” mass matrix model [11], in which quark

mass matrices are given by a form 〈Φe〉(1+ afX3)〈Φe〉.
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In (1.9), we have used running mass values me(µ) = 0.000486847 GeV, mµ(µ) = 0.102751

GeV and mτ (µ) = 1.7467 GeV as the charged lepton mass values at µ = MZ , because our

numerical predictions in the quark mass ratios are done at µ = MZ . Note that the mass values

(me,mµ,mτ ) have a large hierarchical structure, i.e. me/mτ ∼ 10−4, while the values (1.9) have

a mild hierarchical structure, i.e. x1/x3 ∼ 10−1.

In this paper, we do not ask the origin of the value (x1, x2, x3). However, for reference, in

Appendices A and B, we will demonstrate an example of the charged lepton mass relation in

the present Yukawaon model.

1.3 What is new

The new characteristic points of the present Yukawaon model are as follows:

(i) The bilinear form of the Yukawaon VEVs given in Eqs.(1.3) and (1.4) has been adopted for

some flavor sectors in the previous paper [10], too. However, in the present paper, we apply it

to all the sectors f = u, d, ν, e.

(ii) So far, we have needed a VEV matrix P given by

P = diag(eiφ1 , eiφ2 , eiφ3), (1.10)

in order to fit CKM mixing matrix VCKM reasonably. However, our aim was to describe all the

masses and mixing of quarks and leptons in terms of family number-independent parameters

expect for the charged lepton masses. Therefore, the phase parameters φi were against our aim

and unwelcome as it is. In the present paper, we try to denote the family number-dependent

parameters φi in terms of the observed charged lepton masses mei. The details are discussed in

Sec.4.

(iii) In general, the phase matrix P affects not only the CKM quark mixing matrix VCKM

but also the Pontecorvo-Maki-Nakagawa-Sakata [12] (PMNS) lepton mixing matrix UPMNS .

Furthermore, predicted value of the CP violating phase parameter δℓCP in UPMNS will depend

on an appearing position of P which is arbitrary at present. In the present paper, as we will

discuss in Sec.2, we construct a model in which the phase matrix P appears in the up-quark

sector only, and it affects not only the VCKM but also the UPMNS through Eq.(2.5) as we give

later. As a result, as we discuss in Sec.3, we predict CP violation phase parameters δqCP and δℓCP

in the standard expression of VCKM and UPMNS as δℓCP ≃ −δqCP ≃ −70◦ unlike the previous

papers.

In Sec.2, we construct a mass matrix model base on a Yukawaon model in which the phase

matrix P appears in the up-quark sector. In Sec.3, parameter fitting are discussed. Especially, it

is shown that CP violating phase parameters δqCP and δℓCP in the standard expression of VCKM

and UPMNS are predicted as δqCP ≃ 72◦ and δℓCP ≃ −76◦, respectively, i.e. δℓCP ∼ −δqCP . In

Sec.4, we will propose a new relation between P and mei. Finally, Sec.5 is devoted to concluding

remarks. In Appendices A and B, we will demonstrate an example of the charged lepton mass

relation in the present Yukawaon model.
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2 Model

2.1 VEV relations and superpotentials

The VEV relations of Yukawaons have already been given in Eqs.(1.3) and (1.4) in Sec.1.

Those VEV relations are derived from a U(3)×U(3)′ symmetric superpotential. For example,

for the VEV relation (1.3), we assume [10]

WY =
∑

f=u,d,ν,e

{

Tr
[(

µf Ŷf + λfΦf Φ̄f

)

Θ̂f

]

+Tr
[

µ′

f Ŷf + λ′

fΦf Φ̄f

]

Tr[Θ̂f ]
}

. (2.1)

The supersymmetric vacuum condition ∂W/∂Θ̂f = 0 leads to

µf Ŷf + λfΦf Φ̄f +Tr
[

µ′

f Ŷf + λ′

fΦf Φ̄f

]

1 = 0, (2.2)

that is, to the VEV relation (1.3) with the ξf term,

ξf =
µ′

fλf − µfλ
′

f

(µf + 3µ′

f )µf
Tr[Φf Φ̄f ]. (2.3)

Here, we assume that flavons Θ̂f always take 〈Θ̂f 〉 = 0, so that vacuum conditions, which are

obtained by differentiating the superpotential WY with respect to other flavons, do not give any

additional VEV relations, because those relations always include one 〈Θ̂f 〉.
In a similar way, we can obtain the VEV relation (1.4) by assuming

WΦ =
∑

f=u,d,ν,e

(

λf1(P̄f )
ik(Φf )kl(P̄f )

lj + λf2(Φ̄0)
iα(Sf )αβ(Φ̄0)

βj
)

(Θf )ij , (2.4)

and so on. Although we assumed a tad pole term Tr[Θ̂f ] in (2.1), we consider that such a term

is a special case only for Θ̂f with (8 + 1) of U(3). Therefore, such ξf terms do not appear in

the relation (1.4).

In order to give a neutrino mass matrix with seesaw mechanism, Mν = kν〈Ŷ T
ν 〉〈YR〉−1〈Ŷν〉,

correspondingly to the following Majorana neutrino mass matrix MR (i.e. 〈YR〉), we assume

VEV matrix relation

〈YR〉 = 〈Ŷe〉〈Φu〉+ 〈Φu〉〈Ŷ T
e 〉, (2.5)

according to the previous Yukawaon model [10].

