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Abstract

Let j be a Lawvere-Tierney topology (a topology, for short)
on an arbitrary topos £, B an object of £, and jp = j X 1p the
induced topology on the slice topos £/B. In this manuscript, we
analyze some properties of the pullback functor Ilg : £ — £/B
which have deal with topology. Then for a left cancelable class
M of all j-dense monomorphisms in a topos £, we achieve some
necessary and sufficient conditions for that (M, M) is a factor-
ization system in &£, which is related to the factorization systems
in slice topoi £/B, where B ranges over the class of objects of
£. Among other things, we prove that an arrow f: X — B in

€ is a jp-sheaf whenever the graph of f, is a section in £/B as
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well as the object of sections S(f) of f, is a j-sheaf in £. Fur-
thermore, we introduce a class of monomorphisms in £, which
we call them j-essential. Some equivalent forms of those and
some of their properties are presented. Also, we prove that any
presheaf in a presheaf topos has a maximal essential extension.
Finally, some similarities and differences of the obtained result
are discussed if we put a (productive) weak topology j, studied

by some authors, instead of a topology.

AMS subject classification: 18B25; 18 A25; 18A32; 18F20; 18A20.
key words: (Weak) Lawvere-Tierney topology; Sheaf; Factorization

system; Slice topos; Essential monomorphism.

1 Introduction and background

A Lawvere-Tierney topology is a logical connective for modal logic.
Recently, applications of Lawvere-Tierney topologies in broad topics
such as measure theory [7] and quantum Physics [14] [I5] are observed.
In the spacial case, considerable work has been presented that is ded-
icated to the study of (weak) Lawvere-Tierney topology on a presheaf
topos on a small category and especially on a monoid, see [6, 5]. It is
clear that Lawvere-Tierney sheaves in a topos are exactly injective ob-
jects (of course, with respect to dense monomorphisms, not to merely
monomorphisms) which are separated too. Injectivity with respect to
a class M of morphisms in a slice category C/B (which its objects are
C-arrows with codomain B) has been studied in extensive form, for
example we refer the reader to [II, 3]. From this perspective, in this
paper we will establish some categorical characterizations of injectives
in slice topoi to sheaves. The object of sections S(f) of f is a notion
which in [3] it is related to injective objects in a slice category. This ob-
ject is very useful in synthetic differential geometry (or SDG, for short)
(for details, see [I1]). For example, considering D as infinitesimals, for

any micro-linear object M we have:

e Let 7 be the tangent bundle on M, ie., 7 : MP — M, which is
defined by 7(t) = t(0). Then S(7) is all vector fields on M.



e Consider n : MP*P — M which assigns to any micro-square Q
of MP*P the element Q(0,0). Then, S(n) is all distributions of

dimension 2 on M.

Throughout this paper, £ is a (elementary) topos, two objects 0, 1
are the initial and terminal objects and the object 2 together with
the arrow 1 »5 Q is the subobject classifier of £. Also, the arrow
A x Q — Qis the meet operation on (2. Now, we express some

basic concepts from [12] which will be needed in sequel.

Definition 1.1. A Lawwvere-Tierney topology on £ is a map j : {2 —

in & satisfies the following properties

(a) jotrue = true; (b) joj=j; (¢)joA=Ao(jxJ)

11 Q) 0—1-0 Ox0-2-0
tr&lj XL” ) lj
Q Q Ox 02 -0

Form now on, we say briefly to a Lawvere-Tierney topology on &£, a

topology on &.

Recall [12] that topologies on &£ are in one to one correspondence
with universal closure operators. For a topology j on &, considering (- )
as the universal closure operator corresponding to j, a monomorphism
k: A Cin & is called j-dense whenever A = C, as two subobjects
of C. Also, we say that k is j-closed if we have A = A, again as
subobjects of C.

Definition 1.2. For a topology 7 on £, an object F' of £ is called a
j-sheaf whenever for any j-dense monomorphism m : A — E, one can

uniquely extend any arrow h: A — F to a map ¢ on all of F,

AL;F (1)

7/
7/
g
7/

E

m

We say that F'is j-separated if the arrow g exists in (dI), it is unique.

We will denote the full subcategories of £ consisting of j-sheaves

and j-separated objects as Sh;(€) and Sep;(£), respectively.
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We now briefly describe the contents of other sections. We start in
Section 2, to study basic properties of the pullback functor Ilg : & —
&/ B, for any object B of £, along with the unique map !g : B — 1.
Afterwards, we would like to achieve, for a left cancelable class M of
all j-dense monomorphisms in a topos £, some necessary and sufficient
conditions for that (M, M=) to be a factorization system in &€, which
is related to the factorization systems in slice topoi £/B. In section 3,
among other things, we prove that an arrow f: X — Bin £ is a jp-
sheaf whenever the graph of f, is a section in £/B as well as the object
of sections S(f) of f, is a j-sheaf in £. In section 4, we introduce a class
of monomorphisms in an elementary topos £, which we call them ‘j-
essential monomorphisms’. We present some equivalent forms of these
and some of their properties. Meanwhile, we prove that any presheaf
in a presheaf topos has a maximal essential extension. It is shown that
the functor IIz reflects j-essential extensions. It is seen that some of
these results hold for a (productive) weak topology j, studied in [10],

instead of a topology as well.

