Lawvere-Tierney sheaves, factorization systems, sections and *j*-essential monomorphisms in a topos

Zeinab Khanjanzadeh Ali Madanshekaf

Department of Mathematics

Faculty of Mathematics, Statistics and Computer Science Semnan University

Semnan

Iran

emails: z.khanjanzadeh@gmail.com amadanshekaf@semnan.ac.ir

Abstract

Let j be a Lawvere-Tierney topology (a topology, for short) on an arbitrary topos \mathcal{E} , B an object of \mathcal{E} , and $j_B = j \times 1_B$ the induced topology on the slice topos \mathcal{E}/B . In this manuscript, we analyze some properties of the pullback functor $\Pi_B : \mathcal{E} \to \mathcal{E}/B$ which have deal with topology. Then for a left cancelable class \mathcal{M} of all j-dense monomorphisms in a topos \mathcal{E} , we achieve some necessary and sufficient conditions for that $(\mathcal{M}, \mathcal{M}^{\perp})$ is a factorization system in \mathcal{E} , which is related to the factorization systems in slice topoi \mathcal{E}/B , where B ranges over the class of objects of \mathcal{E} . Among other things, we prove that an arrow $f : X \to B$ in \mathcal{E} is a j_B -sheaf whenever the graph of f, is a section in \mathcal{E}/B as well as the object of sections S(f) of f, is a j-sheaf in \mathcal{E} . Furthermore, we introduce a class of monomorphisms in \mathcal{E} , which we call them j-essential. Some equivalent forms of those and some of their properties are presented. Also, we prove that any presheaf in a presheaf topos has a maximal essential extension. Finally, some similarities and differences of the obtained result are discussed if we put a (productive) weak topology j, studied by some authors, instead of a topology.

AMS subject classification: 18B25; 18A25; 18A32; 18F20; 18A20. key words: (Weak) Lawvere-Tierney topology; Sheaf; Factorization system; Slice topos; Essential monomorphism.

1 Introduction and background

A Lawyere-Tierney topology is a logical connective for modal logic. Recently, applications of Lawyere-Tierney topologies in broad topics such as measure theory [7] and quantum Physics [14, 15] are observed. In the spacial case, considerable work has been presented that is dedicated to the study of (weak) Lawvere-Tierney topology on a presheaf topos on a small category and especially on a monoid, see [6, 5]. It is clear that Lawyere-Tierney sheaves in a topos are exactly injective objects (of course, with respect to dense monomorphisms, not to merely monomorphisms) which are separated too. Injectivity with respect to a class \mathcal{M} of morphisms in a slice category \mathcal{C}/B (which its objects are \mathcal{C} -arrows with codomain B) has been studied in extensive form, for example we refer the reader to [1, 3]. From this perspective, in this paper we will establish some categorical characterizations of injectives in slice topoi to sheaves. The object of sections S(f) of f is a notion which in [3] it is related to injective objects in a slice category. This object is very useful in synthetic differential geometry (or SDG, for short) (for details, see [11]). For example, considering D as infinitesimals, for any micro-linear object M we have:

• Let τ be the tangent bundle on M, i.e., $\tau : M^D \to M$, which is defined by $\tau(t) = t(0)$. Then $S(\tau)$ is all vector fields on M.

• Consider $\eta: M^{D \times D} \to M$ which assigns to any micro-square Q of $M^{D \times D}$, the element Q(0,0). Then, $S(\eta)$ is all distributions of dimension 2 on M.

Throughout this paper, \mathcal{E} is a (elementary) topos, two objects 0, 1 are the initial and terminal objects and the object Ω together with the arrow $1 \xrightarrow{\text{true}} \Omega$ is the subobject classifier of \mathcal{E} . Also, the arrow $\wedge : \Omega \times \Omega \to \Omega$ is the meet operation on Ω . Now, we express some basic concepts from [12] which will be needed in sequel.

Definition 1.1. A Lawyere-Tierney topology on \mathcal{E} is a map $j : \Omega \to \Omega$ in \mathcal{E} satisfies the following properties

Form now on, we say briefly to a Lawvere-Tierney topology on \mathcal{E} , a *topology* on \mathcal{E} .

Recall [12] that topologies on \mathcal{E} are in one to one correspondence with universal closure operators. For a topology j on \mathcal{E} , considering $\overline{(\cdot)}$ as the universal closure operator corresponding to j, a monomorphism $k: A \rightarrow C$ in \mathcal{E} is called *j*-dense whenever $\overline{A} = C$, as two subobjects of C. Also, we say that k is *j*-closed if we have $\overline{A} = A$, again as subobjects of C.

Definition 1.2. For a topology j on \mathcal{E} , an object F of \mathcal{E} is called a *j-sheaf* whenever for any *j*-dense monomorphism $m : A \rightarrow E$, one can uniquely extend any arrow $h : A \rightarrow F$ to a map g on all of E,

We say that F is *j*-separated if the arrow g exists in (1), it is unique.

We will denote the full subcategories of \mathcal{E} consisting of *j*-sheaves and *j*-separated objects as $\mathbf{Sh}_{j}(\mathcal{E})$ and $\mathbf{Sep}_{i}(\mathcal{E})$, respectively.

We now briefly describe the contents of other sections. We start in Section 2, to study basic properties of the pullback functor $\Pi_B : \mathcal{E} \to$ \mathcal{E}/B , for any object B of \mathcal{E} , along with the unique map $!_B : B \to 1$. Afterwards, we would like to achieve, for a left cancelable class \mathcal{M} of all *j*-dense monomorphisms in a topos \mathcal{E} , some necessary and sufficient conditions for that $(\mathcal{M}, \mathcal{M}^{\perp})$ to be a factorization system in \mathcal{E} , which is related to the factorization systems in slice topoi \mathcal{E}/B . In section 3, among other things, we prove that an arrow $f: X \to B$ in \mathcal{E} is a j_B sheaf whenever the graph of f, is a section in \mathcal{E}/B as well as the object of sections S(f) of f, is a j-sheaf in \mathcal{E} . In section 4, we introduce a class of monomorphisms in an elementary topos \mathcal{E} , which we call them 'jessential monomorphisms'. We present some equivalent forms of these and some of their properties. Meanwhile, we prove that any presheaf in a presheaf topos has a maximal essential extension. It is shown that the functor Π_B reflects *j*-essential extensions. It is seen that some of these results hold for a (productive) weak topology j, studied in [10], instead of a topology as well.

2 Pullback functors, left cancelable dense monomorphisms and factorization systems

The purpose of this section is to present some basic properties of the pullback functor $\Pi_B : \mathcal{E} \to \mathcal{E}/B$, for any object B of \mathcal{E} , along with the unique map $!_B : B \to 1$. Afterwards, for a left cancelable class \mathcal{M} of all j-dense monomorphisms in a topos \mathcal{E} we achieve some necessary and sufficient conditions for that $(\mathcal{M}, \mathcal{M}^{\perp})$ to be a factorization system in \mathcal{E} , which is related to the factorization systems in slice topoi \mathcal{E}/B .