2.2 VEV structures of Pf

Prior to discussing VEV forms 〈Pf 〉 and 〈P̄f 〉 given in Eq.(1.4), let us consider the following

superpotential

WP =
λ1

Λ
Tr[PP̄EĒ] +

λ2

Λ
Tr[PP̄ ]Tr[EĒ], (2.6)
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where, in order to distinguish P from E, we assign R charges of P and E as

R(P ) = R(P̄ ) =
1

2
(1−∆), R(E) = R(Ē) =

1

2
(1 + ∆), (2.7)

so that R(P ) +R(P̄ ) +R(E) +R(Ē) = 2. The supersymmetric vacuum conditions lead to

〈P 〉〈P̄ 〉 = 1, 〈E〉〈Ē〉 = 1. (2.8)

We define specific solutions of (2.8) as

〈P 〉 = diag(eiφ1 , eiφ2 , eiφ3), 〈E〉 = diag(1, 1, 1). (2.9)

We consider that VEV of each flavon 〈Pf 〉 given in Eq.(1.4) is given by either 〈P 〉 or 〈E〉 in

Eq.(2.9) under the D-term condition as discussed in (2.10) below.

On the other hand, let us recall that, in general, VEV matrix 〈Ā〉 is related to VEV matrix

〈A〉 under the D term condition as

〈Ā〉 = 〈A〉∗, or 〈Ā〉 = 〈A〉. (2.10)

Let us back to the relations (1.4). We take

〈Φ0〉 = 〈Φ̄0〉 = diag(x1, x2.x3), (2.11)

〈Sf 〉 = 〈S̄f 〉 = 1+ afe
iαfX3, (2.12)

while

〈P̄ 〉 = 〈P 〉∗ = diag(e−iφ1 , e−iφ2 , e−iφ3), (2.13)

where parameters xi, φi, af and αf are real. Then, according as 〈Φ̄f 〉 = 〈Φf 〉∗ or 〈Φ̄f 〉 = 〈Φf 〉,
the relations (1.4) require 〈P̄f 〉 = 〈Pf 〉∗ or 〈P̄f 〉 = 〈Pf 〉. For example, when we take the case

〈Φ̄f 〉 = 〈Φf 〉∗, Eq.(1.4) becomes

〈Pf 〉∗〈Φf 〉〈Pf 〉∗ = 〈Φ0〉〈Sf 〉〈Φ0〉,
〈Pf 〉〈Φf 〉∗〈Pf 〉 = 〈Φ0〉〈Sf 〉〈Φ0〉.

(2.14)

Two equations in (2.14) cannot simultaneously satisfied without αf = 0. On the other hand,

when 〈Φ̄f 〉 = 〈Φf 〉, Eq.(1.4) becomes

〈Pf 〉∗〈Φf 〉〈Pf 〉∗ = 〈Φ0〉〈Sf 〉〈Φ0〉,
〈Pf 〉〈Φf 〉〈Pf 〉 = 〈Φ0〉〈Sf 〉〈Φ0〉.

(2.15)
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Then, for the case of αf 6= 0, the two equations (2.15) are satisfied only when φi = 0 [i.e.

〈Pf 〉 = 〈E〉]. As a result, we consider only two cases: (i) for the case of αf 6= 0, we regard 〈Pf 〉
as 〈E〉 given in (2.9), and (ii) only for the case of αf = 0, we regard 〈Pf 〉 as 〈P 〉 with φi 6= 0.

The parameters αf affect not only CP violation, but also mass ratios. In the up-quark

sector, as we discuss in Sec.3, we can fit up-quark mass ratios mu/mc and mc/mt by taking two

parameters au and ξu (keeping αu = 0). Therefore, we regard the up-quark sector as the case

of αf = 0, so that we regard 〈Pf 〉 as 〈Pf 〉 = 〈P 〉. Also, since we have taken ae = 0, we have to

regard 〈Pe〉 as 〈Pe〉 = 〈P 〉. Note that 〈P 〉 and 〈Ŷe〉 are diagonal, so that they are commutable

each other. Therefore, 〈Pe〉 does not play any essential physical role in the parameter fitting of

the masses and mixing of quarks. Hereafter, we denote 〈Pe〉 as 〈E〉 from the practical point of

view, except for a case of counting of R charge. On the other hand, in down-quark sector, we

cannot fit down-quark mass ratios md/ms and ms/mb without help of αd 6= 0. Therefore, we

regard down-quark sector as a case of 〈Pf 〉 = 〈E〉. Thus, we have the selection rule, 〈Pf 〉 = 〈P 〉
or 〈Pf 〉 = 〈E〉, as a phenomenological one. For neutrino sector, we have no phenomenological

information. For simplicity, we take a fewer parameter scheme (αν 6= 0 rather than φν
i 6= 0).

Hereafter, we will use the notation Pf as

Pf = P for f = u, e,

Pf = E for f = d, ν.
(2.16)

Sometimes, for convenience, we use notations Pu, Pe, and so on, although we identify Pu and

Pe as one flavon P , and also Pd and Pν as one flavon E.

The phase matrix 〈P 〉 does not affect mass ratios. Since 〈Pu〉 = 〈P 〉, the phase parameters

affects CP violation phase δqCP in the CKM mixing matrix VCKM . However, note that the

phase in 〈Pu〉 = 〈P 〉 can also affect CP violation phase δℓCP in the PMNS mixing matrix

UPMNS , because the phase in Pu can affect YR through Φu as shown in Eq.(2.5). This is the

most notable point in the present paper.3

The details are discussed in the next section, Sec.3.