2 Pullback functors, left cancelable dense
monomorphisms and factorization sys-

tems

The purpose of this section is to present some basic properties of the
pullback functor Iz : £ — £ /B, for any object B of £, along with the
unique map !p : B — 1. Afterwards, for a left cancelable class M of all
j-dense monomorphisms in a topos £ we achieve some necessary and
sufficient conditions for that (M, M*) to be a factorization system in
&, which is related to the factorization systems in slice topoi £/B.

To begin with, the following lemma characterizes sheaves in a topos

£.

Lemma 2.1. Let j be a topology on E. Then an object E of £ is j-sheaf
iff B is j-unique absolute retract; that is, any j-dense monomorphism

u: FE— F, has a unique retraction v : ' — E.



Proof. Necessity. Since E is a j-sheaf, for any j-dense monomor-
phism v : E — F, corresponding to the identity map idg : £ — E
there exists a unique map v : F' »— FE such that the following diagram
comimutes.

p

u Jw

F
Sufficiency. For each j-dense monomorphism m : U — V and any

map f: U — FE, we construct the following pushout diagram in £.

UL E 2)

V= Ly oy

Since in any topos pushouts transfer j-dense monomorphisms (see [9]),
so, in (), n is j-dense and hence by assumption, there exists a unique
retraction p : ' — E such that pn = idg. Now, for the the arrow pg :
V — E we have pgm = pnf = idgf = f. To prove that pg : V — E
with this property is unique, let h : V' — E be an arrow in £ in such
a way that Am = f. Then, in the pushout diagram (2)), according to
the maps h : V — E and idg : E — F, there exists a unique map
k : F' — E such that kn = idg and kg = h.

UL>

T
V—> F

Now, k is a retraction of j-dense monomorphism n, so by hypothesis
we get p = k. Consequently, pg = kg = h. O

For an object B of £, we consider the pullback functor Il : & —
& /B along with the unique map !z : B — 1, which assigns to any A
of &€, the second projection Ilp(A) = 74 : A x B — B and to any
f:A— C, the atrow f xidg : Ax B — C x B in & such that
75(f x idg) = m4. Recall [12] that the object 7% together with the



arrow

true X idg : iddg — W%

is the subobject classifier of the slice topos £/B. Also, in a similar
vein, we can observe that the meet operation Ap on 7% is the arrow

A x 1p in € such that 7%(A x 1p) = 72*%,

AX1lp

OxOQxB—=QxB
\ lﬂﬂ
e P20 B
B
B.
Now, by Definition [[LT] we easily get the following lemma.

Lemma 2.2. Let B be any object in a topos £. Then any topology
k:nl— 72 on&/B is a pair (I,7%), for some arrow l : Q x B —
in € satisfies the following conditions (as arrows in E)

(1) Lo (l,7%) =1;

(2) l o (true x 1) = trueo!p;

(3) loAg = ANo(lo(m,ms3),lo(m,m3)), where m; is the i-th projection
on Q2 x QO x B, fori=1,2,3.

By Lemma 2.2} for each topology j on &, considering | = j o 75,
it is easily seen that j x 1z = (I,7%) is a topology on £/B which we
denote it by jp. In this case jp is called the induced topology on E/B
by j.

One can simply see that if an arrow & is a monomorphism in £/B,
then k as an arrow in £, is too. Also, for each monomorphism k : f — g
in £/B, where f: X — B and g:Y — B in &, we can observe

Jhe=X-L )5y (3)
where () and m are the universal closure operators corresponding
to j and jp on topoi £ and £/ B, respectively, in which whole and the

middle squares of the following diagram are pullbacks in &,

1 (4)

X
k X — true
k true
Y p—

Y —Q0—0Q
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(for more details, see [12]). One can construct k in £/B, similar to the
above diagram.
Here, we proceed to improve [2, Vol. III, Proposition 9.2.5] as

follows:

Lemma 2.3. Let j be a topology in a topos £. For every object B of &€,
the pullback functor g : € — E/B preserves and reflects: denseness

(closeness) and j-separated objects (j-sheaves).

