Lawvere-Tierney sheaves, factorization systems, sections and j-essential monomorphisms in a topos

Zeinab Khanjanzadeh Ali Madanshekaf

Department of Mathematics

Faculty of Mathematics, Statistics and Computer Science Semnan University

Semnan

Iran

emails: z.khanjanzadeh@gmail.com amadanshekaf@semnan.ac.ir

Abstract

Let j be a Lawvere-Tierney topology (a topology, for short) on an arbitrary topos \mathcal{E}, B an object of $\mathcal{E},$ and $j_B = j \times 1_B$ the induced topology on the slice topos \mathcal{E}/B . In this manuscript, we analyze some properties of the pullback functor $\Pi_B : \mathcal{E} \to \mathcal{E}/B$ which have deal with topology. Then for a left cancelable class $\mathcal M$ of all j-dense monomorphisms in a topos $\mathcal E$, we achieve some necessary and sufficient conditions for that $(\mathcal{M},\mathcal{M}^{\perp})$ is a factorization system in \mathcal{E} , which is related to the factorization systems in slice topoi \mathcal{E}/B , where B ranges over the class of objects of $\mathcal E$. Among other things, we prove that an arrow $f: X \to B$ in $\mathcal E$ is a j_B-sheaf whenever the graph of f, is a section in $\mathcal E/B$ as

well as the object of sections $S(f)$ of f, is a j-sheaf in $\mathcal E$. Furthermore, we introduce a class of monomorphisms in \mathcal{E} , which we call them j-essential. Some equivalent forms of those and some of their properties are presented. Also, we prove that any presheaf in a presheaf topos has a maximal essential extension. Finally, some similarities and differences of the obtained result are discussed if we put a (productive) weak topology j , studied by some authors, instead of a topology.

AMS subject classification: 18B25; 18A25; 18A32; 18F20; 18A20. key words: (Weak) Lawvere-Tierney topology; Sheaf; Factorization system; Slice topos; Essential monomorphism.

1 Introduction and background

A Lawvere-Tierney topology is a logical connective for modal logic. Recently, applications of Lawvere-Tierney topologies in broad topics such as measure theory [\[7\]](#page-22-0) and quantum Physics [\[14,](#page-22-1) [15\]](#page-22-2) are observed. In the spacial case, considerable work has been presented that is dedicated to the study of (weak) Lawvere-Tierney topology on a presheaf topos on a small category and especially on a monoid, see [\[6,](#page-22-3) 5]. It is clear that Lawvere-Tierney sheaves in a topos are exactly injective objects (of course, with respect to dense monomorphisms, not to merely monomorphisms) which are separated too. Injectivity with respect to a class $\mathcal M$ of morphisms in a slice category $\mathcal C/B$ (which its objects are C-arrows with codomain B) has been studied in extensive form, for example we refer the reader to $[1, 3]$ $[1, 3]$. From this perspective, in this paper we will establish some categorical characterizations of injectives in slice topoi to sheaves. The object of sections $S(f)$ of f is a notion which in [\[3\]](#page-22-4) it is related to injective objects in a slice category. This object is very useful in synthetic differential geometry (or SDG, for short) (for details, see [\[11\]](#page-22-5)). For example, considering D as infinitesimals, for any micro-linear object M we have:

• Let τ be the tangent bundle on M, i.e., $\tau : M^D \to M$, which is defined by $\tau(t) = t(0)$. Then $S(\tau)$ is all vector fields on M.

• Consider $\eta: M^{D\times D} \to M$ which assigns to any micro-square Q of $M^{D\times D}$, the element $Q(0,0)$. Then, $S(\eta)$ is all distributions of dimension 2 on M.

Throughout this paper, $\mathcal E$ is a (elementary) topos, two objects 0, 1 are the initial and terminal objects and the object Ω together with the arrow $1 \stackrel{\text{true}}{\rightarrow} \Omega$ is the subobject classifier of \mathcal{E} . Also, the arrow \wedge : $\Omega \times \Omega \to \Omega$ is the meet operation on Ω . Now, we express some basic concepts from [\[12\]](#page-22-6) which will be needed in sequel.

Definition 1.1. A Lawvere-Tierney topology on \mathcal{E} is a map $j : \Omega \to \Omega$ in $\mathcal E$ satisfies the following properties

(a)
$$
j \circ \text{true} = \text{true}
$$
; (b) $j \circ j = j$; (c) $j \circ \land = \land \circ (j \times j)$;
\n $1 \xrightarrow{\text{true}} \Omega$
\n \downarrow
\n Ω
\n \downarrow
\n Ω
\n \downarrow
\n \downarrow
\n Ω
\n \downarrow
\n Ω
\n \downarrow
\n Ω
\n $\Omega \times \Omega \xrightarrow{\land} \Omega$
\n \downarrow
\n \downarrow
\n \downarrow
\n $\Omega \times \Omega \xrightarrow{\land} \Omega$

Form now on, we say briefly to a Lawvere-Tierney topology on \mathcal{E} , a *topology* on \mathcal{E} .