2.3 R charge assignments

In this model, the number of flavons is larger than that of VEV relations. Therefore, in

general, we cannot uniquely determine R charges of flavons. Since we demand to assign R

charges as simple as possible, we put the following rules for simplicity:

(i) We assign the same R charge to flavons A and Ā:

R(A) = R(Ā), (2.17)

3 A similar model with Pu has been discussed in Ref.[10]. However, we has neglected a possible effect of 〈Pu

in the neutrino mixing.
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independently whether 〈Ā〉 = 〈A〉∗ or 〈Ā〉 = 〈A〉. Then, we obtain R charge relations

R(Ŷf ) = 2R(Φf ) ≡ 2rf (f = u, d, ν, e), (2.18)

and

R(Φf ) = R(Φ̄f ) = R(Sf ) + 2R(Φ0)− 2R(Pf ) (f = u, d, ν, e), (2.19)

from Eqs.(1.3) and (1.4), and

R(Pu) = R(Pe) = R(P ) ≡ 1

2
(1 + ∆),

R(Pd) = R(Pν) = R(E) ≡ 1

2
(1−∆),

(2.20)

from Eqs.(2.16) and (2.7). Therefore, from Eq.(2.19), we obtain the following relations:

R(Φe)−R(Se) = R(Φu)−R(Su) = 2R(Φ0)− (1 + ∆),

R(Φν)−R(Sν) = R(Φd)−R(Sd) = 2R(Φ0)− (1−∆).
(2.21)

(ii) We can regard that R charges of Ŷf are determined only by those of the SU(2)L singlet

fermions f c. Therefore, we simply assign

R(ℓHu) = R(ℓHd) = R(qHu) = R(qHd) ≡ rH + 2. (2.22)

Since those have different quantum number of U(1)Y , we can distinguish those from each other

in spite of the relation (2.22). Then, we obtain a simple R charge relation

R(Ŷf ) +R(f c) = −rH . (2.23)

For YR, we obtain

R(YR) = 2− 2R(νc) = 2rH + 2 + 2R(Ŷν), (2.24)

from Eqs.(2.1) and (2.23). On the other hand, from Eq.(2.5), R(YR) must be satisfied a relation

R(YR) = R(Φu) + 2R(Φe). (2.25)

From Eqs.(2.24) and (2.25), we have the following constraint

2R(Φe)− 4R(Φν) +R(Φu) = 2rH + 2. (2.26)

Even under the these constraints, we cannot still completely fix the R charges of whole

flavons. In the present model, R charge assignments are not so essential, so that it is enough

to assign R charges to distinguish flavons with the same U(3) from each other. That is, we are

satisfied with any R-charge numbers which satisfy the relations (2.18) - (2.26). Nevertheless, it

8



is desirable to have explicit R-charge assignments as simple as possible. Therefore, let us go on

our search for explicit R-charge assignments.

First, for simplicity, we put

R(Φ0) =
1

2
. (2.27)

Then. Eq.(2.21) becomes to be simpler relations

R(Sf ) = R(Φf ) + ∆ (f = e, u),

R(Sf ) = R(Φf )−∆ (f = ν, d).
(2.28)

Now, let us discuss possible R-charge assignments for Yukawaons Ŷf under the conditions

discussed above. If we have R(Ŷf ) = 0, then we can attach the field Ŷf on any term in su-

perpotential. Therefore, we require R(Ŷf ) 6= 0 for any f = e, ν, d, u. Also, we have to require

R(Ŷf Ŷf ′) 6= 0 for any combination of f and f ′. As a result, we have to consider that whole

R values of Ŷf are positive. Furthermore, we speculate that the values of R will be describe

by simple integers. Of course, the R charges have to satisfy the relation (2.26). Therefore, we

assign simpler R charges to the Yukawaons Ŷf on trial as follows:

(

R(Ŷe), R(Ŷu), R(Ŷν), R(Ŷd)
)

= (1, 2, 3, 4), (2.29)

that is,

(R(Φe), R(Φu), R(Φν), R(Φd)) =

(

1

2
, 1,

3

2
, 2

)

. (2.30)

This assignment satisfies the condition (2.25) for R(YR) with rH = −3.

In Table 1 , as a summary of Sec.2, we present the assignments of SU(2)L×SU(3)c×U(3)×U(3)′

and the R charges of the fields in the present model.

3 Parameter fitting

3.1 How many parameters?

Our mass matrices Yf for f = e, ν, d, u with the VEV relations discussed in Sec.1 and Sec.2

are summarized as follows:

Ye = ΦeΦ
∗

e,

Φe = P ∗Φ0Φ0P
∗,

Φ∗

e = PΦ0Φ0P,

Φ0 = diag(x1, x2, x3),

(3.1)
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Table 1: Assignments of SU(2)L×SU(3)c×U(3)×U(3)′. For R charges, see subsection 2.3. We

assign the same R charges for flavons A and Ā, e.g. R(A) = R(Ā). For a special choice, re, rν ,

ru and rd are taken as re = 1/2, rν = 3/2, ru = 2/2 and rd = 4/2.

ℓ = (ν, e) f c = νc, ec q = (u, d) f c = uc, dc Hu Hd

SU(2)L 2 1 2 1 2 2

SU(3)c 1 1 3 3∗ 1 1

U(3) 3 3∗ 3 3∗ 1 1

U(3)′ 1 1 1 1 1 1

R 2 −(2rf + rH) 2 −(2rf + rH) rH rH

Ŷf YR Φ̄f Φf Φ̄0 Φ̄0 Se,u S̄e,u Sν,d S̄ν,d

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

8+ 1 6 6 6∗ 3 3∗ 1 1 1 1

1 1 1 1 3 3∗ 6 6∗ 6 6∗

2rf rR rf 1/2 re,u −∆ rν,d +∆

P P̄ E Ē Θ̂f Θ̄R ΘΦf Θ̄Φf

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

6 6∗ 6 6∗ 8+ 1 6∗ 6 6∗

1 1 1 1 1 1 1 1

1

2
(1 + ∆) 1

2
(1−∆) 2− 2rf 2− rR 1−R(Sf )
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Yν = ΦνΦν + ξν1,

Φν = E Φ0(1+ aνe
iανX3)Φ0E,

(3.2)