Proof. Let j be a topology on £ and B an object of £. Preserving
dense (closed) monomorphisms and sheaves (separated objects) in € by
the pullback functor Ilg, is standard and may be found in [2, Vol. III,
Proposition 9.2.5]. To prove the rest of lemma, here we just show that
I reflects dense (closed) monomorphisms. To verify this claim, let
g: A — C be an arrow in & for which IIz(g) is a jp-dense (jp-closed)
monomorphism. We show that ¢ is j-dense (j-closed) monomorphism.
As TIg(g9) = g x idp being monomorphism in £/B, the arrow g is
monomorphism in £ as well. For, let f, h in £ be two arrows such that

gf = gh, we will have

gf = gh - (g X ldB)(f X ldB) = (g X ldB)(h X ldB)
— fxidg=hxidg (g xidp is a monomorphism)
= f=h

Considering (- ) and (- ) as the universal closure operators correspond-

ing to j and jp, respectively. We get

HB(g) = gXidB
= g Xxidp (by @)

= ¢ X idg,

where the last equality is true since we have g x idg = (78)7!(g), and
because of stability of universal closure operators under pullbacks we
get (75)~'(g) = (78)7'(g). The above equalities imply that if IIz(g)
is jp-dense (jp-closed) monomorphism in £/B, then g is j-dense (j-
closed) monomorphism in £. O

For any topology j on a topos &£, consider M as the class of all

j-dense monomorphisms in £. Also, we denote by M= the class of all
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arrows ¢ : C' — D in & such that for any f: A — E in M and every

commutative square as in

A —U:C (5)
oo lg
Ve
there exists a unique arrow w : E — C in () such that the resulting
triangles are commutative. In this case, we say that g is right orthogo-
nalto f. Moreover, we say that the pair (M, M*) forms a factorization

system in £ if any arrow f in &£ factors as f = me, where m € M and

e € M* (for more information, see [1]).

Lemma 2.4. Let j be a topology on a topos £. Then for each object
B of £, we have Mg C ML, where Mgy is the class of all jp-dense

monomorphisms in E/B.

Proof. By Lemma 2.3 we get Mp C M. To reach the conclusion,
let h: f — g be an arrow in M4, where f : D — B and g: E — B

are arrows in €. Now, consider the commutative square

A—"“-D (6)

s

where m : A — C'isin M. Since by Lemma[2Z3]the arrow m : fu — gv
in £/B belongs to Mp and h € Mg, there exists a unique arrow
w: gv— fin £/B such that the following diagram commutes

fu—t— (7)
m }1)/ h
glU/T) i

The arrow w : C'— D (as an arrow in £) which commutes the resulting
triangulares, is unique in the diagram (). To prove this, let k : C' — D
be an arrow in £ such that km = w and hk = v. Now, we have
fk = (gh)k = gv, so k : gv — f is an arrow in £/B making all
triangles in () commutative. Thus, k¥ = w and the proof is complete.
O



Definition 2.5. Let j be a topology on a topos £. We say that &
has enough j-sheaves if for every object A of £ there is a j-dense

monomorphism A — F where F is a j-sheaf.

Following [I] a class M of morphisms in € is a left cancelable class
if gf € M implies f € M. In the following, we summarize the rela-
tion between left cancelable j-dense monomorphisms and factorization

systems in a topos £ and its slices.

Theorem 2.6. Let j be a topology on a topos €. Assume that for any
object B of €, the class Mp of all jp-dense monomorphisms in £/B
be left cancelable. Then the following are equivalent:

(i) for any object B of €, (Mp, M%) is a factorization system in €/ B;
(ii) for any object B of £, £/B has enough jp-sheaves;

(iii) for any object B of £, any object of £/B is jp-separated;

(iv) for any object B of €, any object of £/ B is jp-sheaf;

(V) any object of £ is j-sheaf;
(
(
(

vi) any object of € is j-separated;

i
vii) £ has enough j-sheaves;

viii) (M, ML) is a factorization system in E.

Proof. That any j-sheaf is j-separated in & yields that (v) =
(vi) holds.

(vi) = (v). That any object of £ is j-separated it follows that
Sep; (&) is the topos £ and then, every j-separated object is a j-sheaf
as in [8, Theorem 2.1].

(iii) = (vi). Setting B = 1, then any object of £ is j-separated.

(vi) = (iii). The claim follows immediately from the fact that for
any object B of &€,

Sep,,(£/B) = Sep;(£)/B.

(see also [9]).
(viil) == (vii). By (viii), for any object A of &£, the unique arrow
'4: A — 1 factors as




where ! € M = M+ and m € M; = M. We remark that it is easy
to check that for any object B of £, jp-sheaves in £/B are exactly the
class of all objects of £/B which belong to M3. Since !¢ is an object
in £/1 = £ which is in M7, so !¢ is a ji-sheaf, or equivalently, C' is a
j-sheaf.

(vil) == (viii). Consider an arrow f: A — B in £. By using (vii),
there exists a j-dense monomorphism ¢ : A ~— F', where F' is a j-sheaf
in £. Now, we factor f as the composite arrow A (L—f; FxB Lg) B.
Since 72(¢, f) =+ € M and M is a left cancelable class, so (¢, f) € M.
Also, F being j-sheaf, by Lemma 2.3 we have 7} is a jp-sheaf in £/B.
By Lemma 2.4 we have 75 € M$ C M*, as required.

