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Abstract.

We present a method for computing the partition function eikbron ensemble taking into account the interaction of
calorons. We focus on caloron-Dirac string interaction simolw that the metric that Diakonov and Petrov offered work8 w
in the limit where this interaction occurs. We suggest cotimguthe correlation function of two polyakov loops by apply
Ewald’s method.
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INTRODUCTION

KvBLL instantons or calorons with non-trivial holonomy ca@taken as the degrees of freedom in Yang-Mills vacuum
in any temperature. The non-interacting ensemble of cakhas been studied by Diakonov and Petrov [1]. They
obtained the heavy quark potential by calculating the ¢atim function of two Polyakov loops:

e PAFaa = (TrL(r) TrLT(r)). 1)

To compute the correlation function, the partition funotimf caloron ensemble has to be calculated. Therefore, one
has to find the contribution of a caloron in the partition fiime. Diakonov and Gromov [2] computed this contribution
using the metric of the caloron moduli space in terms of Ned&éht SU(N) BPS monopoles
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WhereYp represents the caloron collective coordinates and thevikatad is the determinant of the moduli space metric
tensor. Diakonov anet al.[3] computed the full partition function for KvBLL instanih in SU(2) gauge theory:
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where C is a constant and
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= Tt V22 P (v) = [T (- 73) —v][v-nT(1- %)].

Using the partition function Z, for computing the corretatifunction of Polyakov loops in efj] 1, one can obtain the
potential between a quark-anti quark pair.

In this research we try to add the contribution of the intén@ccalorons to the calculations. As a result of this change
the metric of the interacting calorons moduli space shogldnodified. However, one may keep the same moduli
space with the same metric as the non interacting calorartsntsoducing a potential on the moduli space which
corresponds to the interaction between calorons. The ragkndf this research is to give some ideas about computing
the partition function of the interacting calorons and fipahlculating the potential between static quarks. Howeve
one can compute correlation function of the Polyakov loojtsaut using metric by applying Ewald’s method.

In the next two sections we use the sum ansatz idea and theedlirac string interaction to suggest how one may
calculate the partition function. In section 4, we discussua the caloron-anticaloron ansatz and in section 5, wgearg
about the interval where the metric of Diakonov and Petrqoisitive definite and we explain that our calculations in
section 3 is done in this interval. In section 6, we apply Elgaiethod to caloron ensemble for large caloron radius
limit.
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SUM ANSATZ

Even though, two calorons do not interact at large distaircatgebraic gauge but they may interact when they get
close to each other.

Consider two calorons with non-trivial holonomies. Be@#g's of these two calorons do not vanish even at spatial
infinity, calorons correlate with each other at infinite sgyian. Therefore one should not simply add two single
caloron gauge fields. It is possible to choose algebraicgangvhich all components of potential of a caloron vanish
at spatial infinity, and then add the potentials of calorons:

Ay =Ap +A?. 3)

We recall that to compute the partition function of sum ansa,’s in eq.[3 should be transformed back to the
periodic gauge. This gauge transformation is dependehgetbalonomy, therefore two calorons should have identical
holonomies. The field strength of this ansatz can be writsen a

Huy (A® +A®) = Ry (AY) 4 Fuy (A?) +Fy (AY,A2)

where the additional term (the third one on the right) is du¢hte non-linear nature of the theory. Calculating the
action, we have an extra term in addition to the action ofvildial calorons that can be interpreted as the effective
classical potential corresponding to the interaction leetwtwo calorons

1 2 .
exp(—Snt) = exp <_4_gz [d* (Hﬁv - _;Fuzv (Am)) ) . (4)

Now we should write the partition function of two interagjicalorons. We should note that in computing the partition
function we change the dominant path to combination of twioroas in periodic gauge, so we must consider the
guantum fluctuation about this new path and compute the enatrd quantum potential. But as the first order of
approximation we can use the metric of one individual caland write the partition function as:

1 2
Zoe = = [ Ze S, (5)
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whereZ; has been derived in €g. 2 .