To begin with, the following lemma characterizes sheaves in a topos \mathcal{E} .

Lemma 2.1. Let j be a topology on \mathcal{E} . Then an object E of \mathcal{E} is j-sheaf iff E is j-unique absolute retract; that is, any j-dense monomorphism $u: E \rightarrow F$, has a unique retraction $v: F \rightarrow E$.

Proof. Necessity. Since E is a *j*-sheaf, for any *j*-dense monomorphism $u : E \rightarrow F$, corresponding to the identity map $\mathrm{id}_E : E \rightarrow E$ there exists a unique map $v : F \rightarrow E$ such that the following diagram commutes.

$$\begin{array}{c}
E \xrightarrow{\operatorname{Id}_E} \\
\downarrow & \swarrow \\
F \\
\end{array} \\
\overset{{\operatorname{Id}_E}}{\xrightarrow{}} \\
\overset{{$$

Sufficiency. For each j-dense monomorphism $m: U \to V$ and any map $f: U \to E$, we construct the following pushout diagram in \mathcal{E} .

$$\begin{array}{c}
U \xrightarrow{f} E \\
m \int & \int n \\
V \xrightarrow{\text{p.o.}} F
\end{array}$$
(2)

Since in any topos pushouts transfer *j*-dense monomorphisms (see [9]), so, in (2), *n* is *j*-dense and hence by assumption, there exists a unique retraction $p: F \to E$ such that $pn = id_E$. Now, for the the arrow $pg: V \to E$ we have $pgm = pnf = id_E f = f$. To prove that $pg: V \to E$ with this property is unique, let $h: V \to E$ be an arrow in \mathcal{E} in such a way that hm = f. Then, in the pushout diagram (2), according to the maps $h: V \to E$ and $id_E: E \to E$, there exists a unique map $k: F \to E$ such that $kn = id_E$ and kg = h.

Now, k is a retraction of j-dense monomorphism n, so by hypothesis we get p = k. Consequently, pg = kg = h. \Box

For an object B of \mathcal{E} , we consider the pullback functor $\Pi_B : \mathcal{E} \to \mathcal{E}/B$ along with the unique map $!_B : B \to 1$, which assigns to any A of \mathcal{E} , the second projection $\Pi_B(A) = \pi_B^A : A \times B \to B$ and to any $f : A \to C$, the arrow $f \times \operatorname{id}_B : A \times B \to C \times B$ in \mathcal{E} such that $\pi_B^C(f \times \operatorname{id}_B) = \pi_B^A$. Recall [12] that the object π_B^Ω together with the

arrow

true
$$\times \operatorname{id}_B : \operatorname{id}_B \longrightarrow \pi_B^\Omega$$

is the subobject classifier of the slice topos \mathcal{E}/B . Also, in a similar vein, we can observe that the meet operation \wedge_B on π_B^{Ω} is the arrow $\wedge \times 1_B$ in \mathcal{E} such that $\pi_B^{\Omega}(\wedge \times 1_B) = \pi_B^{\Omega \times \Omega}$,

Now, by Definition 1.1, we easily get the following lemma.

Lemma 2.2. Let *B* be any object in a topos \mathcal{E} . Then any topology $k: \pi_B^{\Omega} \to \pi_B^{\Omega}$ on \mathcal{E}/B is a pair (l, π_B^{Ω}) , for some arrow $l: \Omega \times B \to \Omega$ in \mathcal{E} satisfies the following conditions (as arrows in \mathcal{E})

(1) $l \circ (l, \pi_B^{\Omega}) = l;$

(2)
$$l \circ (\text{true} \times 1_B) = \text{true} \circ !_B;$$

(3) $l \circ \wedge_B = \wedge \circ (l \circ (\pi_1, \pi_3), l \circ (\pi_2, \pi_3))$, where π_i is the *i*-th projection on $\Omega \times \Omega \times B$, for i = 1, 2, 3.

By Lemma 2.2, for each topology j on \mathcal{E} , considering $l = j \circ \pi_{\Omega}^{B}$, it is easily seen that $j \times 1_{B} = (l, \pi_{B}^{\Omega})$ is a topology on \mathcal{E}/B which we denote it by j_{B} . In this case j_{B} is called the *induced topology* on \mathcal{E}/B by j.

One can simply see that if an arrow k is a monomorphism in \mathcal{E}/B , then k as an arrow in \mathcal{E} , is too. Also, for each monomorphism $k : f \to g$ in \mathcal{E}/B , where $f : X \to B$ and $g : Y \to B$ in \mathcal{E} , we can observe

$$\widetilde{f} \xrightarrow{\widetilde{k}} g = (\overline{X} \xrightarrow{g\overline{k}} B) \xrightarrow{\overline{k}} g, \tag{3}$$

where $\overline{(\cdot)}$ and (\cdot) are the universal closure operators corresponding to j and j_B on topoi \mathcal{E} and \mathcal{E}/B , respectively, in which whole and the middle squares of the following diagram are pullbacks in \mathcal{E} ,

(for more details, see [12]). One can construct \tilde{k} in \mathcal{E}/B , similar to the above diagram.

Here, we proceed to improve [2, Vol. III, Proposition 9.2.5] as follows:

Lemma 2.3. Let j be a topology in a topos \mathcal{E} . For every object B of \mathcal{E} , the pullback functor $\Pi_B : \mathcal{E} \to \mathcal{E}/B$ preserves and reflects: denseness (closeness) and j-separated objects (j-sheaves).

Proof. Let j be a topology on \mathcal{E} and B an object of \mathcal{E} . Preserving dense (closed) monomorphisms and sheaves (separated objects) in \mathcal{E} by the pullback functor Π_B , is standard and may be found in [2, Vol. III, Proposition 9.2.5]. To prove the rest of lemma, here we just show that Π_B reflects dense (closed) monomorphisms. To verify this claim, let $g: A \to C$ be an arrow in \mathcal{E} for which $\Pi_B(g)$ is a j_B -dense (j_B -closed) monomorphism. We show that g is j-dense (j-closed) monomorphism. As $\Pi_B(g) = g \times \mathrm{id}_B$ being monomorphism in \mathcal{E}/B , the arrow g is monomorphism in \mathcal{E} as well. For, let f, h in \mathcal{E} be two arrows such that gf = gh, we will have

$$gf = gh \implies (g \times \mathrm{id}_B)(f \times \mathrm{id}_B) = (g \times \mathrm{id}_B)(h \times \mathrm{id}_B)$$
$$\implies f \times \mathrm{id}_B = h \times \mathrm{id}_B \quad (g \times \mathrm{id}_B \text{ is a monomorphism})$$
$$\implies f = h.$$