(vi) = (vii). First of all we know that any j-separated object of
& can be embedded into a j-sheaf (see, e.g. [12, Proposition V.3.4]).
Let A be an object of £. Then, by assumption A is j-separated, and
there exists an embedding A — F , where F'is a j-sheaf. Now, take
the closure of A in F. Since A is closed in F, by [12, Lemma V.2.4], it
is a j-sheaf. Since A is j-dense in A we get the result.

(vil) = (vi). By assumption for any object A of &, there is a
j-dense monomorphism A — F in £, where F is a j-sheaf. Since any
subobject of a j-sheaf is j-separated so A is j-separated.

For any object B of &, setting £/B instead of £ in (v), (vi), (vii)
and (viii), we drive (i) <= (ii) <= (iii) <= (iv). O

In the following, we will introduce two main classes of dense monomor-

phisms in a topos £.

Remark 2.7. By diagram (4]), one can easily obtain:

(i) Let j = idg be the trivial topology on £. Then j-dense monomor-
phisms are only the identity maps. Therefore, any object of £ is a j-
sheaf. Also, j-closed monomorphisms are exactly all monomorphisms.
(ii) Let j be the topology trueolg on &, that is, the characteristic map
of idg. Then, j-dense monomorphisms are exactly all monomorphisms.

Furthermore, j-closed monomorphisms are just the identity maps.

Recall [1] that (Mono, Mono") is a weak factorization system in
any topos £, where Mono is the class of all monomorphisms in £. By

Remark 27](ii), the class Mono is the class of all j-dense monomor-
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phisms with respect to the topology j = trueolg on £. Since the class
Mono is left cancelable, so we can obtain a special case of Theorem
as follows. (Notice that by Lemma 2.3 for the topology j = trueolg
and any object B of £, the class Monog will be all monomorphisms in

£/B.)

Corollary 2.8. For the topology j = trueolq on a topos &, the follow-
g are equivalent:

(i) for any object B of £, (Monog, Monog) is a factorization system
in £/B;

ii) for any object B of £, £/B has enough jp-sheaves;

iii) for any object B of €, any object of £/ B is jp-sheaf;

iv) for any object B of £, any object of £/B is jp-separated;

vi) any object of € is j-separated;
vii) € has enough j-sheaves;

(

(

(

(V) any object of £ is j-sheaf;

(

(

(viii) (Mono, Monot) is a factorization system in E.

3 Sheaves and sections of an arrow

In this section, among other things, we investigate a relationship be-
tween sheaves and sections of an arrow in a topos £. We start to remind
[3] that for any object B of &, the pullback functor Ilp : € — £/B
has a right adjoint S : £/B — &£ as for any f : X — B we have the
following pullback

S(f)——=1 (8)

T

XP = BY

where ig is the transpose of idg : 1 x B & B — B and f? is the
transpose of the composition arrow X? x B &5 X B by the
exponential adjunction (=) x B - (—)5; that is, evg(ip x idg) = idp
and evp(fP x idp) = fevy, where the natural transformation ev :

(=)8 x B — (—) is the counit of the exponential adjunction. In fact,
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in the Mitchell-Bénabou language, we can write

S(f) ={n| (Ve e B) fo(h(c)) = c}.

This means that we can call S(f) the object of sections of f.

Since any retract of an object in a topos (or in an arbitrary cat-
egory) is an equalizer, so the topos Sh;(€) is closed under retracts.
Furthermore, as IIg - S, by Lemma [2.3] we have that the pullback
functor Ilg preserves dense monomorphisms, so S preserves sheaves
(for details, see [9, Corollary 4.3.12]). (Roughly, for any object B € £
and any adjoint ' 4 G : £ — £/B one can easily checked that the
functor G preserves sheaves whenever F' preserves dense monomor-
phisms.)

In the following theorem we will find a relationship between sheaves

in £/B and the object of sections of an arrow.

Theorem 3.1. Let j be a topology on a topos € and f: X — B be an
object of E/B. Then, f is a jp-sheaf in £/B, whenever the graph of f
which stands for the monomorphism (idx, f) : f — 7x in E/B, is a

section as well as S(f) is a j-sheaf in E.

Proof. We recall that in [3] it was proved if (idx, f) is a section in
E/B, then f is a retract of Wg(f) in £/B. As S(f) is a j-sheaf, by
Lemma 2.3 ﬁg(f) is a jp-sheaf in £/B. But Sh;,(£/B) being closed
under retracts, therefore f is a jp-sheaf in £/B. O

To the converse of Theorem B.I] that the section functor S pre-
serves sheaves it yields that if f : X — B be a jp-sheaf in £/B, then
S(f) is a j-sheaf in €. Also, by Remark 2.7|(ii), for j = trueolq, the
monomorphism (idyx, f) : f = 75 is jp-dense in £/B and then for a
jp-sheaf f: X — B, it will be a section in £/B.