Recall [\[12\]](#page-22-6) that topologies on $\mathcal E$ are in one to one correspondence with universal closure operators. For a topology j on \mathcal{E} , considering (\cdot) as the universal closure operator corresponding to j , a monomorphism $k : A \rightarrowtail C$ in $\mathcal E$ is called j-dense whenever $\overline{A} = C$, as two subobjects of C. Also, we say that k is j-closed if we have $\overline{A} = A$, again as subobjects of C.

Definition 1.2. For a topology j on \mathcal{E} , an object F of \mathcal{E} is called a j-sheaf whenever for any j-dense monomorphism $m : A \rightarrow E$, one can uniquely extend any arrow $h: A \to F$ to a map g on all of E,

$$
A \xrightarrow{\hbar} F
$$

\n
$$
m \downarrow \searrow g
$$

\n
$$
E
$$

\n(1)

We say that F is j-separated if the arrow g exists in (1) , it is unique.

We will denote the full subcategories of $\mathcal E$ consisting of j-sheaves and *j*-separated objects as $\mathbf{Sh}_j(\mathcal{E})$ and $\mathbf{Sep}_j(\mathcal{E})$, respectively.

We now briefly describe the contents of other sections. We start in Section 2, to study basic properties of the pullback functor $\Pi_B : \mathcal{E} \to$ \mathcal{E}/B , for any object B of \mathcal{E} , along with the unique map $!_B : B \to 1$. Afterwards, we would like to achieve, for a left cancelable class $\mathcal M$ of all j-dense monomorphisms in a topos \mathcal{E} , some necessary and sufficient conditions for that $(\mathcal{M}, \mathcal{M}^{\perp})$ to be a factorization system in \mathcal{E} , which is related to the factorization systems in slice topoi \mathcal{E}/B . In section 3, among other things, we prove that an arrow $f: X \to B$ in $\mathcal E$ is a j_Bsheaf whenever the graph of f, is a section in \mathcal{E}/B as well as the object of sections $S(f)$ of f, is a j-sheaf in $\mathcal E$. In section 4, we introduce a class of monomorphisms in an elementary topos \mathcal{E} , which we call them 'jessential monomorphisms'. We present some equivalent forms of these and some of their properties. Meanwhile, we prove that any presheaf in a presheaf topos has a maximal essential extension. It is shown that the functor Π_B reflects j-essential extensions. It is seen that some of these results hold for a *(productive)* weak topology *j*, studied in [\[10\]](#page-22-7), instead of a topology as well.

2 Pullback functors, left cancelable dense monomorphisms and factorization systems

The purpose of this section is to present some basic properties of the pullback functor $\Pi_B : \mathcal{E} \to \mathcal{E}/B$, for any object B of \mathcal{E} , along with the unique map $!_B : B \to 1$. Afterwards, for a left cancelable class M of all *j*-dense monomorphisms in a topos $\mathcal E$ we achieve some necessary and sufficient conditions for that $(\mathcal{M}, \mathcal{M}^{\perp})$ to be a factorization system in $\mathcal E$, which is related to the factorization systems in slice topoi $\mathcal E/B$.

To begin with, the following lemma characterizes sheaves in a topos $\mathcal{E}.$

Lemma 2.1. Let j be a topology on \mathcal{E} . Then an object E of \mathcal{E} is j-sheaf iff E is j-unique absolute retract; that is, any j-dense monomorphism $u: E \rightarrow F$, has a unique retraction $v: F \rightarrow E$.

Proof. Necessity. Since E is a j-sheaf, for any j-dense monomorphism $u : E \rightarrow F$, corresponding to the identity map $id_E : E \rightarrow E$ there exists a unique map $v : F \rightarrow E$ such that the following diagram commutes.

E u id^E /E F v ?? ⑦ ⑦ ⑦ ⑦

Sufficiency. For each j-dense monomorphism $m: U \rightarrow V$ and any map $f: U \to E$, we construct the following pushout diagram in \mathcal{E} .

$$
\begin{array}{ccc}\nU & \xrightarrow{f} & E \\
m & \downarrow & \\
V & \xrightarrow{p.o.} & F\n\end{array} \tag{2}
$$

Since in any topos pushouts transfer *j*-dense monomorphisms (see [\[9\]](#page-22-8)), so, in (2) , n is j-dense and hence by assumption, there exists a unique retraction $p: F \to E$ such that $pn = id_E$. Now, for the the arrow pg : $V \to E$ we have $pgm = pnf = id_Ef = f$. To prove that $pg: V \to E$ with this property is unique, let $h: V \to E$ be an arrow in $\mathcal E$ in such a way that $hm = f$. Then, in the pushout diagram [\(2\)](#page-4-0), according to the maps $h: V \to E$ and $id_E: E \to E$, there exists a unique map $k : F \to E$ such that $kn = id_E$ and $kg = h$.