Considering $\overline{(\cdot)}$ and $\widetilde{(\cdot)}$ as the universal closure operators corresponding to j and j_B , respectively. We get

$$\widetilde{\Pi_B(g)} = \widetilde{g \times \mathrm{id}_B}$$

= $\overline{g \times \mathrm{id}_B}$ (by (3))
= $\overline{g} \times \mathrm{id}_B$,

where the last equality is true since we have $g \times \mathrm{id}_B = (\pi_C^B)^{-1}(g)$, and because of stability of universal closure operators under pullbacks we get $\overline{(\pi_C^B)^{-1}(g)} = (\pi_C^B)^{-1}(\overline{g})$. The above equalities imply that if $\Pi_B(g)$ is j_B -dense (j_B -closed) monomorphism in \mathcal{E}/B , then g is j-dense (jclosed) monomorphism in \mathcal{E} . \Box

For any topology j on a topos \mathcal{E} , consider \mathcal{M} as the class of all j-dense monomorphisms in \mathcal{E} . Also, we denote by \mathcal{M}^{\perp} the class of all

arrows $g: C \to D$ in \mathcal{E} such that for any $f: A \to E$ in \mathcal{M} and every commutative square as in

$$\begin{array}{ccc}
A & \stackrel{u}{\longrightarrow} C \\
f & \swarrow & \swarrow & \downarrow g \\
E & \stackrel{\omega}{\longrightarrow} & D
\end{array}$$
(5)

there exists a unique arrow $w : E \to C$ in (5) such that the resulting triangles are commutative. In this case, we say that g is right orthogonal to f. Moreover, we say that the pair $(\mathcal{M}, \mathcal{M}^{\perp})$ forms a factorization system in \mathcal{E} if any arrow f in \mathcal{E} factors as f = me, where $m \in \mathcal{M}$ and $e \in \mathcal{M}^{\perp}$ (for more information, see [1]).

Lemma 2.4. Let j be a topology on a topos \mathcal{E} . Then for each object B of \mathcal{E} , we have $\mathcal{M}_B^{\perp} \subseteq \mathcal{M}^{\perp}$, where \mathcal{M}_B is the class of all j_B -dense monomorphisms in \mathcal{E}/B .

Proof. By Lemma 2.3 we get $\mathcal{M}_B \subseteq \mathcal{M}$. To reach the conclusion, let $h : f \to g$ be an arrow in \mathcal{M}_B^{\perp} , where $f : D \to B$ and $g : E \to B$ are arrows in \mathcal{E} . Now, consider the commutative square

where $m : A \to C$ is in \mathcal{M} . Since by Lemma 2.3 the arrow $m : fu \to gv$ in \mathcal{E}/B belongs to \mathcal{M}_B and $h \in \mathcal{M}_B^{\perp}$, there exists a unique arrow $w : gv \to f$ in \mathcal{E}/B such that the following diagram commutes

The arrow $w: C \to D$ (as an arrow in \mathcal{E}) which commutes the resulting triangulares, is unique in the diagram (6). To prove this, let $k: C \to D$ be an arrow in \mathcal{E} such that km = u and hk = v. Now, we have fk = (gh)k = gv, so $k: gv \to f$ is an arrow in \mathcal{E}/B making all triangles in (7) commutative. Thus, k = w and the proof is complete. \Box

Definition 2.5. Let j be a topology on a topos \mathcal{E} . We say that \mathcal{E} has enough *j*-sheaves if for every object A of \mathcal{E} there is a *j*-dense monomorphism $A \rightarrow F$ where F is a *j*-sheaf.

Following [1] a class \mathcal{M} of morphisms in \mathcal{E} is a *left cancelable class* if $gf \in \mathcal{M}$ implies $f \in \mathcal{M}$. In the following, we summarize the relation between left cancelable *j*-dense monomorphisms and factorization systems in a topos \mathcal{E} and its slices.

Theorem 2.6. Let j be a topology on a topos \mathcal{E} . Assume that for any object B of \mathcal{E} , the class \mathcal{M}_B of all j_B -dense monomorphisms in \mathcal{E}/B be left cancelable. Then the following are equivalent:

(i) for any object B of \mathcal{E} , $(\mathcal{M}_B, \mathcal{M}_B^{\perp})$ is a factorization system in \mathcal{E}/B ;

- (ii) for any object B of \mathcal{E} , \mathcal{E}/B has enough j_B -sheaves;
- (iii) for any object B of \mathcal{E} , any object of \mathcal{E}/B is j_B -separated;
- (iv) for any object B of \mathcal{E} , any object of \mathcal{E}/B is j_B -sheaf;
- (v) any object of \mathcal{E} is *j*-sheaf;
- (vi) any object of \mathcal{E} is *j*-separated;
- (vii) \mathcal{E} has enough *j*-sheaves;
- (viii) $(\mathcal{M}, \mathcal{M}^{\perp})$ is a factorization system in \mathcal{E} .

Proof. That any *j*-sheaf is *j*-separated in \mathcal{E} yields that (v) \Longrightarrow (vi) holds.

(vi) \implies (v). That any object of \mathcal{E} is *j*-separated it follows that $\operatorname{Sep}_{j}(\mathcal{E})$ is the topos \mathcal{E} and then, every *j*-separated object is a *j*-sheaf as in [8, Theorem 2.1].

(iii) \implies (vi). Setting B = 1, then any object of \mathcal{E} is *j*-separated.

(vi) \Longrightarrow (iii). The claim follows immediately from the fact that for any object B of \mathcal{E} ,

$$\operatorname{\mathbf{Sep}}_{j_B}(\mathcal{E}/B) \cong \operatorname{\mathbf{Sep}}_j(\mathcal{E})/B.$$

(see also [9]).

(viii) \implies (vii). By (viii), for any object A of \mathcal{E} , the unique arrow $!_A : A \to 1$ factors as

where $!_C \in \mathcal{M}_1^{\perp} = \mathcal{M}^{\perp}$ and $m \in \mathcal{M}_1 = \mathcal{M}$. We remark that it is easy to check that for any object B of \mathcal{E} , j_B -sheaves in \mathcal{E}/B are exactly the class of all objects of \mathcal{E}/B which belong to \mathcal{M}_B^{\perp} . Since $!_C$ is an object in $\mathcal{E}/1 = \mathcal{E}$ which is in \mathcal{M}_1^{\perp} , so $!_C$ is a j_1 -sheaf, or equivalently, C is a j-sheaf.

(vii) \Longrightarrow (viii). Consider an arrow $f: A \to B$ in \mathcal{E} . By using (vii), there exists a *j*-dense monomorphism $\iota: A \to F$, where F is a *j*-sheaf in \mathcal{E} . Now, we factor f as the composite arrow $A \xrightarrow{(\iota,f)} F \times B \xrightarrow{\pi_B^F} B$. Since $\pi_F^B(\iota, f) = \iota \in \mathcal{M}$ and \mathcal{M} is a left cancelable class, so $(\iota, f) \in \mathcal{M}$. Also, F being *j*-sheaf, by Lemma 2.3 we have π_B^F is a j_B -sheaf in \mathcal{E}/B . By Lemma 2.4 we have $\pi_B^F \in \mathcal{M}_B^{\perp} \subseteq \mathcal{M}^{\perp}$, as required.