Yu = ΦuΦ
∗

u + ξu1,

Φu = P ∗Φ0(1+ auX3)Φ0P
∗,

Φ∗

u = PΦ0(1+ auX3)Φ0P,

(3.3)

Yd = ΦdΦd + ξd1,

Φd = E Φ0(1+ ade
iαdX3)Φ0E,

(3.4)

Neutrino mass matrix with seesaw mechanism is given by

Mν = YνY
−1

R Yν ,

YR = YeΦu +ΦuYe,
(3.5)

Note that Φ∗

e in Eq.(3.1) and Φ∗

u in Eq.(3.3) are not Φe and Φu, respectively. Here, for conve-

nience, we have dropped the notations “〈” and “〉”. We also make no distinction of property

under U(3)×U(3)′, i.e. we denote Â and also Ā as A simply. Since we are interested only

in the mass ratios and mixings, we use dimensionless expressions Φ0 = diag(x1, x2, x3) (with

x21 + x22 + x23 = 1), P = diag(eiφ1 , eiφ2 , 1), and E = 1 = diag(1, 1, 1). Therefore, the parameters

ae, aν , au, ad, ξν , ξu, and ξd are re-defined by Eqs.(3.1)-(3.4).

In the phase matrix P defined by Eq.(1.10), physical values are only differences among

(φ1, φ2, φ3), so that we can take one of φi (i = 1, 2, 3) as zero in the parameter fitting for VCKM .

In this paper, we put φ3 = 0, so that free parameters are (φ1, φ2). Note that, as we stated in

Sec.2.2, P and P ∗ in Eq.(3.1) do not affect Ye practically, because Φ0 and Ye are diagonal, so

that P and P ∗ are commutable with Φ0 and Ye.

Therefore, in the present model shown in Eqs.(3.1) - (3.5), except for the parameters

(x1, x2, x3), we have 10 adjustable parameters, (aν , αν , ξν), (au, ξu), (ad, αd, ξd), and (φ1, φ2)

for the 16 observable quantities (6 mass ratios in the up-quark, down-quark, and neutrino sec-

tors, four CKM mixing parameters, and 4+2 PMNS mixing parameters). Especially, quark mass

matrices Mu = Yu and Md = Yd are fixed by two parameters (au, ξu) and (ad, αd, ξd), respec-

tively. Note that those parameters are family number-independent parameters. Therefore, in

order to fix those parameters, we use two inputs values, up-quark mass ratios (mu/mc,mc/mt)

and down-quark mass ratios (md/ms,ms/mb), respectively, as we discuss in the next subsection

3.2. After the parameters (au, ξu) and (ad, αd, ξd) have been fixed by the observed quark mass

rations, we have five parameters (aν , αν , ξν) and (φ1, φ2) as remaining free parameters. Processes

for fitting those five parameters are listed in Table 2. In subsection 3.3, we discuss the fitting of

four CKM mixing parameters, |Vus|, |Vcb|, |Vub| and |Vtd|, by adjusting two parameters (φ1, φ2).

11



Table 2: Process for fitting parameters. Nparameter and Ninput denote a number of free parame-

ters in the model and a number of observed values which are used as inputs in order to fix these

free parameters, respectively.
∑

N... means
∑

Nparameter or
∑

Ninput

Step Inputs Ninput Parameters Nparameter Predictions

1st mu/mc, mc/mt 2 au, ξu 2 —

md/ms, ms/mb 2 ad, αd, ξd 3 —

2nd |Vcb|, |Vub| 2 (φ1, φ2) 2 |Vus|, |Vtd|, δqCP

3rd sin2 2θ12, sin
2 2θ23, Rν 3 aν , αν , ξν 3 sin2 2θ13, δ

ℓ
CP

2 Majorana phases, mν1

mν2
, mν2

mν3

option ∆m2
32 mν3 (mν1,mν2,mν3), 〈m〉

∑

N... 9 10

Also, in subsection 3.4, we do the fitting of PMNS mixing (sin2 2θ12, sin
2 2θ23, and sin2 2θ13)

and neutrino mass ratio (Rν ≡ ∆m2
21/∆m2

32) by adjusting three parameters (aν , αν , ξν).

3.2 Quark mass ratios

First let us fix values of (au, ξu) from the up-quark mass ratios. The observed values of the

up-quark masses at µ = mZ [13] are

ru12 ≡
√

mu

mc
= 0.045+0.013

−0.010, ru23 ≡
√

mc

mt
= 0.060 ± 0.005. (3.6)

We obtain four solutions of (au, ξu) which can give the values (3.6). Among them only one

solution

(au, ξu) = (−1.4715,−0.001521), (3.7)

can give a reasonable prediction of the PMNS mixing as we discuss later.

Secondly, let us fix values of (ad, αd, ξd) from the down-quark mass ratios. From the observed

down-quark mass ratios [13]

rd12 ≡
md

ms
= 0.053+0.005

−0.003, rd23 ≡
ms

mb
= 0.019 ± 0.006, (3.8)

or [14]

rd12 ≡
md

ms
= 0.050+0.002

−0.001, rd23 ≡
ms

mb
= 0.031 ± 0.005, (3.9)

we determine the parameters (ad, ξd, αd) as follows:

(ad, αd, ξd) = (−1.4733, 15.694◦ ,+0.004015), (3.10)
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which leads to the numerical results as follows: rd12 = 0.0612, rd23 = 0.0312. These values are

inconsistent with the observed values (3.9), but, roughly speaking, those are consistent with

(3.10). We think that the light quark mass values are still controversial.