In the rest of this section, for a small category C we restrict our
attention to obtain a version of Theorem B.] for injective presheaves
in trivial slices of the presheaf topos C = Sets®” which is close to
the version over j-sheaves for the topology j = trueoln on C. (See
Proposition below.) Note that the topology j = trueolg on C is
associated to the chaotic or indiscrete Grothendieck topology on C.
Recall [12] that in the presheaf topos C = Sets®”, the exponential

12



object G* is defined in each stage C' of C as G*(C) = Homs(Y (C) x
F,G), where Y is the Yoneda embedding, that is

Y:C—C; Y(C)=Home(—,C).

Now, for an arrow a : G — F consider the arrows ip : 1 — FF and
of © GF — FF in C as the transposes of idp : 1 x F = F — F and
aoevg : GF x F — F, respectively, by the exponential adjunction.

We can observe
VC eC, (ip)e:1(C) = {x} — FF(C);  (ip)c(x) =709 (9)

Also, for any two objects C, D of C, any ~ in GF(C) and any (k,y) in
Y (C)(D) x F(D) we have

(ac(M)p(k,y) = ap(yp(k,y)). (10)

Remind that a presheaf G' has a (unique) global section which
means that in each stage C' of C there is a (unique) element 6 € G(C)

in such a way that for any arrow k : D — C in C we have
G(h)(6c) = Op. (11)

Here, we find a special case that the exponential object and the object
of sections in C are exactly similar to Sets. First, we express some

lemma required to achieve the goal.

Lemma 3.2. Let j be the topology trueolq on C. Then, the following
assertions hold:

(i) For any j-sheaf G in 5, G has a unique global section. More gen-
erally, any injective presheaf G of(? has a global section.

(i) For any family {G \}rea in C, the presheaf G = [Lca Gy is a j-
sheaf (injective) in C iff for all X € A, Gy is a j-sheaf (injective) in
C.

Proof. (i) Let G be a j-sheaf in C and consider the coproduct
object G 1 in C. By Remark 277(ii), there exists a unique natural
transformation n : GU1 — G in C such that the following diagram

13



commutes (if G being injective, the arrow 7 is not necessarily unique)

G ¢

I b

. Ve
Ve

_7m

GUl1

where ¢ : G — G U1 is the injection arrow. Now, we will denote 7¢ ()
by an element fc in G(C) in each stage C of C. Since n: GU1 — G
is natural, so for any arrow k£ : D — C in C the following square
commutes

(GU1)(D)22~G(D)

(Gm)(k)T TG(k)
(GU1)(C) —"=G(C)

Then, we have

G(k)(0c) = G(k)(nc(x))
= Tp

This is the required result.

(i) Necessity. Let G be a j-sheaf (injective) in C. For any A, p € A,
we define o™ : G, — G, such that in each stage C' of C and for each
z € GA(C), we have ol (x) = 0%, where 6% is the p-th component of
¢ corresponding to G in (i). Now, we will show that for any A, 1 € A,
a™ is a natural transformation in (?, that is for any arrow k: D — C

in C the following diagram is commutative

Ap

D) "2~ G, (D)
TGu(k)

For, consider an element x € G,(C') we get

Gu(k)(agh (@) = Gu(k)(0F)
= 0p (by (@I)
= o (GA(k)(2)).
Now, for any A € A, consider the family {7, : Gy = G,},ea in C such
that for each A # pu € A we have 7, = o™ and v, = idg,. Since G

14



is the product [],c, G, so there is a unique natural transformation
v : Gy — G such that p,y = 7, and pyy = idg,, for all \,x € A and
the projections py. Thus, for any A € A, G, is a retract of the j-sheaf
(injective) G and then, G, is a j-sheaf (injective).

Sufficiency. By the universal property of the product presheaf G,
the unique arrow in the definition of a sheaf is easily follows. O

We recall [I2] that in each stage C' of C the object Q(C) of C is
the set of all sieves on C'. Also, the arrow truec : 1(C) = {x} — Q(C)
assigns to *, the mazimal sieve t(C') of Q(C'), that is all arrows with

codomain C of C.

Remark 3.3. Note that the topology j = trueolg on C is the unique
topology on C that satisfies Lemma To show this, for a j-sheaf G
of CA, consider the injection ¢+ : G — G U1 in C. In each stage C' of C
we have char(:)c(x) = 0. Now, let j be a topology on C. If ¢ is j-dense
monomorphism, then in each stage C' of C we have jo(0) = ¢t(C). Now,
for any sieve S € Q(C') by Definition [T we get

t(C) = jo®) =jo(@nS)
= je(®) Njo(S) =tC) Njo(S) = jo(S).

Thus, jo is the constant function on ¢(C'), as required.