Now, k is a retraction of j-dense monomorphism n , so by hypothesis we get $p = k$. Consequently, $pg = kg = h$. \Box

For an object B of \mathcal{E} , we consider the pullback functor $\Pi_B : \mathcal{E} \to$ \mathcal{E}/B along with the unique map $!_B : B \to 1$, which assigns to any A of \mathcal{E} , the second projection $\Pi_B(A) = \pi_B^A : A \times B \to B$ and to any $f: A \to C$, the arrow $f \times id_B : A \times B \to C \times B$ in $\mathcal E$ such that $\pi_B^C(f \times id_B) = \pi_B^A$. Recall [\[12\]](#page-22-6) that the object π_B^{Ω} together with the arrow

true
$$
\times
$$
 id_B : id_B $\longrightarrow \pi_B^{\Omega}$

is the subobject classifier of the slice topos \mathcal{E}/B . Also, in a similar vein, we can observe that the meet operation \wedge_B on π_B^{Ω} is the arrow $\wedge \times 1_B$ in \mathcal{E} such that $\pi_B^{\Omega}(\wedge \times 1_B) = \pi_B^{\Omega \times \Omega}$ $B^{\times \Omega}$

Now, by Definition [1.1,](#page-2-1) we easily get the following lemma.

Lemma 2.2. Let B be any object in a topos \mathcal{E} . Then any topology $k: \pi_B^{\Omega} \to \pi_B^{\Omega}$ on \mathcal{E}/B is a pair (l, π_B^{Ω}) , for some arrow $l: \Omega \times B \to \Omega$ in $\mathcal E$ satisfies the following conditions (as arrows in $\mathcal E$)

(1) $l \circ (l, \pi_B^{\Omega}) = l;$

(2) $l \circ (true \times 1_B) = true \circ !_B;$

(3) $l \circ \wedge_B = \wedge \circ (l \circ (\pi_1, \pi_3), l \circ (\pi_2, \pi_3))$, where π_i is the *i*-th projection on $\Omega \times \Omega \times B$, for $i = 1, 2, 3$.

By Lemma [2.2,](#page-5-0) for each topology j on \mathcal{E} , considering $l = j \circ \pi_{\Omega}^B$, it is easily seen that $j \times 1_B = (l, \pi_B^{\Omega})$ is a topology on \mathcal{E}/B which we denote it by j_B . In this case j_B is called the *induced topology* on \mathcal{E}/B by j .

One can simply see that if an arrow k is a monomorphism in \mathcal{E}/B , then k as an arrow in \mathcal{E} , is too. Also, for each monomorphism $k : f \rightarrow g$ in \mathcal{E}/B , where $f: X \to B$ and $g: Y \to B$ in \mathcal{E} , we can observe

$$
\widetilde{f} \stackrel{\widetilde{k}}{\rightarrowtail} g = (\overline{X} \stackrel{g\overline{k}}{\longrightarrow} B) \stackrel{\overline{k}}{\rightarrowtail} g,\tag{3}
$$

where $\overline{(\cdot)}$ and $\widetilde{(\cdot)}$ are the universal closure operators corresponding to j and j_B on topoi $\mathcal E$ and $\mathcal E/B$, respectively, in which whole and the middle squares of the following diagram are pullbacks in $\mathcal{E},$

(for more details, see [\[12\]](#page-22-6)). One can construct \widetilde{k} in \mathcal{E}/B , similar to the above diagram.

Here, we proceed to improve [2, Vol. III, Proposition 9.2.5] as follows:

Lemma 2.3. Let j be a topology in a topos \mathcal{E} . For every object B of \mathcal{E} , the pullback functor $\Pi_B : \mathcal{E} \to \mathcal{E}/B$ preserves and reflects: denseness (closeness) and j-separated objects (j-sheaves).