Here, we have tried to fix the parameters (ad, αd, ξd) in the down-quark sector by using

input parameters [13] for rd12 and rd23. However, since we have three parameters for two input

values md/ms and ms/mb, we cannot fix our three parameters. It is more embarrassing that

there is no solution of ms/mb ∼ 0.019 in the (ad, αd, ξd) parameter region. Nevertheless, we

found that the minimal value of ms/mb is ms/mb ∼ 0.03 at (ad, αd, ξd) ∼ (−1.47, 16◦, 0.004)

which can give a reasonable value of md/ms at the same time too. Therefore, we take the values

in Eq. (3.10), which leads to rd12 = 0.0612 and rd23 = 0.0312. Note that the value rd23 = 0.0312 is

considerably large compared with rd23 ≃ 0.019 by Xing et al. [13], while the value is consistent

with rd23 ≃ 0.031 by Fusaoka and Koide [14]. The values md(µ) and ms(µ) are estimated at a

lower energy scale, µ ∼ 1 GeV, so that we consider that the ratio rd12 at µ = MZ is reliable. On

the other hand, the value mb(µ) is extracted at a different energy scale µ ∼ 4 GeV from µ ∼ 1

GeV, so that the value mb(MZ) is affected by the prescription of threshold effects at µ = mt,

while the value ms(MZ) affected by those at µ = mc, µ = mb and µ = mt. We consider that

as for the ratio rd23 at µ = MZ the value is still controversial. Anyhow, we have fixed three

parameters (ad, αd, ξd) only from two values md/ms and ms/mb.

3.3 CKM mixing

Next, we discuss CKM quark mixing. Since the parameters (au, ξu) and (ad, αd, ξd) have

been fixed by the observed quark mass rations, the CKM mixing matrix elements |Vus|, |Vcb|,
|Vub|, and |Vtd| are functions of the remaining two parameters φ1 and φ2. In Fig. 2, with taking

ξu = −0.001521, au = −1.4715, ad = −1.47312, αd = 15.7◦, and ξd = 0.004091, we draw allowed

regions in the (φ1, φ2) parameter plane which are obtained from the observed values [15] of the

CKM mixing matrix elements and the observed value [16] of the CP violating phase parameter

δqCP in the standard expression of VCKM given by,

|Vus| = 0.22536 ± 0.00061,

|Vcb| = 0.0414 ± 0.0012,

|Vub| = 0.00355 ± 0.00015,

|Vtd| = 0.00886+0.00033
−0.00032 ,

δqCP = 69.4◦ ± 3.4◦.

(3.11)

Here, in order to fix the values of (φ1, φ2) we use only two values of the CKM matrix elements as

input values in the present analysis, so that the remaining tree are our predictions as references.

As shown in Fig. 1, all the experimental constraints on CKM parameters are satisfied by
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Figure 1: Allowed region in the (φ1, φ2) parameter plane obtained by the observed values of the

CKM mixing matrix elements |Vus|, |Vcb|, |Vub|, and |Vtd|. We draw allowed regions obtained

from the observed constraints of the CKM mixing matrix elements shown in Eq. (3.11), with

taking (au, ξu) = (−1.4715,−0.001521) and (ad, αd, ξd) = (−1.4733, 15.694◦ ,+0.004015) . We

find that the parameter set around (φ1, φ2) = (−41.815◦,−15.128◦) indicated by a star (⋆) is

consistent with all the observed values.

fine tuning the parameters φ1 and φ2 as

(φ1, φ2) = (−41.815◦,−15.128◦), (3.12)

which leads to the predicted values for the CKM mixing matrix elements and the CP violating

phase parameter δqCP as follows:

|Vus| = 0.2261,

|Vcb| = 0.0426,

|Vub| = 0.00360,

|Vtd| = 0.00920,

δqCP = 72.4◦.

(3.13)

In spite of our aim described in the Sec. 1, we are forced to introduce family number-

dependent parameters (φ1, φ2) in the present model, too, as the same as in the previous model

[10]. However, our aim was to describe all the masses and mixing of quarks and leptons in terms

of family number-independent parameters expect for the charged lepton masses. Therefore, the

introduction of the phase parameters φi were against our aim and unwelcome as it is. In Sec.4,

we will try to denote these phase parameters φi in terms of the observed charged lepton masses

mei.
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3.4 PMNS mixing

Now let us discuss the PMNS lepton mixing. We have already fixed the four parameters

au, ξu, φ1 and φ2 as Eqs. (3.7) and (3.12). The remaining free parameters in the neutrino sector

are only (aν , αν , ξν). We determine the parameter values of (aν , αν , ξν) as follows:

(aν , αν , ξν) = (−2.59,−27.3◦ ,−0.0115), (3.14)

which are obtained so as to reproduce the observed values [15] of the following PMNS mixing

angles and Rν ,

sin2 2θ12 = 0.846 ± 0.021, sin2 2θ23 > 0.981, sin2 2θ13 = 0.093 ± 0.008, (3.15)

Rν ≡ ∆m2
21

∆m2
32

=
m2

ν2 −m2
ν1

m2
ν3 −m2

ν2

=
(7.53 ± 0.18) × 10−5 eV2

(2.44 ± 0.06) × 10−3 eV2
= (3.09 ± 0.15) × 10−2. (3.16)

-34.0　     -30.5        -27.0        -23.5       -20.0

-2.1

-2.3

-2.5

-2.7

-2.9

-3.1

-3.3

0.9990.9990.981
0.981

0.846

0.825

0.867

0.085
0.090

0.100

0.0309

0.0324
0.0294

Figure 2: Contour curves of the center, upper, and lower values of the observed PMNS mixing

parameters sin2 2θ12, sin
2 2θ23, sin

2 2θ13, and Rν in the (aν , αν) parameter space. We draw the

curves for the case of ξν = −0.0115 and (φ1, φ2) = (−41.815◦,−15.128◦) with taking (au, ξu) =

(−1.4715,−0.001521). We find that the parameter set around (aν , αν) = (−2.59,−27.3◦) indi-

cated by a star (⋆) is consistent with all the observed values.