 $(\text{vi}) \Longrightarrow (\text{vii})$. First of all we know that any *j*-separated object of \mathcal{E} can be embedded into a *j*-sheaf (see, e.g. [12, Proposition V.3.4]). Let A be an object of \mathcal{E} . Then, by assumption A is *j*-separated, and there exists an embedding $A \stackrel{\iota}{\rightarrowtail} F$, where F is a *j*-sheaf. Now, take the closure of A in F. Since \overline{A} is closed in F, by [12, Lemma V.2.4], it is a *j*-sheaf. Since A is *j*-dense in \overline{A} we get the result.

(vii) \implies (vi). By assumption for any object A of \mathcal{E} , there is a j-dense monomorphism $A \rightarrow F$ in \mathcal{E} , where F is a j-sheaf. Since any subobject of a j-sheaf is j-separated so A is j-separated.

For any object B of \mathcal{E} , setting \mathcal{E}/B instead of \mathcal{E} in (v), (vi), (vii) and (viii), we drive (i) \iff (ii) \iff (iii) \iff (iv). \Box

In the following, we will introduce two main classes of dense monomorphisms in a topos \mathcal{E} .

Remark 2.7. By diagram (4), one can easily obtain:

(i) Let $j = id_{\Omega}$ be the trivial topology on \mathcal{E} . Then *j*-dense monomorphisms are only the identity maps. Therefore, any object of \mathcal{E} is a *j*-sheaf. Also, *j*-closed monomorphisms are exactly all monomorphisms. (ii) Let *j* be the topology trueo!_{Ω} on \mathcal{E} , that is, the characteristic map of id_{Ω}. Then, *j*-dense monomorphisms are exactly all monomorphisms. Furthermore, *j*-closed monomorphisms are just the identity maps.

Recall [1] that $(Mono, Mono^{\Box})$ is a weak factorization system in any topos \mathcal{E} , where *Mono* is the class of all monomorphisms in \mathcal{E} . By Remark 2.7(ii), the class *Mono* is the class of all *j*-dense monomorphisms with respect to the topology $j = \text{trueo!}_{\Omega}$ on \mathcal{E} . Since the class *Mono* is left cancelable, so we can obtain a special case of Theorem 2.6 as follows. (Notice that by Lemma 2.3 for the topology $j = \text{trueo!}_{\Omega}$ and any object *B* of \mathcal{E} , the class *Mono*_B will be all monomorphisms in \mathcal{E}/B .)

Corollary 2.8. For the topology $j = \text{trueo!}_{\Omega}$ on a topos \mathcal{E} , the following are equivalent:

(i) for any object B of \mathcal{E} , $(Mono_B, Mono_B^{\perp})$ is a factorization system in \mathcal{E}/B ;

- (ii) for any object B of \mathcal{E} , \mathcal{E}/B has enough j_B -sheaves;
- (iii) for any object B of \mathcal{E} , any object of \mathcal{E}/B is j_B -sheaf;
- (iv) for any object B of \mathcal{E} , any object of \mathcal{E}/B is j_B -separated;
- (v) any object of \mathcal{E} is *j*-sheaf;
- (vi) any object of \mathcal{E} is *j*-separated;
- (vii) \mathcal{E} has enough *j*-sheaves;
- (viii) $(Mono, Mono^{\perp})$ is a factorization system in \mathcal{E} .

3 Sheaves and sections of an arrow

In this section, among other things, we investigate a relationship between sheaves and sections of an arrow in a topos \mathcal{E} . We start to remind [3] that for any object B of \mathcal{E} , the pullback functor $\Pi_B : \mathcal{E} \to \mathcal{E}/B$ has a right adjoint $S : \mathcal{E}/B \to \mathcal{E}$ as for any $f : X \to B$ we have the following pullback

$$S(f) \longrightarrow 1 \tag{8}$$

$$\downarrow \qquad \qquad \downarrow^{i_B}$$

$$X^B \xrightarrow{f^B} B^B$$

where i_B is the transpose of $\mathrm{id}_B : 1 \times B \cong B \to B$ and f^B is the transpose of the composition arrow $X^B \times B \xrightarrow{ev_X} X \xrightarrow{f} B$ by the exponential adjunction $(-) \times B \dashv (-)^B$; that is, $ev_B(i_B \times \mathrm{id}_B) = \mathrm{id}_B$ and $ev_B(f^B \times \mathrm{id}_B) = fev_X$, where the natural transformation ev : $(-)^B \times B \to (-)$ is the counit of the exponential adjunction. In fact, in the Mitchell-Bénabou language, we can write

$$S(f) = \{h \mid (\forall c \in B) \ f \circ (h(c)) = c\}.$$

This means that we can call S(f) the object of sections of f.

Since any retract of an object in a topos (or in an arbitrary category) is an equalizer, so the topos $\mathbf{Sh}_j(\mathcal{E})$ is closed under retracts. Furthermore, as $\Pi_B \dashv S$, by Lemma 2.3 we have that the pullback functor Π_B preserves dense monomorphisms, so S preserves sheaves (for details, see [9, Corollary 4.3.12]). (Roughly, for any object $B \in \mathcal{E}$ and any adjoint $F \dashv G : \mathcal{E} \to \mathcal{E}/B$ one can easily checked that the functor G preserves sheaves whenever F preserves dense monomorphisms.)

In the following theorem we will find a relationship between sheaves in \mathcal{E}/B and the object of sections of an arrow.

Theorem 3.1. Let j be a topology on a topos \mathcal{E} and $f: X \to B$ be an object of \mathcal{E}/B . Then, f is a j_B -sheaf in \mathcal{E}/B , whenever the graph of f which stands for the monomorphism $(\operatorname{id}_X, f): f \to \pi_B^X$ in \mathcal{E}/B , is a section as well as S(f) is a j-sheaf in \mathcal{E} .

Proof. We recall that in [3] it was proved if (id_X, f) is a section in \mathcal{E}/B , then f is a retract of $\pi_B^{S(f)}$ in \mathcal{E}/B . As S(f) is a j-sheaf, by Lemma 2.3, $\pi_B^{S(f)}$ is a j_B -sheaf in \mathcal{E}/B . But $\operatorname{Sh}_{j_B}(\mathcal{E}/B)$ being closed under retracts, therefore f is a j_B -sheaf in \mathcal{E}/B . \Box

To the converse of Theorem 3.1, that the section functor S preserves sheaves it yields that if $f: X \to B$ be a j_B -sheaf in \mathcal{E}/B , then S(f) is a *j*-sheaf in \mathcal{E} . Also, by Remark 2.7(ii), for $j = \text{trueo!}_{\Omega}$, the monomorphism $(\text{id}_X, f): f \to \pi_B^X$ is j_B -dense in \mathcal{E}/B and then for a j_B -sheaf $f: X \to B$, it will be a section in \mathcal{E}/B .