Now we study the ensemble of K calorons. To simplify the claltons we restrict ourselves to a system which consists
of many pairs of calorons. The calorons in each pair inteséitt each other but each pair does not interact with the
others. The grand canonical partition function of these KKspzan be written as:

(fZZC)K
K

Z:ZfKZK:

Where f is the fugacity and should be calculated, Zndcan be obtained from elgl 5. With this partition function, one
can calculate the correlation function of Polyakov loopd #ien compute the heavy quarks potential.

In the next section, we argue about another alternativedindie the interaction between calorons in the partition
function.

CALORON-DIRAC STRING INTERACTION

The next idea for computing the partition function of intgtilmg calorons is using the caloron-Dirac string inter@cti
which has been studied by Gerhaldal. [4]. The interaction between the caloron and the Diramgthad not been
taken into account in the non interacting caloron partifioemction and therefore this is a new effect in computing
the partition function of interacting calorons where twdocans are located on top of each other. It means that two
calorons interact with each other by their Dirac strings.

In the large caloron radius limipp > B , wherep is the radius of the caloron, the vector potential of the raio



in algebraic gauge is dominantly Abelian and governed bythiird component in color space. For convenience, the
monopole axis is taken along the third axis.
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This dominant component is called a Dirac string.

Since the interaction due to the Dirac string is not neglgitvhen an object (monopole or caloron) is placed on the
top of the Dirac string of a caloron, the ordinary sum ansatzmot be used for the superposition of caloron and this
object. Gerholdt al.[4] derived the superposition by removing the Dirac stiimthe algebraic gauge doing a proper
gauge transformation (G), then they added the gauge fieltiésafaloronand that object and finally applied the inverse
gauge transformation to have the original Dirac string batie result is:

ALlnaJ ( ) AuCal (X) + e—iG(x)rgAuObj (X) eiG(X)T3’ (6)

Therefore the effect of the Dirac string is included by addin unchanged caloron to a gauge rotated object.

Now consider two interwined calorons such that one of theapoles of a caloron is located on the top of the Dirac
string of the other caloron and vice versa. In this case opeldirotate only the monopole of each caloron which
touches the Dirac string of the other caloron as explaineghjif. These rotations do not affect the Dirac strings,
because monopoles rotate around the monopole axis whidbrig ¢he third axis. We should recall that the Dirac
strings are also defined along the third axis. Applying thesations, one can repeat the approach of the previous
section and obtain the field strengthA{f and use e(.l4 to compute the interaction term. Again, weicestirselves

to a system which consists of many pairs of calorons. Thea@atoin each pair interact with each other but each pair
does not interact with the others. We can compute the martitinction of K non-interacting pairs of calorons as in
previous section.

CALORON-ANTICALORON ANSATZ

The sum ansatz idea can be applied to a caloron and antinagstem. Although the combination of solutions of
caloron and anticaloron is not the solution of equation ofiambut both of these objects minimize the action and
may have identical integral measure and partition funstidiney may be saddle points of the partition function. In
1984, Diakonov and Petrov![5] argued about the instantdniastanton solutions and wrote:"Thus, from physical
considerations it is clear that the main contribution to plagtition function should be given not by exact classical
solutions, but by approximate solutions of the instantoti-@stanton type. This should not surprise us since the
approximate solutions may have a larger entropy (= stadiktveight) than the exact solutions which correspond to the
local minima of the action. Anyhow, one is interested in maixing the partition function of a theory, and instanton-
anti instanton configurations may well give a larger conttitn to it than those of multi-instantons." Therefore rthe

is a possibility of constructing the partition function finacaloron anticaloron pairs instead of calorons or anticals
only. However, we recall that the caloron and anticaloroousth have the same holonomy if one wants to do an
appropriate gauge transformation, from algebraic gaugfegtperiodic gauge, on the combination. .

Since the function G which is applied to remove the Diramgtiof anticaloron is the same as the caloron’s [4], we
can apply the caloron-Dirac string interaction to the aateanticaloron ansatz. Thus, we can consider an ensemble
with equal numbers of calorons and anticalorons in which caderon interacts with only one anticaloron (either
interaction due to the ordinary sum ansatz or caloron-Bitdig interaction). Then, we again assume that these pairs
do not interact and we use the same procedure as the preeicticnsto calculate the partition function.