Let F' be the constant presheaf on a set A. One can easily checked
that the exponential adjunction (=) x F = (=) is determined by, for
any presheaf G in C. , the exponential presheaf G assigns to any object

C of C, the hom-set Homgets(A, G(C)) and to any arrow f : C — D
of C, the function

GP(f) : Homgets(A, G(D)) — Homgets(A, G(C))

given by G¥(f)(g) = G(f) o g. As any function f: A — G(C) can be
considered as a sequence (z4)qea € [[4 G(C), it yields that one has

vecec, GMO)=]]aG) (12)
A

By (I2), @) and (IQ), it is convenient to see that for each arrow « :
G — F in C in which F stands for the constant presheaf on a set A,
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we get
vCec, S(a)C)=]]ec' () (13)
acA
Now, we will extract a special case of Theorem [B.1] in C. First, let
o : G — F be an arrow in C in which F is the constant presheaf on
a set A. For each element a of A, consider the subpresheaf H, of G
such that H,(C) = ag'(a), for any object C' of C. Since limits in C are
constructed pointwise, so (I3 shows that S(a) = [],c4 Ha-

Proposition 3.4. Let j be the topology trueoln on Canda:G — F
an arrow in CA, where I is the constant presheaf on a set A. Then,
a 18 a jp-sheaf in 5/F iff the monomorphism (idg, ) : a — 7% is a
section in 5/F as well as for any a € A, the subpresheaf H, of G is a

j-sheaf in C.

Proof. We deduce the result by Theorem [3.1], Lemma B.2(ii) and
(@3). O

Since in topoi regular monomorphisms are exactly monomorphisms,
so by [3l Theorem 1.2], Lemma [3.2((ii) and (I3), the following now gives

which we are interested in.

Proposition 3.5. Let o : G — F be an arrow in (?, where F s
the constant presheaf on a set A. Then, a is injective in 5/F iff the
monomorphism (idg, o) : a — 7% is a section in C/F as well as for

any a € A, the subpresheaf H, of G is injective.
In the case when C is a monoid, we obtain

Example 3.6. Let M be a monoid and M-Sets the topos of all (right)
representations of a fixed monoid M. Since M is a small category with
just one object, for two M-sets X, B we have X? = Hom;_gets(M X
B, X), where M x B has the componentwise action. Hence, by (@)
and (I0), for any equivariant map f : X — B, in the diagram (§)) we
observe

ip(¥) =74 : M x B — B, (14)

and
Vh e XB V¥(m,b) € M x B, (f2(h))(m,b) = fh(m,b).  (15)
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Note that one writes any equivariant map h: M x B — X in XP as a
sequence ((@mp)beB)mem, consisting of elements x,,, = h(m,b) of X,

for any (m,b) € M x B. Also, h being equivariant map means that
Vn,m e M,Yb € B, ZTpnpn = Tmpn.
Hence, we obtain that X? is equal to

{(@me))m € J] JI X |Vn.m € M,Vb € B, & n = xmpn}. (16)

meM beB

Now, by (), (I4) and (3] we have

S(f) = {(@mp)o)m € XP | fP(((mp)s)m) = 75 = ((0)p)m}

= {((@mp)p)m € XZ | ((f(@mp))p)m = ((0)p)m}
= {((®mp)o)m € XP | Vm € M,¥b € B,z € f1(b)},

Hence, by (@) we interpret a simple form of underlying set of the
M-set S(f) in the topos M-Sets as follows

((Zmp)b EHHf b) | Vn,m € M,¥b € B, Ty pn = Tmpn}.
meM beB

If B has the trivial action -, that is - = m : B x M — B the
first projection, then by (I2)) and (I3) we can obtain X? =[], X and

S(f) = Ipen D).
Furthermore, recall [12] that for a group G and two G-sets X, B,

we have

B=1{h:B— X| hisafunction}%“HX (17)
B

as two sets. According to the action on X, under the isomorphism

(D), the action on [[; X is given by (zp)een - 9 = (Tpg-1 - 9)ven, for
any g € G and (xp)pep € [[5 X. Also, by ([I7) for any equivariant
map f : X — B in G-Sets, in a similar way to (I3]), we have S(f) =

[Lhen £710).
4 j-essential extensions in a topos

This section is devoted to introduce a class of monomorphisms in an

elementary topos, which we call these ‘j-essential monomorphisms’.
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We present some equivalent forms of these and some their properties.
Meanwhile, we prove that any presheaf in a presheaf topos has a max-
imal essential extension.

Remind that a monomorphism ¢ : A — B is called essential when-
ever for each arrow g : B — C such that gt is a monomorphism, then g
is a monomorphism also. Now, we define a j-essential monomorphism

in a topos £ as follows.

Definition 4.1. For a topology j on £, a monomorphism ¢ : A — B
is called j-essential whenever it is j-dense as well as essential. In

this case, we say that B is a j-essential extension of A and we write
AC; B.

We shall say an arrow f : A — B in £ is j-dense whenever the
subobject f(A), which is the image of f, is j-dense in B. In this way,
any epimorphism in £ becomes j-dense. ( For the definition of image
of an arrow in a topos, see [12].)

The following gives some equivalent definitions of j-essential monomor-

phisms in a topos £.

Lemma 4.2. Let j be a topology on € and ¢+ : A — B a j-dense
monomorphism. Then, the following are equivalent:

(i) for any g : B — C, g is a monomorphism whenever g is a
monomorphism;

(i) for any g : B — C, g is a j-dense monomorphism whenever gt is
a 7-dense monomorphism;

(iii) for any g : B — C, g is a monomorphism whenever g is a j-dense

monomorphism.