In the rest of this section, for a small category \mathcal{C} we restrict our attention to obtain a version of Theorem 3.1 for injective presheaves in trivial slices of the presheaf topos $\widehat{\mathcal{C}} = \mathbf{Sets}^{\mathcal{C}^{op}}$ which is close to the version over *j*-sheaves for the topology $j = \text{trueo!}_{\Omega}$ on $\widehat{\mathcal{C}}$. (See Proposition 3.5 below.) Note that the topology $j = \text{trueo!}_{\Omega}$ on $\widehat{\mathcal{C}}$ is associated to the *chaotic or indiscrete Grothendieck topology* on \mathcal{C} . Recall [12] that in the presheaf topos $\widehat{\mathcal{C}} = \mathbf{Sets}^{\mathcal{C}^{op}}$, the exponential object G^F is defined in each stage C of \mathcal{C} as $G^F(C) = \operatorname{Hom}_{\widehat{\mathcal{C}}}(Y(C) \times F, G)$, where Y is the Yoneda embedding, that is

$$Y: \mathcal{C} \to \widehat{\mathcal{C}}; \quad Y(C) = \operatorname{Hom}_{\mathcal{C}}(-, C).$$

Now, for an arrow $\alpha : G \to F$ consider the arrows $i_F : 1 \to F^F$ and $\alpha^F : G^F \to F^F$ in $\widehat{\mathcal{C}}$ as the transposes of $\mathrm{id}_F : 1 \times F \cong F \to F$ and $\alpha \circ ev_G : G^F \times F \to F$, respectively, by the exponential adjunction. We can observe

$$\forall C \in \mathcal{C}, \quad (i_F)_C : 1(C) = \{*\} \longrightarrow F^F(C); \quad (i_F)_C(*) = \pi_F^{Y(C)}. \tag{9}$$

Also, for any two objects C, D of C, any γ in $G^F(C)$ and any (k, y) in $Y(C)(D) \times F(D)$ we have

$$(\alpha_C^F(\gamma))_D(k,y) = \alpha_D(\gamma_D(k,y)).$$
(10)

Remind that a presheaf G has a (unique) global section which means that in each stage C of C there is a (unique) element $\theta_C \in G(C)$ in such a way that for any arrow $k: D \to C$ in C we have

$$G(k)(\theta_C) = \theta_D. \tag{11}$$

Here, we find a special case that the exponential object and the object of sections in $\widehat{\mathcal{C}}$ are exactly similar to **Sets**. First, we express some lemma required to achieve the goal.

Lemma 3.2. Let j be the topology trueo!_{Ω} on \widehat{C} . Then, the following assertions hold:

(i) For any *j*-sheaf G in $\widehat{\mathcal{C}}$, G has a unique global section. More generally, any injective presheaf G of $\widehat{\mathcal{C}}$ has a global section.

(ii) For any family $\{G_{\lambda}\}_{\lambda \in \Lambda}$ in $\widehat{\mathcal{C}}$, the presheaf $G = \prod_{\lambda \in \Lambda} G_{\lambda}$ is a *j*-sheaf (injective) in $\widehat{\mathcal{C}}$ iff for all $\lambda \in \Lambda$, G_{λ} is a *j*-sheaf (injective) in $\widehat{\mathcal{C}}$.

Proof. (i) Let G be a j-sheaf in $\widehat{\mathcal{C}}$ and consider the coproduct object $G \sqcup 1$ in $\widehat{\mathcal{C}}$. By Remark 2.7(ii), there exists a unique natural transformation $\eta : G \sqcup 1 \to G$ in $\widehat{\mathcal{C}}$ such that the following diagram

commutes (if G being injective, the arrow η is not necessarily unique)

$$G \xrightarrow{\operatorname{id}_G} G$$

where $\iota: G \to G \sqcup 1$ is the injection arrow. Now, we will denote $\eta_C(*)$ by an element θ_C in G(C) in each stage C of \mathcal{C} . Since $\eta: G \sqcup 1 \to G$ is natural, so for any arrow $k: D \to C$ in \mathcal{C} the following square commutes

$$(G \sqcup 1)(D) \xrightarrow{\eta_D} G(D)$$

$$(G \sqcup 1)(k) \uparrow \qquad \uparrow G(k)$$

$$(G \sqcup 1)(C) \xrightarrow{\eta_C} G(C)$$

Then, we have

$$\begin{aligned} G(k)(\theta_C) &= G(k)(\eta_C(*)) \\ &= \eta_D((G \sqcup 1)(k)(*)) \\ &= \eta_D(1(k)(*)) = \theta_D. \end{aligned}$$

This is the required result.

(ii) Necessity. Let G be a j-sheaf (injective) in $\widehat{\mathcal{C}}$. For any $\lambda, \mu \in \Lambda$, we define $\alpha^{\lambda\mu} : G_{\lambda} \to G_{\mu}$ such that in each stage C of C and for each $x \in G_{\lambda}(C)$, we have $\alpha_{C}^{\lambda\mu}(x) = \theta_{C}^{\mu}$, where θ_{C}^{μ} is the μ -th component of θ_{C} corresponding to G in (i). Now, we will show that for any $\lambda, \mu \in \Lambda$, $\alpha^{\lambda\mu}$ is a natural transformation in $\widehat{\mathcal{C}}$, that is for any arrow $k : D \to C$ in \mathcal{C} the following diagram is commutative

$$\begin{array}{c}
G_{\lambda}(D) \xrightarrow{\alpha_{D}^{\lambda\mu}} G_{\mu}(D) \\
\xrightarrow{G_{\lambda}(k)} & \uparrow \\
G_{\lambda}(C) \xrightarrow{\alpha_{C}^{\lambda\mu}} G_{\mu}(C)
\end{array}$$

For, consider an element $x \in G_{\lambda}(C)$ we get

$$G_{\mu}(k)(\alpha_{C}^{\lambda\mu}(x)) = G_{\mu}(k)(\theta_{C}^{\mu})$$

$$= \theta_{D}^{\mu} \qquad (by (11))$$

$$= \alpha_{D}^{\lambda\mu}(G_{\lambda}(k)(x)).$$

Now, for any $\lambda \in \Lambda$, consider the family $\{\gamma_{\mu} : G_{\lambda} \to G_{\mu}\}_{\mu \in \Lambda}$ in $\widehat{\mathcal{C}}$ such that for each $\lambda \neq \mu \in \Lambda$ we have $\gamma_{\mu} = \alpha^{\lambda \mu}$ and $\gamma_{\lambda} = \mathrm{id}_{G_{\lambda}}$. Since G

is the product $\prod_{\lambda \in \Lambda} G_{\lambda}$, so there is a unique natural transformation $\gamma : G_{\lambda} \to G$ such that $p_{\mu}\gamma = \gamma_{\mu}$ and $p_{\lambda}\gamma = \mathrm{id}_{G_{\lambda}}$, for all $\lambda, \mu \in \Lambda$ and the projections p_{λ} . Thus, for any $\lambda \in \Lambda, G_{\lambda}$ is a retract of the *j*-sheaf (injective) G and then, G_{λ} is a *j*-sheaf (injective).

Sufficiency. By the universal property of the product presheaf G, the unique arrow in the definition of a sheaf is easily follows. \Box

We recall [12] that in each stage C of \mathcal{C} the object $\Omega(C)$ of $\widehat{\mathcal{C}}$ is the set of all sieves on C. Also, the arrow $\operatorname{true}_C : 1(C) = \{*\} \to \Omega(C)$ assigns to *, the maximal sieve t(C) of $\Omega(C)$, that is all arrows with codomain C of \mathcal{C} .