Proof. Let j be a topology on $\mathcal E$ and B an object of $\mathcal E$. Preserving dense (closed) monomorphisms and sheaves (separated objects) in $\mathcal E$ by the pullback functor Π_B , is standard and may be found in [2, Vol. III, Proposition 9.2.5]. To prove the rest of lemma, here we just show that Π_B reflects dense (closed) monomorphisms. To verify this claim, let $g: A \to C$ be an arrow in $\mathcal E$ for which $\Pi_B(g)$ is a j_B -dense (j_B -closed) monomorphism. We show that g is j -dense (j -closed) monomorphism. As $\Pi_B(g) = g \times id_B$ being monomorphism in \mathcal{E}/B , the arrow g is monomorphism in $\mathcal E$ as well. For, let f, h in $\mathcal E$ be two arrows such that $gf = gh$, we will have

$$
gf = gh \implies (g \times id_B)(f \times id_B) = (g \times id_B)(h \times id_B)
$$

\n
$$
\implies f \times id_B = h \times id_B \quad (g \times id_B \text{ is a monomorphism})
$$

\n
$$
\implies f = h.
$$

Considering $\overline{(\cdot)}$ and $\widetilde{(\cdot)}$ as the universal closure operators corresponding to j and j_B , respectively. We get

$$
\widetilde{\Pi_B(g)} = \widetilde{g \times \mathrm{id}_B} \n= \overline{g \times \mathrm{id}_B} \qquad \qquad \text{(by (3))} \n= \overline{g} \times \mathrm{id}_B,
$$

where the last equality is true since we have $g \times id_B = (\pi_C^B)^{-1}(g)$, and because of stability of universal closure operators under pullbacks we get $\overline{(\pi_C^B)^{-1}(g)} = (\pi_C^B)^{-1}(\overline{g})$. The above equalities imply that if $\Pi_B(g)$ is j_B-dense (j_B-closed) monomorphism in \mathcal{E}/B , then g is j-dense (jclosed) monomorphism in \mathcal{E} . \Box

For any topology j on a topos \mathcal{E} , consider \mathcal{M} as the class of all j-dense monomorphisms in \mathcal{E} . Also, we denote by \mathcal{M}^{\perp} the class of all arrows $g: C \to D$ in $\mathcal E$ such that for any $f: A \to E$ in M and every commutative square as in

$$
A \xrightarrow{u} C
$$

\n
$$
f \downarrow \qquad \qquad \searrow^{\prime} \searrow^{\prime} g
$$

\n
$$
E \xrightarrow{v} D
$$

\n(5)

there exists a unique arrow $w : E \to C$ in [\(5\)](#page-7-0) such that the resulting triangles are commutative. In this case, we say that q is *right orthogo*nal to f. Moreover, we say that the pair (M, \mathcal{M}^{\perp}) forms a factorization system in $\mathcal E$ if any arrow f in $\mathcal E$ factors as $f = me$, where $m \in \mathcal M$ and $e \in \mathcal{M}^{\perp}$ (for more information, see [\[1\]](#page-21-0)).

Lemma 2.4. Let j be a topology on a topos \mathcal{E} . Then for each object B of \mathcal{E} , we have $\mathcal{M}_{B}^{\perp} \subseteq \mathcal{M}^{\perp}$, where \mathcal{M}_{B} is the class of all j_B-dense monomorphisms in \mathcal{E}/B .

Proof. By Lemma [2.3](#page-6-0) we get $\mathcal{M}_B \subseteq \mathcal{M}$. To reach the conclusion, let $h: f \to g$ be an arrow in \mathcal{M}_{B}^{\perp} , where $f: D \to B$ and $g: E \to B$ are arrows in \mathcal{E} . Now, consider the commutative square

$$
A \xrightarrow{u} D
$$

\n
$$
m \downarrow_{h}
$$

\n
$$
C \xrightarrow{v} E
$$

\n(6)

where $m : A \to C$ is in M. Since by Lemma [2.3](#page-6-0) the arrow $m : fu \to gv$ in \mathcal{E}/B belongs to \mathcal{M}_B and $h \in \mathcal{M}_B^{\perp}$, there exists a unique arrow $w: gv \to f$ in \mathcal{E}/B such that the following diagram commutes

$$
fu \xrightarrow{u} f
$$

\n
$$
m \downarrow_{\checkmark} \checkmark_{\checkmark}
$$

\n
$$
gv \xrightarrow{v} g
$$
 (7)

The arrow $w : C \to D$ (as an arrow in \mathcal{E}) which commutes the resulting triangulares, is unique in the diagram [\(6\)](#page-7-1). To prove this, let $k: C \to D$ be an arrow in $\mathcal E$ such that $km = u$ and $hk = v$. Now, we have $fk = (gh)k = gv$, so $k : gv \rightarrow f$ is an arrow in \mathcal{E}/B making all triangles in [\(7\)](#page-7-2) commutative. Thus, $k = w$ and the proof is complete. \Box

Definition 2.5. Let j be a topology on a topos \mathcal{E} . We say that \mathcal{E} has enough j-sheaves if for every object A of $\mathcal E$ there is a j-dense monomorphism $A \rightarrow F$ where F is a j-sheaf.