Proof. (i) = (ii) and (iii) = (ii) are proved by [9, A.4.5.11(iii)].
(ii) = (iii) is clear.
(i) = (i). Consider an arrow g : B — C for which g¢ is monomor-
phism. We show that g is monomorphism also. Assume that B 5
g(B) = C s the image factorization of the arrow g. Since gt = m(ke)

and gt is monomorphism, it follows that the arrow k¢ is a monomor-
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phism. Meanwhile, we get

g(B) = k(B) (as k is epic)
= k(A) (as ¢ is dense)
C k(4)
C 9(B).

Therefore, g(B) = k(A) = kiu(A). It follows that the compound
monomorphism k¢ : A — ¢(B) is dense monomorphism and by (ii), k
is also. That k is monomorphism and so isomorphism, yields that g is
monomorphism. U
We point out that the proof of (ii) = (i) of Lemma .2 shows that
any composite k¢, for an epic k and a dense monomorphism ¢, is dense.
The follwing shows that j-essential monomorphisms in £ are closed

under composition.

Proposition 4.3. Let j be a topology on E. For two subobjects A -
A5 Bin€, then AC; Biff AC; A' and A' C; B.

Proof. By [9, 13, A.4.5.11(iii)], one has ¢t is j-dense iff // and ¢
are j-dense.

Necessity. First, by Lemma [£.2(i), we show that A C; A’. To do
so, consider an arrow f’: A" — C for which f’t is a monomorphism.
Now, by [12 Corollary IV. 10. 3], the object C' can be embedded
into an injective object D as in C > D and hence there is an arrow
f’ : B — D such that f’e’ = vf'. Since A C; B and f’L’L =vfliisa
monomorphism, we deduce that f’ is a monomorphism. As f’e’ =vf
it follows that f’ is a monomorphism.

To prove A" C; B, choose an arrow f : B — C for which f/ is
a monomorphism. Then, f//s is also a monomorphism. Now A C; B
implies that f is a monomorphism, as required.

Sufficiency. Let f : B — C be an arrow in £ such that fi/. is a
monomorphism. Since A C; A" and (fi')e = f/t is a monomorphism,
it concludes that f/' is a monomorphism. Using A" C; B, we achieve
that f is a monomorphism and hence A C; B. O

In the following, we achieve another property of j-essential monomor-

phisms in £.
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Lemma 4.4. Let j be a topology on €. If A C; B and A is embedded
in a j-sheaf F', then B also is embedded in F.

Proof. Let « : A — B be a j-essential monomorphism and m :
A — F an arbitrary embedding. Since F' is a j-sheaf, there exists a

unique morphism f : B — F making the diagram below commutative;

As A C; B being j-essential, f is an embedding, as required. O
By Remark 2.7(ii), essential monomorphisms in a topos & are ex-
actly j-essential monomorphisms in £ with respect to the topology
j = trueolg on &.
Now, we would like to prove that any presheaf in C has a maximal

essential extension.
Theorem 4.5. Any presheaf in C has a mazimal essential extension.

Proof. Let I’ be a presheaf in C and G an injective presheaf into
which F' can be embedded. By Lemma [£.4] we can assume that both
I and all its essential extensions are subpresheaves of G. Consider
>~ as the set of all essential extensions of F' which is a poset under
subpresheaf inclusion C. Since the arrow idp is an essential extension
of F, it follows that > is non-empty. If

..CFC...,

i € I, is a chain in ), then the subpresheaf H of G given by H(C) =
U,e; Fi(C) for any object C'in C is an upper bound of this chain. Now
we show that H lies in >, i.e., H is an essential extension of F. To
achieve this, let o : H — K be an arrow in C such that the restriction
arrow o is a monomorphism. We prove that « is a monomorphism.
To verify this claim, we show that for any C € C, , the function a¢ :
U,er Fi(C) — K(C) is one to one. Take a,b € | J,c; Fi(C), a # b. Then
there is a j € I such that a,b € F;(C). Denote a|r, by a;. Since F}
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is an essential extension of F' and a;|p = alp, it implies that «; is a

monomorphism. Now

ac(a) = (aj)c(a) # (a;)o(b) = ac(b).

Therefore, o is a monomorphism. Thus, H € Y . Now it follows from
Zorn’s Lemma that there is a maximal element M in ). Then, M is
a maximal essential extension of F. O

It is straightforward to see that any essential extension of B can be
embedded in any injective extension of B.

For a topology j on a topos &, by a j-injective object we mean an
injective object with respect to the class of all j-dense monomorphisms
in £.

The following shows that the j-injective presheaves (j-sheaves) in

C have no proper j-essential extension.

Proposition 4.6. Let j be a topology on Cand F a j-injective presheaf

(j-sheaf) in C. Then, F has no proper j-essential extension.