In Fig. 2, we show the contour plots of the observed PMNS mixing parameters sin2 2θ12,

sin2 2θ23, sin
2 2θ13, and Rν in the (aν , αν) parameter space for the case of ξν = −0.0115 with

taking (φ1, φ2) = (−41.815◦,−15.128◦) and (au, ξu) = (−1.4715,−0.001521). It is found that

all the PMNS mixing parameters are well consistent with the observe values in Eqs. (3.15) and

(3.16). As shown in Fig. 2, all the experimental constraints on the PMNS mixing parameters
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are satisfied by fine tuning the parameters aν , αν , and ξν as

(aν , αν , ξν) = (−2.59,−27.3◦ ,−0.0115), (3.17)

which leads to the predicted values for the PMNS mixing angles, Rν , and the Dirac CP violating

phase parameter δℓCP in the standard expression of UPMNS as follows:

sin2 2θ12 = 0.857,

sin2 2θ23 = 0.993,

sin2 2θ13 = 0.0964,

Rν = 0.0316,

δℓCP = −76.0◦.

(3.18)

Our model predicts δℓCP = −76.0◦ for the Dirac CP violating phase in the lepton sector. This

is very interesting because the value shows a size similar to δqCP = +72.4◦ in the CKM mixing

matrix.

3.5 Neutrino masses

We can predict neutrino masses, for the parameters given by (3.7), (3.12), and (3.14), as

follows

mν1 ≃ 0.00046 eV, mν2 ≃ 0.00879 eV, mν3 ≃ 0.0502 eV, (3.19)

by using the input value [15] ∆m2
32 ≃ 0.00244 eV2.

We also predict the effective Majorana neutrino mass [17] 〈m〉 in the neutrinoless double

beta decay as

〈m〉 =
∣

∣mν1(Ue1)
2 +mν2(Ue2)

2 +mν3(Ue3)
2
∣

∣ ≃ 3.8× 10−3 eV. (3.20)

In Table 3, we list our predictions of the CKM and the PMNS mixing parameters and quark

mass ratios and neutrino masses together with the observed values .

4 VEV relation between P and Φ0

So far, we have tried to described all Yukawaon VEV matrices 〈Ŷf 〉 by using only the

observed charged lepton masses mei as input values. We have also tried to understand CP vio-

lating phase only by using phase parameters αf which are phases of family number-independent

parameters af . Nevertheless, all such attempts have failed because we always needed a phase

matrix P in order to fit reasonable CKM mixing and quark mass ratios. In this paper, we accept

the existence of P , and we try to understand the values of the phase parameters φi in P from

the charged lepton mass values mei.

In the present model, we have flavon VEVs with diagonal form, P , P̄ , E, Ē, Φ0, Φ̄0, Φe,

Φ̄e, and Ŷe. (Here, we omit “〈” and “〉” .) In considering combinations of U(3) 8 + 1 scalars
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Table 3: Predicted values vs. observed values.

|Vus| |Vcb| |Vub| |Vtd| δqCP ru12 ru23 rd12 rd23

Pred 0.2261 0.0426 0.00360 0.00920 72.4◦ 0.0458 0.0600 0.0611 0.0312

Obs 0.22536 0.0414 0.00355 0.00886 69.4◦ 0.045 0.060 0.053 0.019

±0.00061 ±0.0012 ±0.00015 +0.00033
−0.00032 ±3.4◦ +0.013

−0.010 ±0.005 +0.005
−0.003

+0.006
−0.006

sin2 2θ12 sin2 2θ23 sin2 2θ13 Rν [10−2] δℓCP mν1 [eV] mν2 [eV] mν3 [eV] 〈m〉 [eV]

Pred 0.857 0.993 0.0964 3.16 −76.0◦ 0.00046 0.00879 0.0502 0.00377

Obs 0.846 0.999 0.093 3.09 - - - - < O(10−1)

±0.021 +0.001
−0.018 ±0.008 ±0.15

out of those flavons, we have to consider a combination without the parameter ∆ for E and P

because the R charges of Φ0 and Φe do not contain the parameter ∆. Only a combination with

P whose R charge does not include the parameter ∆ is

(PĒ + EP̄ )ji = δji (e
iφi + e−iφi) = δji 2 cosφi, (4.1)

with R charge of R = 1

2
(1 + ∆) + 1

2
(1−∆) = +1. On the other hand, since we have R charges

R(Φe) =
1

2
, R(Φ0) =

1

2
, (4.2)

for Φe and Φ0 as discussed in Sec.2.3, we have only two combinations which have R charge

of R = +1, (Φe)ik(Φ̄e)
kj and (Φ0)iα(Φ̄0)

αj . [Note that (Φ0Φ̄e + ΦeΦ̄0) cannot be a candidate,

because it has R = +1 but it is not a U(3)′ singlet.] Therefore, we can take superpotential

W = λ1[(PĒ + EP̄ )Θ̂P ] + λ2[(ΦeΦ̄e + bΦ0Φ̄0)Θ̂P ], (4.3)

so that we obtain

k(PĒ + EP̄ ) = ΦeΦ̄e + bΦ0Φ̄0, (4.4)

i.e.

2k cosφi = x4i + b x2i , (4.5)

where we have used the dimensionless expressions of P , E, Φ0 and Φe, Eq.(2.9), Eq.(1.7) with

v0 = 1, and so on.