Following [\[1\]](#page-21-0) a class M of morphisms in $\mathcal E$ is a *left cancelable class* if qf ∈ M implies f ∈ M. In the following, we summarize the relation between left cancelable j-dense monomorphisms and factorization systems in a topos $\mathcal E$ and its slices.

Theorem 2.6. Let j be a topology on a topos \mathcal{E} . Assume that for any object B of \mathcal{E} , the class \mathcal{M}_B of all j_B-dense monomorphisms in \mathcal{E}/B be left cancelable. Then the following are equivalent:

(i) for any object B of $\mathcal{E}, (\mathcal{M}_B, \mathcal{M}_B^{\perp})$ is a factorization system in \mathcal{E}/B ;

- (ii) for any object B of $\mathcal{E}, \mathcal{E}/B$ has enough j_B-sheaves;
- (iii) for any object B of \mathcal{E} , any object of \mathcal{E}/B is j_B-separated;
- (iv) for any object B of \mathcal{E} , any object of \mathcal{E}/B is j_B-sheaf;
- (v) any object of $\mathcal E$ is j-sheaf;
- (vi) any object of $\mathcal E$ is j-separated;
- (vii) $\mathcal E$ has enough j-sheaves;
- (viii) $(\mathcal{M}, \mathcal{M}^{\perp})$ is a factorization system in $\mathcal{E}.$

Proof. That any j-sheaf is j-separated in \mathcal{E} yields that $(v) \implies$ (vi) holds.

 $(vi) \implies (v)$. That any object of $\mathcal E$ is j-separated it follows that $\mathbf{Sep}_j(\mathcal{E})$ is the topos $\mathcal E$ and then, every j-separated object is a j-sheaf as in [\[8,](#page-22-9) Theorem 2.1].

(iii) \implies (vi). Setting $B = 1$, then any object of $\mathcal E$ is j-separated.

 $(vi) \implies (iii)$. The claim follows immediately from the fact that for any object B of $\mathcal{E},$

$$
\mathbf{Sep}_{j_B}(\mathcal{E}/B) \cong \mathbf{Sep}_j(\mathcal{E})/B.
$$

(see also [\[9\]](#page-22-8)).

(viii) \implies (vii). By (viii), for any object A of E, the unique arrow $!_A : A \to 1$ factors as

where $!_C \in \mathcal{M}_1^{\perp} = \mathcal{M}^{\perp}$ and $m \in \mathcal{M}_1 = \mathcal{M}$. We remark that it is easy to check that for any object B of \mathcal{E}, j_B -sheaves in \mathcal{E}/B are exactly the class of all objects of \mathcal{E}/B which belong to \mathcal{M}_B^{\perp} . Since $!_C$ is an object in $\mathcal{E}/1 = \mathcal{E}$ which is in \mathcal{M}_1^{\perp} , so $!_C$ is a j_1 -sheaf, or equivalently, C is a j-sheaf.

(vii) \implies (viii). Consider an arrow $f : A \to B$ in \mathcal{E} . By using (vii), there exists a j-dense monomorphism $\iota : A \rightarrowtail F$, where F is a j-sheaf in \mathcal{E} . Now, we factor f as the composite arrow $A \xrightarrow{(i,f)} F \times B \xrightarrow{\pi_E^F} B$. Since $\pi_F^B(\iota, f) = \iota \in \mathcal{M}$ and \mathcal{M} is a left cancelable class, so $(\iota, f) \in \mathcal{M}$. Also, F being j-sheaf, by Lemma [2.3](#page-6-0) we have π_B^F is a j_B-sheaf in \mathcal{E}/B . By Lemma [2.4](#page-7-3) we have $\pi_B^F \in \mathcal{M}_{B}^{\perp} \subseteq \mathcal{M}^{\perp}$, as required.

 $(vi) \implies (vii)$. First of all we know that any j-separated object of $\mathcal E$ can be embedded into a *j*-sheaf (see, e.g. [\[12,](#page-22-6) Proposition V.3.4]). Let A be an object of $\mathcal E$. Then, by assumption A is j-separated, and there exists an embedding $A \stackrel{\iota}{\rightarrow} F$, where F is a j-sheaf. Now, take the closure of A in F. Since \overline{A} is closed in F, by [\[12,](#page-22-6) Lemma V.2.4], it is a j-sheaf. Since A is j-dense in \overline{A} we get the result.

(vii) \implies (vi). By assumption for any object A of E, there is a j-dense monomorphism $A \rightarrow F$ in \mathcal{E} , where F is a j-sheaf. Since any subobject of a j-sheaf is j-separated so A is j-separated.

For any object B of \mathcal{E} , setting \mathcal{E}/B instead of \mathcal{E} in (v), (vi), (vii) and (viii), we drive (i) \iff (ii) \iff (iii) \iff (iv).