Remark 3.3. Note that the topology $j = \text{trueo!}_{\Omega}$ on $\widehat{\mathcal{C}}$ is the unique topology on $\widehat{\mathcal{C}}$ that satisfies Lemma 3.2. To show this, for a *j*-sheaf Gof $\widehat{\mathcal{C}}$, consider the injection $\iota : G \to G \sqcup 1$ in $\widehat{\mathcal{C}}$. In each stage C of \mathcal{C} we have $\text{char}(\iota)_C(*) = \emptyset$. Now, let j be a topology on $\widehat{\mathcal{C}}$. If ι is *j*-dense monomorphism, then in each stage C of \mathcal{C} we have $j_C(\emptyset) = t(C)$. Now, for any sieve $S \in \Omega(C)$ by Definition 1.1 we get

$$t(C) = j_C(\emptyset) = j_C(\emptyset \cap S)$$

= $j_C(\emptyset) \cap j_C(S) = t(C) \cap j_C(S) = j_C(S).$

Thus, j_C is the constant function on t(C), as required.

Let F be the constant presheaf on a set A. One can easily checked that the exponential adjunction $(-) \times F \dashv (-)^F$ is determined by, for any presheaf G in $\widehat{\mathcal{C}}$, the exponential presheaf G^F assigns to any object C of \mathcal{C} , the hom-set $\operatorname{Hom}_{\mathbf{Sets}}(A, G(C))$ and to any arrow $f: C \to D$ of \mathcal{C} , the function

$$G^F(f) : \operatorname{Hom}_{\mathbf{Sets}}(A, G(D)) \longrightarrow \operatorname{Hom}_{\mathbf{Sets}}(A, G(C))$$

given by $G^F(f)(g) = G(f) \circ g$. As any function $f : A \to G(C)$ can be considered as a sequence $(x_a)_{a \in A} \in \prod_A G(C)$, it yields that one has

$$\forall C \in \mathcal{C}, \quad G^F(C) \cong \prod_A G(C).$$
 (12)

By (12), (9) and (10), it is convenient to see that for each arrow α : $G \to F$ in $\widehat{\mathcal{C}}$ in which F stands for the constant presheaf on a set A, we get

$$\forall C \in \mathcal{C}, \quad S(\alpha)(C) \cong \prod_{a \in A} \alpha_C^{-1}(a).$$
(13)

Now, we will extract a special case of Theorem 3.1 in $\widehat{\mathcal{C}}$. First, let $\alpha : G \to F$ be an arrow in $\widehat{\mathcal{C}}$ in which F is the constant presheaf on a set A. For each element a of A, consider the subpresheaf H_a of G such that $H_a(C) = \alpha_C^{-1}(a)$, for any object C of \mathcal{C} . Since limits in $\widehat{\mathcal{C}}$ are constructed pointwise, so (13) shows that $S(\alpha) \cong \prod_{a \in A} H_a$.

Proposition 3.4. Let j be the topology trueo!_{Ω} on \widehat{C} and $\alpha : G \to F$ an arrow in \widehat{C} , where F is the constant presheaf on a set A. Then, α is a j_F -sheaf in \widehat{C}/F iff the monomorphism $(\mathrm{id}_G, \alpha) : \alpha \to \pi_F^G$ is a section in \widehat{C}/F as well as for any $a \in A$, the subpresheaf H_a of G is a j-sheaf in \widehat{C} .

Proof. We deduce the result by Theorem 3.1, Lemma 3.2(ii) and (13). \Box

Since in topoi regular monomorphisms are exactly monomorphisms, so by [3, Theorem 1.2], Lemma 3.2(ii) and (13), the following now gives which we are interested in.

Proposition 3.5. Let $\alpha : G \to F$ be an arrow in $\widehat{\mathcal{C}}$, where F is the constant presheaf on a set A. Then, α is injective in $\widehat{\mathcal{C}}/F$ iff the monomorphism $(\mathrm{id}_G, \alpha) : \alpha \to \pi_F^G$ is a section in $\widehat{\mathcal{C}}/F$ as well as for any $a \in A$, the subpresheaf H_a of G is injective.

In the case when C is a monoid, we obtain

Example 3.6. Let M be a monoid and M-Sets the topos of all (right) representations of a fixed monoid M. Since M is a small category with just one object, for two M-sets X, B we have $X^B = \operatorname{Hom}_{M-\operatorname{Sets}}(M \times B, X)$, where $M \times B$ has the componentwise action. Hence, by (9) and (10), for any equivariant map $f : X \to B$, in the diagram (8) we observe

$$i_B(*) = \pi_B^M : M \times B \to B, \tag{14}$$

and

$$\forall h \in X^B, \ \forall (m,b) \in M \times B, \ (f^B(h))(m,b) = fh(m,b).$$
(15)

Note that one writes any equivariant map $h: M \times B \to X$ in X^B as a sequence $((x_{m,b})_{b\in B})_{m\in M}$, consisting of elements $x_{m,b} = h(m,b)$ of X, for any $(m,b) \in M \times B$. Also, h being equivariant map means that

$$\forall n, m \in M, \forall b \in B, \quad x_{mn,bn} = x_{m,b}n.$$

Hence, we obtain that X^B is equal to

$$\{((x_{m,b})_b)_m \in \prod_{m \in M} \prod_{b \in B} X \mid \forall n, m \in M, \forall b \in B, x_{mn,bn} = x_{m,b}n\}.$$
(16)

Now, by (8), (14) and (15) we have

$$S(f) = \{((x_{m,b})_b)_m \in X^B \mid f^B(((x_{m,b})_b)_m) = \pi^M_B = ((b)_b)_m\} \\ = \{((x_{m,b})_b)_m \in X^B \mid ((f(x_{m,b}))_b)_m = ((b)_b)_m\} \\ = \{((x_{m,b})_b)_m \in X^B \mid \forall m \in M, \forall b \in B, x_{m,b} \in f^{-1}(b)\},\$$

Hence, by (16) we interpret a simple form of underlying set of the M-set S(f) in the topos M-**Sets** as follows

$$\{((x_{m,b})_b)_m \in \prod_{m \in M} \prod_{b \in B} f^{-1}(b) \mid \forall n, m \in M, \forall b \in B, x_{mn,bn} = x_{m,b}n\}.$$

If B has the trivial action \cdot , that is $\cdot = \pi_1 : B \times M \to B$ the first projection, then by (12) and (13) we can obtain $X^B \cong \prod_B X$ and $S(f) \cong \prod_{b \in B} f^{-1}(b)$.