Eliminating the coefficient k in Eq.(4.5), we obtain two equations

cosφ1

cosφ3

=
x41 + b x21
x43 + b x23

, (4.6)

cosφ2

cosφ3

=
x42 + b x22
x43 + b x23

. (4.7)
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In Sec.3, we have obtained numerical results φ1 = −41.815◦ and φ2 = −15.128◦ by putting

φ3 as φ3 = 0. In order to avoid confusing, we use notation φ̃i for these numerical results of φi.

Since we can choose any value of φ0 in φi → φi + φ0, we define φi in Eq.(4.5) as

φ1 = φ0 + φ̃1, φ2 = φ0 + φ̃2, φ3 = φ0. (4.8)

The equations (4.6) and (4.7) have two unknown parameters φ0 and b under the input values

φ̃1 and φ̃2. So, we obtain

φ0 = −45.903◦, b = −1.11586, (4.9)

which means

φ1 = −87.718◦, φ2 = −61.031◦, φ3 = −45.903◦. (4.10)

Regrettably, since we need two input parameters φ0 and b in order to predict the values

φ̃1 and φ̃2, the present model has no predictability for phase parameters (φ1, φ2, φ3). (If we use

the fitting value φ̃1 = −41.815◦ as input value in addition to the input value b = −1.11586, we

can predict the value φ̃2 together with the value of φ0.) However, note that the parameters φi

are family number-dependent parameters, while the parameters φ0 and b are family number-

independent parameters. Therefore, the aim of the Yukawaon model that we understand mass

spectra and mixings of all quarks and leptons only in terms of charged lepton mass spectrum

and without using any other family number-dependent parameters has been achieved in this

scenario.

5 Concluding remarks

We have tried to describe quark and lepton mass matrices by using only the observed

values of charged lepton masses (me,mµ,mτ ) as input parameters with family number-dependent

values. Namely, we have investigated whether we can describe all other observed mass spectra

(quark and neutrino mass spectra) and the quark- and lepton-mixings (the CKM and the PMNS

mixings) without using any other family number-dependent parameters. In conclusion, as seen

in Sec.3, we have obtained reasonable results. Our predicted values are listed in Table 3.

As seen in Sec.3, we have still used the phase matrix P defined by Eq.(1.10) in order to fit

the observed CKM mixing parameters similarly to the past Yukawaon models. However, as seen

in Sec.4, the most remarkable point of the present paper is that we have succeeded in describing

the family number-dependent parameters (φ1, φ2, φ3) by the family number-independent pa-

rameters φ0 and b. Therefore, the main aim in the Yukawaon model have been achieved in the

present work. However, regrettably, the mechanism proposed has no predictability of the phase

parameters φi, although it transforms unwelcome family number-dependent parameters into

family number-independent parameters. The mechanism will be improved in a future version.

The successful results in the present work suggests the following items: (i) the flavor basis

in which the charged lepton mass matrix Me is diagonal is more fundamental basis in the flavor
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physics. (ii) The parameters (me,mµ,mτ ) (i.e. (x1, x2, x3) defined by Eq.(1.7)) are fundamen-

tal parameters in quark and lepton physics. Note that the parameter values (me,mµ,mτ ) are

extremely hierarchical, while the parameter values (x1, x2, x3) are mildly hierarchical. Under-

standing of the values of (x1, x2, x3) will be left to our next task in future. Then, the relation

(me+mµ+mτ )/(
√
me+

√
mµ+

√
mτ )

2 = 2/3 [18] may play an essential role in investigating the

origin of the parameter values (x1, x2, x3). For reference, we give a trial model on the charged

lepton mass relation within the framework of the present Yukawaon model in Appendices A and

B, although this is only a trial one.

In this model, there are four phase parameters αν , αd and (φ̃1, φ̃2). The parameters αν and

αd play a role in giving mass ratios in the neutrino and down-quark sectors, respectively. The

parameters which purely contribute to the CKM and PMNS mixing matrices as CP violating

phase parameters are only (φ̃1, φ̃2). These parameters can commonly contribute to CKM and

PMNS mixing matrix, so that those play an essential role in both the predicted values of δqCP

and δℓCP . It is interesting that, in spite of different values between αd and αν , the results of CP

violating parameters δqCP and δℓCP take a similar magnitude, δqCP ∼ −δℓCP ∼ 70◦.

In conclusion, it seems to be certain that all of the observed hierarchical structures of

quark and lepton masses and mixings are commonly originated from the hierarchical values of

(me,mµ,mτ ) which are described by the fundamental parameters (x1, x2, x3). Of course, the

present Yukawaon model has to be still improved with respect to the R charge assignments,

number of flavons, number of adjustable parameters, CP violating phase parameters, and so on.

In addition to this, our next task is to investigate the origin of the parameters (x1, x2, x3).
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Appendix A: Charged Lepton Mass Relation in the Yukawaon Model

The charged lepton mass relation [18]

K ≡ me +mµ +mτ

(
√
me +

√
mµ +

√
mτ )2

=
2

3
, (A.1)

is one of the main motives of the Yukawaon model in the earlier stage [19]. The relation (A.1)

can be understood from VEV of U(3) 8+ 1 scalar, 〈Φ̂e〉 = diag(
√
me,

√
mµ,

√
mτ) as

K =
Tr[Φ̂eΦ̂e]

(Tr[Φ̂e])2
, (A.2)

where we have omitted VEV notation “〈” and “〉” for simplicity. Also, hereafter, for simplicity,

we denote Tr[A] as [A]. However, in the present scenario of the Yukawaon model, there is no

8+1 scalar Φ̂e, but we have only 6 and 6∗ scalars Φe and Φ̄e. The purpose of the present paper

is to understand mass ratios and mixings of quarks and leptons under the given parameters

(me,mµ,mτ ), and it is not to investigate that the origin of the values (me,mµ,mτ ).