In the following, we will introduce two main classes of dense monomorphisms in a topos $\mathcal{E}.$

Remark 2.7. By diagram [\(4\)](#page-5-2), one can easily obtain:

(i) Let $j = id_{\Omega}$ be the trivial topology on \mathcal{E} . Then j-dense monomorphisms are only the identity maps. Therefore, any object of $\mathcal E$ is a jsheaf. Also, j-closed monomorphisms are exactly all monomorphisms. (ii) Let j be the topology true∘! $_{\Omega}$ on \mathcal{E} , that is, the characteristic map of id_{Ω}. Then, *j*-dense monomorphisms are exactly all monomorphisms. Furthermore, j-closed monomorphisms are just the identity maps.

Recall [\[1\]](#page-21-0) that $(Mono, mono^{\square})$ is a weak factorization system in any topos \mathcal{E} , where Mono is the class of all monomorphisms in \mathcal{E} . By Remark [2.7\(](#page-9-0)ii), the class *Mono* is the class of all j-dense monomorphisms with respect to the topology $j = \text{true} \circ \cdot l_{\Omega}$ on \mathcal{E} . Since the class Mono is left cancelable, so we can obtain a special case of Theorem [2.6](#page-8-0) as follows. (Notice that by Lemma [2.3](#page-6-0) for the topology $j = \text{true} \circ !_{\Omega}$ and any object B of \mathcal{E} , the class $Mono_B$ will be all monomorphisms in \mathcal{E}/B .)

Corollary 2.8. For the topology $j = \text{true} \cup_{\Omega}$ on a topos \mathcal{E} , the following are equivalent:

(i) for any object B of \mathcal{E} , $(Mono_B, Mono_B^{\perp})$ is a factorization system in \mathcal{E}/B ;

- (ii) for any object B of $\mathcal{E}, \mathcal{E}/B$ has enough j_B-sheaves;
- (iii) for any object B of \mathcal{E} , any object of \mathcal{E}/B is j_B-sheaf;
- (iv) for any object B of \mathcal{E} , any object of \mathcal{E}/B is j_B-separated;
- (v) any object of $\mathcal E$ is j-sheaf;
- (vi) any object of $\mathcal E$ is j-separated;
- (vii) $\mathcal E$ has enough j-sheaves;
- (viii) $(Mono, Mono^{\perp})$ is a factorization system in $\mathcal{E}.$

3 Sheaves and sections of an arrow

In this section, among other things, we investigate a relationship between sheaves and sections of an arrow in a topos \mathcal{E} . We start to remind [\[3\]](#page-22-4) that for any object B of \mathcal{E} , the pullback functor $\Pi_B : \mathcal{E} \to \mathcal{E}/B$ has a right adjoint $S : \mathcal{E}/B \to \mathcal{E}$ as for any $f : X \to B$ we have the following pullback

$$
S(f) \longrightarrow 1
$$

\n
$$
\downarrow_{i_B}
$$

\n
$$
X^B \xrightarrow{f^B} B^B
$$
 (8)

where i_B is the transpose of $id_B : 1 \times B \cong B \to B$ and f^B is the transpose of the composition arrow $X^B \times B \stackrel{ev_X}{\longrightarrow} X \stackrel{f}{\longrightarrow} B$ by the exponential adjunction $(-) \times B \dashv (-)^B$; that is, $ev_B(i_B \times id_B) = id_B$ and $ev_B(f^B \times id_B) = fev_X$, where the natural transformation ev : $(-)^{B} \times B \rightarrow (-)$ is the counit of the exponential adjunction. In fact,

in the Mitchell-Bénabou language, we can write

$$
S(f) = \{ h \mid (\forall c \in B) \ f \circ (h(c)) = c \}.
$$

This means that we can call $S(f)$ the object of sections of f.

Since any retract of an object in a topos (or in an arbitrary category) is an equalizer, so the topos $\mathbf{Sh}_i(\mathcal{E})$ is closed under retracts. Furthermore, as $\Pi_B \dashv S$, by Lemma [2.3](#page-6-0) we have that the pullback functor Π_B preserves dense monomorphisms, so S preserves sheaves (for details, see [\[9,](#page-22-8) Corollary 4.3.12]). (Roughly, for any object $B \in \mathcal{E}$ and any adjoint $F \dashv G : \mathcal{E} \to \mathcal{E}/B$ one can easily checked that the functor G preserves sheaves whenever F preserves dense monomorphisms.)

In the following theorem we will find a relationship between sheaves in \mathcal{E}/B and the object of sections of an arrow.