Proof. Suppose that GG is a proper j-essential extension of F' and
so F'is a j-dense subpresheaf of G and F' # G. Thus there is an object
C of C such that G(C) ¢ F(C) and then, an a € G(C) such that
a ¢ F(C). Since F'is j-injective (j-sheaf) implies that there is an arrow
a : G — F for which a|p = idg. That a ¢ F(C) and ac(a) € F(C)
follows that a # ac(a). But ac(ac(a)) = ac(a). Then, ac and so « is
not a monomorphism although «|r = idg is. This shows that G is not
a proper j-essential extension of F' and it is a contradiction. O

The following shows that the pullback functor Il reflects j-essential

extensions.

Proposition 4.7. Let j be a topology in a topos £. For every ob-
ject B € &, the pullback functor llg : € — E/B reflects j-essential

monomorphisms.

Proof. Let f : A — C be an arrow in £ such that Ilg(f) is a jp-
essential monomorphism. We show that f is a j-essential monomor-
phism. By Lemma 2.3 f is a j-dense monomorphism in &£. Let

g : C — D be an arrow in &£ such that ¢gf is a monomorphism.
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We show that ¢ is too. Since gf is a monomorphism, the arrow
(9 x idp)IIg(f) = (gf) x idp is also a monomorphism. As IIg(f)
is jp-essential, so g X idp is a monomorphism. Then ¢ is a monomor-
phism. This is the required result. O

Recall [10] that a weak topology on a topos € is a morphism j : Q —
Q2 such that:
(i) j o true = true;
(ii)) joA < Ao (5 xj), in which < stands for the internal order
on ). Meanwhile, a weak topology 7 on & is said to be productive if
jon=no(jxj).

In what follows, we review the whole paper for a weak topology j

on a topos & instead of a topology.

Remark 4.8. Similar to [9, A.4.5.11(ii)], one can easily check that for
a weak topology j on £ pushouts also preserve dense monomorphisms.
Hence, we can obtain a version of Lemma 2.1l for a weak topology j
on &£ as well. One can observe that completely analogous assertions to
Lemmas 2] B.4] and 2.3 Proposition .6l and Theorem B.1] hold for a
weak topology j on £. But, by [10], in the proof of Theorem 2.6 the
part (vi) = (vii) is true for a productive weak topology j on £. The
rest parts of this proof satisfies for weak topologies.

Recall [10] that, for a weak topology j on &, it is convenient to see
that if the composite subobject mn is dense then so are m and n. In
contrast with topologies [9, A.4.5.11(iii)], the converse is not necessarily
true. Hence, the sufficiency part of Proposition 4.3 does not necessarily
hold for a weak topology j on a topos £. The necessity part of this

proposition satisfies for a weak topology j as well.

References

[1] J. Adamek, H. Herrlich, J. Rosicky and W. Tholen, Weak Factor-
ization Systems and Topological Functors, Appl. Categ. Struc., 10
(2002), 237-249.

[2] F. Borceux, Handbook of Categorical Algebra, Vol. T and III,
Cambridge University Press, (1994).

22



[3]

[15]

F. Cagliari and S. Mantovani, Injectivity and Sections, J. Pure
and Appl. Alg., 204 (2006), 79-89.

D. Dikranjan and W. Tholen, Categorical Structure of Closure
Operators, Kluwer, Netherlands, (1995).

L. Espanol and L. Lamban, On Bornologies, Locales and Toposes
of M-Sets, J. Pure and Appl. Alg., 176 (2002), 113-125.

S. N. Hosseini and S. SH. Mousavi, A Relation Between Closure
Operators on a Small Category and Its Category of Presheaves,
Appl. Categ. Struc., 14 (2006), 99-110.

M. Jackson, A Sheaf Theoretic Approach to Measure Theory, PhD
Thesis, University of Pittsburgh, (2006).

P. T. Johnstone, Remarks on Quintessential and Persistent Local-
izations, Theory and Applications of Categories, Vol. 2, 8 (1996),
90-99.

P. T. Johnstone, Sketches of an Elephant: a Topos Theory Com-
pendium, Vol. 1, Clarendon Press, Oxford, (2002).

Z. Khanjanzadeh and A. Madanshekaf, On Weak Topologies in a
Topos, Submitted.

R. Lavendhome, Basic Concepts of Synthetic Differential Geome-
try, Kluwer, Dordrecht, (1996).

S. Mac Lane and I. Moerdijk, Sheaves in Geometry and Logic,
Springer-Verlag, New York, (1992).

P. W. Michor, Topics in Differential Geometry, American Mathe-
matical Society, (2008).

K. Nakayama, Topologies on Quantum Topoi Induced by Quan-
tization, J. Math. Phys. 54, (2013) 072102.

K. Nakayama, Topos Quantum Theory on Quantization-Induced
Sheaves, J. Math. Phys. 55, (2014) 102103.

23



	1 Introduction and background
	2 Pullback functors, left cancelable dense monomorphisms and factorization systems
	3 Sheaves and sections of an arrow 
	4 j-essential extensions in a topos