However, in this Appendix, let us try to understand the mass relation (A.1) according to

an idea suggested in Ref.[19]. First, let us introduce 8 + 1 scalar Φ̂e. By using the following

superpotential:

W = µ[Φ̂eΘ̂e] + λe[(ΦeĒ + EΦ̄e)Θ̂e], (A.3)

we obtain a relation

Φ̂e = ΦeĒ + EΦ̄e. (A.4)

Since R(E) = 1

2
(1−∆) as seen in Eq.(2.19), Φ̂e has R charge as

R(Φ̂e) = 1− 1

2
∆. (A.5)

Let us take ∆ = +1, so that we have

R(Φ̂e) = R(Φe) =
1

2
. (A.6)

This choice (A.6) causes no problem because Φ̂e and Φe have different transformation under

U(3)×U(3)′. We will comment on the choice R(E) = 0 later.

Since R(Φ̂e) = 1/2, we assume the following superpotential

W =
1

Λ

(

λ[Φ̂eΦ̂e]
2 + λ′[Φ̂e])

2[Φ̂8Φ̂8]
)

, (A.7)
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where Φ̂8 is an octet part of the nonet Φ̂e defined by

Φ̂8 ≡ Φ̂e −
1

3
[Φ̂e] 1. (A.8)

The first term in Eq.(A.7) is the conventional nonet-nonet term. The second term is

an (octet-octet)×(singlet-singlet) interaction term [19] although the second term is still SU(3)

invariant. In order to derivate the relation (A.1), the assumption of the second term is essential.

By noticing that the second term can be expressed as

[Φ̂eΦ̂e][Φ̂e]
2 − 1

3
[Φ̂e]

4, (A.9)

we obtain

∂W

∂Φ̂e

=
1

Λ

{

2
(

2λ[Φ̂eΦ̂e] + λ′[Φ̂e]
2
)

Φ̂e + 2λ′

(

[Φ̂eΦ̂e]−
2

3
[Φ̂e]

2

)

[Φ̂e]1

}

. (A.10)

The coefficients of Φ̂e and 1 must be zero in order to have a nontrivial solution of Φ̂e (non-zero

and non-unit matrix form). Thus, we demand

2λ[Φ̂eΦ̂e] + λ′[Φ̂e]
2 = 0, (A.11)

and

[Φ̂eΦ̂e]−
2

3
[Φ̂e]

2 = 0. (A.12)

Eq.(A.11) requires a special relation between λ and λ′. Note that the relation (A.12) is inde-

pendent of the explicit value of λ′.

Let us comment on the choice of ∆ = +1. This choice means that R(E) = 0, so that a

U(3) nonet (EĒ) takes R(EĒ) = 0. Therefore, the factor EĒ can be inserted into any terms

with R = 2 in the superpotential. However, since 〈EĒ〉 = 1, this does not affect the obtained

VEV relations practically. The choice ∆ = +1 also gives R charges of Sf as

(R(Sν), R(Sd), R(Se), R(Su)) =

(

1

2
, 1,

3

2
, 2

)

. (A.13)

It is interesting that the values (1/2, 1, 3/2, 2) in (A.13) are the same as the values of Φf as seen

in Eq.(2.30), but the arrangements are different, i.e. (e, u, ν, d) for R(Φf ), while (ν, d, e, u) for

R(Sf ).
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Appendix B: Alternative Scenario for Charged Lepton Mass Relation

In Appendix A, we have introduced the new flavon Φ̂e in addition to the flavons Φe and

Φ̄e. So far, we have adhered the idea that the Yukawaon VEV structures take a universal form

Ŷf = Φf Φ̄f + ξf1 (f = e, ν, d, u). However, if we accept an idea that a structure of Ŷe is

exceptional, we can introduce Φ̂e without introducing Φe and Φ̄e as following

Ŷe = Φ̂eΦ̂e, Φ̂e = Φ0Φ̄0. (B.1)

This expression (B.1) is rather simpler compared with the expression Ŷe = ΦeΦ̄e with P̄eΦeP̄e =

Φ̄0SeΦ̄0 given in Sec.2. Therefore, in this scenario, without Φe and Φ̄e [i.e. without Eqs.(A.3) -

(A.6)], we can use (A.7), so that we can obtain the charged lepton mass relation (A.1).

However, in this scenario, since we have R charges

R(Ŷe) = +1, R(Φ̂e) =
1

2
, R(Φ0) =

1

4
, (B.2)

we cannot put the Φ0Φ̄0 term in Eq.(4.3). In order to avoid this trouble, in a superpotential for

PĒ+EP̄ , we a little change the scenario in Sec.4. We assume a mechanism similar to Eqs.(2.1)

- (2.3):

WP =
[(

λ1(PĒ + EP̄ ) + λ2Φ̂eΦ̂e

)

Θ̂P

]

+
[

λ′

1(PĒ + EP̄ ) + λ′

2Φ̂eΦ̂e

]

[Θ̂P ], (B.3)

so that we obtain

k(PĒ + EP̄ ) = Φ̂eΦ̂e + ξP1, (B.4)

i.e.

2k cosφi = x4i + ξP , (B.5)

instead of Eqs.(4.3) and(4.4), respectively. From Eqs.(4.5) and (4.6) with ξP instead of b terms,

we obtain numerical solution

φ0 = 29.222◦, ξP = −5.9619, (B.6)

so that

φ1 = −12.623◦, φ2 = 14.069◦, φ3 = 29.222◦. (B.7)

Maybe, other scenarios are also possible. The purpose in this paper is not to propose

a scenario which derives the relation (A.1) but to demonstrate a possibility that the family

number-dependent parameters (φ1, φ2, φ3) can, in principle, be described by a family number-

independent parameter. More reasonable scenario will be given in future.
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