Theorem 3.1. Let j be a topology on a topos \mathcal{E} and $f: X \to B$ be an object of \mathcal{E}/B . Then, f is a j_B-sheaf in \mathcal{E}/B , whenever the graph of f which stands for the monomorphism $(\mathrm{id}_X, f) : f \rightarrowtail \pi_B^X$ in \mathcal{E}/B , is a section as well as $S(f)$ is a j-sheaf in \mathcal{E} .

Proof. We recall that in [\[3\]](#page-22-4) it was proved if (id_X, f) is a section in \mathcal{E}/B , then f is a retract of $\pi_B^{S(f)}$ $B_B^{(j)}$ in \mathcal{E}/B . As $S(f)$ is a j-sheaf, by Lemma [2.3,](#page-6-0) $\pi_B^{S(f)}$ $B_B^{(S)}$ is a j_B-sheaf in \mathcal{E}/B . But $\mathbf{Sh}_{j_B}(\mathcal{E}/B)$ being closed under retracts, therefore f is a j_B -sheaf in \mathcal{E}/B . \Box

To the converse of Theorem [3.1,](#page-11-0) that the section functor S preserves sheaves it yields that if $f : X \to B$ be a j_B-sheaf in \mathcal{E}/B , then $S(f)$ is a j-sheaf in $\mathcal E$. Also, by Remark [2.7\(](#page-9-0)ii), for $j = \text{true} \circ l_{\Omega}$, the monomorphism $(\mathrm{id}_X, f) : f \rightarrowtail \pi_B^X$ is j_B -dense in \mathcal{E}/B and then for a j_B-sheaf $f : X \to B$, it will be a section in \mathcal{E}/B .

In the rest of this section, for a small category $\mathcal C$ we restrict our attention to obtain a version of Theorem [3.1](#page-11-0) for injective presheaves in trivial slices of the presheaf topos $\hat{\mathcal{C}} = \mathbf{Sets}^{\mathcal{C}^{op}}$ which is close to the version over j-sheaves for the topology $j = \text{true} \circ \cdot_{\Omega}$ on \hat{C} . (See Proposition [3.5](#page-15-0) below.) Note that the topology $j = \text{true} \circ l_{\Omega}$ on \widehat{C} is associated to the chaotic or indiscrete Grothendieck topology on C. Recall [\[12\]](#page-22-6) that in the presheaf topos $\hat{\mathcal{C}} = \mathbf{Sets}^{\mathcal{C}^{op}}$, the exponential

object G^F is defined in each stage C of C as $G^F(C) = \text{Hom}_{\hat{\mathcal{C}}}(Y(C) \times$ F, G , where Y is the Yoneda embedding, that is

$$
Y: \mathcal{C} \to \widehat{\mathcal{C}}; \quad Y(C) = \text{Hom}_{\mathcal{C}}(-, C).
$$

Now, for an arrow $\alpha: G \to F$ consider the arrows $i_F: 1 \to F^F$ and $\alpha^F: G^F \to F^F$ in \widehat{C} as the transposes of $id_F: 1 \times F \cong F \to F$ and $\alpha \circ ev_G : G^F \times F \to F$, respectively, by the exponential adjunction. We can observe

$$
\forall C \in \mathcal{C}, \quad (i_F)_C : 1(C) = \{ * \} \longrightarrow F^F(C); \quad (i_F)_C(*) = \pi_F^{Y(C)}. \tag{9}
$$

Also, for any two objects C, D of C, any γ in $G^F(C)$ and any (k, y) in $Y(C)(D) \times F(D)$ we have

$$
(\alpha_C^F(\gamma))_D(k, y) = \alpha_D(\gamma_D(k, y)).\tag{10}
$$

Remind that a presheaf G has a (unique) global section which means that in each stage C of C there is a (unique) element $\theta_C \in G(C)$ in such a way that for any arrow $k : D \to C$ in C we have

$$
G(k)(\theta_C) = \theta_D. \tag{11}
$$

Here, we find a special case that the exponential object and the object of sections in $\hat{\mathcal{C}}$ are exactly similar to **Sets**. First, we express some lemma required to achieve the goal.

Lemma 3.2. Let j be the topology true \circ ! Ω on $\hat{\mathcal{C}}$. Then, the following assertions hold:

(i) For any j-sheaf G in \widehat{C} , G has a unique global section. More generally, any injective presheaf G of $\widehat{\mathcal{C}}$ has a global section.

(ii) For any family $\{G_{\lambda}\}_{{\lambda}\in {\Lambda}}$ in $\widehat{\mathcal{C}}$, the presheaf $G = \prod_{{\lambda}\in {\Lambda}} G_{\lambda}$ is a jsheaf (injective) in \hat{C} iff for all $\lambda \in \Lambda$, G_{λ} is a j-sheaf (injective) in $\widehat{\mathcal{C}}$.