Furthermore, recall [12] that for a group G and two G-sets X, B, we have

$$X^{B} = \{h : B \to X | h \text{ is a function}\} \cong \prod_{B} X$$
(17)

as two sets. According to the action on X^B , under the isomorphism (17), the action on $\prod_B X$ is given by $(x_b)_{b\in B} \cdot g = (x_{bg^{-1}} \cdot g)_{b\in B}$, for any $g \in G$ and $(x_b)_{b\in B} \in \prod_B X$. Also, by (17) for any equivariant map $f: X \to B$ in *G*-Sets, in a similar way to (13), we have $S(f) \cong \prod_{b\in B} f^{-1}(b)$.

4 *j*-essential extensions in a topos

This section is devoted to introduce a class of monomorphisms in an elementary topos, which we call these 'j-essential monomorphisms'.

We present some equivalent forms of these and some their properties. Meanwhile, we prove that any presheaf in a presheaf topos has a maximal essential extension.

Remind that a monomorphism $\iota : A \to B$ is called *essential* whenever for each arrow $g : B \to C$ such that $g\iota$ is a monomorphism, then gis a monomorphism also. Now, we define a *j*-essential monomorphism in a topos \mathcal{E} as follows.

Definition 4.1. For a topology j on \mathcal{E} , a monomorphism $\iota : A \rightarrow B$ is called *j*-essential whenever it is *j*-dense as well as essential. In this case, we say that B is a *j*-essential extension of A and we write $A \subseteq_j B$.

We shall say an arrow $f : A \to B$ in \mathcal{E} is *j*-dense whenever the subobject f(A), which is the image of f, is *j*-dense in B. In this way, any epimorphism in \mathcal{E} becomes *j*-dense. (For the definition of image of an arrow in a topos, see [12].)

The following gives some equivalent definitions of j-essential monomorphisms in a topos \mathcal{E} .

Lemma 4.2. Let j be a topology on \mathcal{E} and $\iota : A \rightarrow B$ a j-dense monomorphism. Then, the following are equivalent:

(i) for any $g : B \to C$, g is a monomorphism whenever $g\iota$ is a monomorphism;

(ii) for any $g: B \to C$, g is a j-dense monomorphism whenever $g\iota$ is a j-dense monomorphism;

(iii) for any $g: B \to C$, g is a monomorphism whenever $g\iota$ is a j-dense monomorphism.

Proof. (i) \implies (ii) and (iii) \implies (ii) are proved by [9, A.4.5.11(iii)]. (ii) \implies (iii) is clear.

(ii) \implies (i). Consider an arrow $g: B \to C$ for which $g\iota$ is monomorphism. We show that g is monomorphism also. Assume that $B \xrightarrow{k} g(B) \xrightarrow{m} C$ is the image factorization of the arrow g. Since $g\iota = m(k\iota)$ and $g\iota$ is monomorphism, it follows that the arrow $k\iota$ is a monomorphism.

phism. Meanwhile, we get

$$g(B) = k(B) \qquad (as \ k \ is \ epic)$$
$$= k(\overline{A}) \qquad (as \ \iota \ is \ dense)$$
$$\subseteq k(\overline{A})$$
$$\subseteq g(B).$$

Therefore, $g(B) = \overline{k(A)} = \overline{k\iota(A)}$. It follows that the compound monomorphism $k\iota : A \rightarrow g(B)$ is dense monomorphism and by (ii), k is also. That k is monomorphism and so isomorphism, yields that g is monomorphism. \Box

We point out that the proof of (ii) \implies (i) of Lemma 4.2 shows that any composite $k\iota$, for an epic k and a dense monomorphism ι , is dense.

The following shows that *j*-essential monomorphisms in \mathcal{E} are closed under composition.

Proposition 4.3. Let *j* be a topology on \mathcal{E} . For two subobjects $A \xrightarrow{\iota} A' \xrightarrow{\iota'} B$ in \mathcal{E} , then $A \subseteq_j B$ iff $A \subseteq_j A'$ and $A' \subseteq_j B$.

Proof. By [9, 13, A.4.5.11(iii)], one has $\iota'\iota$ is *j*-dense iff ι' and ι are *j*-dense.

Necessity. First, by Lemma 4.2(i), we show that $A \subseteq_j A'$. To do so, consider an arrow $f' : A' \to C$ for which $f'\iota$ is a monomorphism. Now, by [12, Corollary IV. 10. 3], the object C can be embedded into an injective object D as in $C \xrightarrow{\nu} D$ and hence there is an arrow $\tilde{f}' : B \to D$ such that $\tilde{f}'\iota' = \nu f'$. Since $A \subseteq_j B$ and $\tilde{f}'\iota'\iota = \nu f'\iota$ is a monomorphism, we deduce that \tilde{f}' is a monomorphism. As $\tilde{f}'\iota' = \nu f'$ it follows that f' is a monomorphism.

To prove $A' \subseteq_j B$, choose an arrow $f : B \to C$ for which $f\iota'$ is a monomorphism. Then, $f\iota'\iota$ is also a monomorphism. Now $A \subseteq_j B$ implies that f is a monomorphism, as required.

Sufficiency. Let $f : B \to C$ be an arrow in \mathcal{E} such that $f\iota'\iota$ is a monomorphism. Since $A \subseteq_j A'$ and $(f\iota')\iota = f\iota'\iota$ is a monomorphism, it concludes that $f\iota'$ is a monomorphism. Using $A' \subseteq_j B$, we achieve that f is a monomorphism and hence $A \subseteq_j B$. \Box

In the following, we achieve another property of *j*-essential monomorphisms in \mathcal{E} .

Lemma 4.4. Let j be a topology on \mathcal{E} . If $A \subseteq_j B$ and A is embedded in a j-sheaf F, then B also is embedded in F.

Proof. Let $\iota : A \rightarrow B$ be a *j*-essential monomorphism and $m : A \rightarrow F$ an arbitrary embedding. Since F is a *j*-sheaf, there exists a unique morphism $f : B \rightarrow F$ making the diagram below commutative;

As $A \subseteq_j B$ being *j*-essential, *f* is an embedding, as required. \Box

By Remark 2.7(ii), essential monomorphisms in a topos \mathcal{E} are exactly *j*-essential monomorphisms in \mathcal{E} with respect to the topology $j = \text{trueo!}_{\Omega}$ on \mathcal{E} .

Now, we would like to prove that any presheaf in $\widehat{\mathcal{C}}$ has a maximal essential extension.

Theorem 4.5. Any presheaf in $\widehat{\mathcal{C}}$ has a maximal essential extension.