THE METRIC OF MODULI SPACE

In 2009, Bruckmanet al. [6] showed that the metric of moduli space of dyons whichkbireov and Petrov [7] offered,
does not have the essential requirement of positive defieéis throughout the whole configuration space. They argue
that this metric is positive definite only for the low dyon déwp.

We recall the approximate metric of the same kind dyons in2pig(|7]:

o < o Z/Z/d 2;_2/5/(]' )



The eigenvalues of this metric are:
4
Al = 27'[,/\2 =21m— a,
where d is the dyon separation. Det (G), which represents¢ight factor, is positive fod > 3 = % , where T shows
the temperature. Therefore for the dyon separation snialder this critical distance, Where two dyons overlap, this
approximate metric does not work and one should refine ite (fibtric of different kind dyons is positive definite for
all dyon separations, because the minus sign in the abormufarchanges to plus sign and therefore the eigenvalues
of the metric are positive for all d). But we recall that foetbaloron-Dirac string interaction, we take the caloron in
the large raduis limitp > 3 , where the vector potential of the caloron is dominantiyliabe Rewriting the limit of
positive definiteness,
2
T
d= i > 2E7
B T

yielding% > g ~ 0.45 . Therefore in the limit where we need to consider the Diteng, the metric which Diakonov
and Petrov offered is positive definite and works well. Wertdbootice that for calculating the partition function from
sum ansatz, one should either consider the calorons inte faduis limit or modify the metric.

EWALD'SMETHOD

To deal with the problem of positive definiteness, Bruckmanal. [8] used the Ewald’s method to compute the
correlation function of two polyakov loops in £f.1 for nartéracting ensemble. The vector potential for 2K dyons
ensemble in the abelian limit is

Ay(r)= <6u02rer %

2
z (r—r" )03,
m=1

J\4x

whereay (r;q) = —qn,dvIn(r —2).
Then, one rewrites the polyakov loop

L(r)=3Tr (exp(i 1deXvo (Xo,l’)>> — L(r) =cos(2nw+ +d(r))
0
— L(r)] = —sin(£d(n))

)

w:y4

whered(r) = 2 Z ‘ |salong rang function. For maximal non-trivial holonorbgth dyons of the SU(2) gauge

group have the same actlon. Therefore

I fertarfo(irtaty) 1 fartarto(rtit})
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To use Ewald’s method, one should mimic the infinite spacedoypding the system to the so-called "super cell” of
volumelL_® with finite dyon density. Each super cell is represented kyZ3 , therefored(r) can be written as

Z Z|r—rJ—nL|

nez® !

wherej = (i,m). Then, one should split the above term to a "long-range pad'a "short-range part". The short-range
part vanishes and the Fourier transform of the long-rangiecpaverges at spatial infinity. Back to our work, we have
calorons instead of dyons in the limit pf> 3 . The vector potential of the caloron in this limit is

1
Au(r) = —ioslﬁ’vav'nw(r),



whereW(r) = m% andz; andz represent the positions of two constituent monopoles.dfahserving

point is far from the caloron, them>> z;, . In the first approximation, Wheré andé (i=1,2) are negligible, we
can write the vector potential as

1 1
Aolr) HOSTIC znzzaz, r—r,—n |
€

Since we have a long-range vector potential, we can use tiaddBwnethod.

Now we can consider the two interacting calorons as one bhjetwrite its vector potential as in Eb.6 . This vector
potential is also long-range and we can use Ewald’s methoaifensemble of K non-interacting two-caloron objects
with appropriate separation and repeat the procedureo$éution two compute the correlation function of Polyakov
loops.

CONCLUSION

In this research we try to suggest computing the potenttaléen interacting calorons with non-trivial holonomidseT
caloron-Dirac string interaction may be used to obtain titeracting potential between two calorons. Having this
potential in hand, we have two ways to compute the corraldtiaction and then the heavy quark potential. One way
is calculating the partition function by computing the nietf the moduli space of the caloron ensemble and the other
one is using the Ewald’s method to include the effect of timgtcange vector potential of calorons in the limit where

p>p.
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