Proof. Let F be a presheaf in $\widehat{\mathcal{C}}$ and G an injective presheaf into which F can be embedded. By Lemma 4.4, we can assume that both F and all its essential extensions are subpresheaves of G. Consider \sum as the set of all essential extensions of F which is a poset under subpresheaf inclusion \subseteq . Since the arrow id_F is an essential extension of F, it follows that \sum is non-empty. If

$$\ldots \subseteq F_i \subseteq \ldots,$$

 $i \in I$, is a chain in \sum , then the subpresheaf H of G given by $H(C) = \bigcup_{i \in I} F_i(C)$ for any object C in \mathcal{C} is an upper bound of this chain. Now we show that H lies in \sum , i.e., H is an essential extension of F. To achieve this, let $\alpha : H \to K$ be an arrow in $\widehat{\mathcal{C}}$ such that the restriction arrow $\alpha|_F$ is a monomorphism. We prove that α is a monomorphism. To verify this claim, we show that for any $C \in \widehat{\mathcal{C}}$, the function $\alpha_C : \bigcup_{i \in I} F_i(C) \to K(C)$ is one to one. Take $a, b \in \bigcup_{i \in I} F_i(C), a \neq b$. Then there is a $j \in I$ such that $a, b \in F_j(C)$. Denote $\alpha|_{F_i}$ by α_j . Since F_j

is an essential extension of F and $\alpha_j|_F = \alpha|_F$, it implies that α_j is a monomorphism. Now

$$\alpha_C(a) = (\alpha_j)_C(a) \neq (\alpha_j)_C(b) = \alpha_C(b).$$

Therefore, α is a monomorphism. Thus, $H \in \sum$. Now it follows from Zorn's Lemma that there is a maximal element M in \sum . Then, M is a maximal essential extension of F. \Box

It is straightforward to see that any essential extension of B can be embedded in any injective extension of B.

For a topology j on a topos \mathcal{E} , by a *j*-injective object we mean an injective object with respect to the class of all *j*-dense monomorphisms in \mathcal{E} .

The following shows that the *j*-injective presheaves (*j*-sheaves) in $\widehat{\mathcal{C}}$ have no proper *j*-essential extension.

Proposition 4.6. Let j be a topology on \widehat{C} and F a j-injective presheaf (j-sheaf) in \widehat{C} . Then, F has no proper j-essential extension.

Proof. Suppose that G is a proper *j*-essential extension of F and so F is a *j*-dense subpresheaf of G and $F \neq G$. Thus there is an object C of C such that $G(C) \not\subset F(C)$ and then, an $a \in G(C)$ such that $a \notin F(C)$. Since F is *j*-injective (*j*-sheaf) implies that there is an arrow $\alpha : G \to F$ for which $\alpha|_F = \operatorname{id}_F$. That $a \notin F(C)$ and $\alpha_C(a) \in F(C)$ follows that $a \neq \alpha_C(a)$. But $\alpha_C(\alpha_C(a)) = \alpha_C(a)$. Then, α_C and so α is not a monomorphism although $\alpha|_F = \operatorname{id}_F$ is. This shows that G is not a proper *j*-essential extension of F and it is a contradiction. \Box

The following shows that the pullback functor Π_B reflects *j*-essential extensions.

Proposition 4.7. Let j be a topology in a topos \mathcal{E} . For every object $B \in \mathcal{E}$, the pullback functor $\Pi_B : \mathcal{E} \to \mathcal{E}/B$ reflects j-essential monomorphisms.

Proof. Let $f : A \to C$ be an arrow in \mathcal{E} such that $\Pi_B(f)$ is a j_B essential monomorphism. We show that f is a j-essential monomorphism. By Lemma 2.3, f is a j-dense monomorphism in \mathcal{E} . Let $g : C \to D$ be an arrow in \mathcal{E} such that gf is a monomorphism.

We show that g is too. Since gf is a monomorphism, the arrow $(g \times id_B)\Pi_B(f) = (gf) \times id_B$ is also a monomorphism. As $\Pi_B(f)$ is j_B -essential, so $g \times id_B$ is a monomorphism. Then g is a monomorphism. This is the required result. \Box

Recall [10] that a *weak topology* on a topos \mathcal{E} is a morphism $j : \Omega \to \Omega$ such that:

(i) $j \circ \text{true} = \text{true};$

(ii) $j \circ \wedge \leq \wedge \circ (j \times j)$, in which \leq stands for the internal order on Ω . Meanwhile, a weak topology j on \mathcal{E} is said to be *productive* if $j \circ \wedge = \wedge \circ (j \times j)$.

In what follows, we review the whole paper for a weak topology j on a topos \mathcal{E} instead of a topology.

Remark 4.8. Similar to [9, A.4.5.11(ii)], one can easily check that for a weak topology j on \mathcal{E} pushouts also preserve dense monomorphisms. Hence, we can obtain a version of Lemma 2.1 for a weak topology jon \mathcal{E} as well. One can observe that completely analogous assertions to Lemmas 4.2, 4.4 and 2.3, Proposition 4.6 and Theorem 3.1, hold for a weak topology j on \mathcal{E} . But, by [10], in the proof of Theorem 2.6, the part (vi) \Longrightarrow (vii) is true for a productive weak topology j on \mathcal{E} . The rest parts of this proof satisfies for weak topologies.

Recall [10] that, for a weak topology j on \mathcal{E} , it is convenient to see that if the composite subobject mn is dense then so are m and n. In contrast with topologies [9, A.4.5.11(iii)], the converse is not necessarily true. Hence, the sufficiency part of Proposition 4.3 does not necessarily hold for a weak topology j on a topos \mathcal{E} . The necessity part of this proposition satisfies for a weak topology j as well.

References

- J. Adamek, H. Herrlich, J. Rosicky and W. Tholen, Weak Factorization Systems and Topological Functors, Appl. Categ. Struc., 10 (2002), 237-249.
- [2] F. Borceux, Handbook of Categorical Algebra, Vol. I and III, Cambridge University Press, (1994).

- [3] F. Cagliari and S. Mantovani, Injectivity and Sections, J. Pure and Appl. Alg., 204 (2006), 79-89.
- [4] D. Dikranjan and W. Tholen, Categorical Structure of Closure Operators, Kluwer, Netherlands, (1995).
- [5] L. Español and L. Lambán, On Bornologies, Locales and Toposes of *M*-Sets, J. Pure and Appl. Alg., 176 (2002), 113-125.
- [6] S. N. Hosseini and S. SH. Mousavi, A Relation Between Closure Operators on a Small Category and Its Category of Presheaves, Appl. Categ. Struc., 14 (2006), 99-110.
- [7] M. Jackson, A Sheaf Theoretic Approach to Measure Theory, PhD Thesis, University of Pittsburgh, (2006).
- [8] P. T. Johnstone, Remarks on Quintessential and Persistent Localizations, Theory and Applications of Categories, Vol. 2, 8 (1996), 90-99.
- [9] P. T. Johnstone, Sketches of an Elephant: a Topos Theory Compendium, Vol. 1, Clarendon Press, Oxford, (2002).
- [10] Z. Khanjanzadeh and A. Madanshekaf, On Weak Topologies in a Topos, Submitted.
- [11] R. Lavendhome, Basic Concepts of Synthetic Differential Geometry, Kluwer, Dordrecht, (1996).
- [12] S. Mac Lane and I. Moerdijk, Sheaves in Geometry and Logic, Springer-Verlag, New York, (1992).
- [13] P. W. Michor, Topics in Differential Geometry, American Mathematical Society, (2008).
- [14] K. Nakayama, Topologies on Quantum Topoi Induced by Quantization, J. Math. Phys. 54, (2013) 072102.
- [15] K. Nakayama, Topos Quantum Theory on Quantization-Induced Sheaves, J. Math. Phys. 55, (2014) 102103.