Proof. (i) Let G be a j-sheaf in $\widehat{\mathcal{C}}$ and consider the coproduct object $G \sqcup 1$ in $\widehat{\mathcal{C}}$. By Remark [2.7\(](#page-9-0)ii), there exists a unique natural transformation $\eta : G \sqcup 1 \to G$ in \widehat{C} such that the following diagram commutes (if G being injective, the arrow η is not necessarily unique)

$$
G \xrightarrow[\iota]{\text{id}_G} G
$$

$$
G \sqcup 1
$$

where $\iota : G \to G \sqcup 1$ is the injection arrow. Now, we will denote $\eta_C(*)$ by an element θ_C in $G(C)$ in each stage C of C. Since $\eta : G \sqcup 1 \to G$ is natural, so for any arrow $k : D \to C$ in C the following square commutes

$$
(G \sqcup 1)(D) \xrightarrow{\eta_D} G(D)
$$

$$
(G \sqcup 1)(k) \uparrow \qquad \qquad G(k)
$$

$$
(G \sqcup 1)(C) \xrightarrow{\eta_C} G(C)
$$

Then, we have

$$
G(k)(\theta_C) = G(k)(\eta_C(*))
$$

= $\eta_D((G \sqcup 1)(k)*))$
= $\eta_D(1(k)(*)) = \theta_D.$

This is the required result.

(ii) Necessity. Let G be a j-sheaf (injective) in \widehat{C} . For any $\lambda, \mu \in \Lambda$, we define $\alpha^{\lambda\mu}: G_{\lambda} \to G_{\mu}$ such that in each stage C of C and for each $x \in G_{\lambda}(C)$, we have $\alpha_C^{\lambda \mu}$ $\partial_C^{\lambda\mu}(x) = \theta_C^{\mu}$ $_{C}^{\mu}$, where θ_{C}^{μ} C is the μ -th component of θ_C corresponding to G in (i). Now, we will show that for any $\lambda, \mu \in \Lambda$, $\alpha^{\lambda\mu}$ is a natural transformation in $\hat{\mathcal{C}}$, that is for any arrow $k : D \to C$ in $\mathcal C$ the following diagram is commutative

$$
G_{\lambda}(D) \xrightarrow{\alpha_D^{\lambda\mu}} G_{\mu}(D)
$$

\n
$$
G_{\lambda}(k) \qquad \qquad \downarrow \qquad \qquad G_{\mu}(k)
$$

\n
$$
G_{\lambda}(C) \xrightarrow{\alpha_C^{\lambda\mu}} G_{\mu}(C)
$$

For, consider an element $x \in G_{\lambda}(C)$ we get

$$
G_{\mu}(k)(\alpha_C^{\lambda \mu}(x)) = G_{\mu}(k)(\theta_C^{\mu})
$$

= θ_D^{μ} (by (11))
= $\alpha_D^{\lambda \mu}(G_{\lambda}(k)(x)).$

Now, for any $\lambda \in \Lambda$, consider the family $\{\gamma_\mu : G_\lambda \to G_\mu\}_{\mu \in \Lambda}$ in $\widehat{\mathcal{C}}$ such that for each $\lambda \neq \mu \in \Lambda$ we have $\gamma_{\mu} = \alpha^{\lambda \mu}$ and $\gamma_{\lambda} = id_{G_{\lambda}}$. Since G

is the product $\prod_{\lambda \in \Lambda} G_{\lambda}$, so there is a unique natural transformation $\gamma: G_{\lambda} \to G$ such that $p_{\mu} \gamma = \gamma_{\mu}$ and $p_{\lambda} \gamma = id_{G_{\lambda}}$, for all $\lambda, \mu \in \Lambda$ and the projections p_{λ} . Thus, for any $\lambda \in \Lambda$, G_{λ} is a retract of the *j*-sheaf (injective) G and then, G_{λ} is a j-sheaf (injective).

Sufficiency. By the universal property of the product presheaf G , the unique arrow in the definition of a sheaf is easily follows. \Box

We recall [\[12\]](#page-22-6) that in each stage C of C the object $\Omega(C)$ of C is the set of all sieves on C. Also, the arrow true_C : $1(C) = \{*\} \rightarrow \Omega(C)$ assigns to $*$, the maximal sieve $t(C)$ of $\Omega(C)$, that is all arrows with codomain C of \mathcal{C} .

Remark 3.3. Note that the topology $j = \text{true} \circ \cdot \mathbb{Q}$ on \widehat{C} is the unique topology on $\hat{\mathcal{C}}$ that satisfies Lemma [3.2.](#page-12-1) To show this, for a j-sheaf G of \widehat{C} , consider the injection $\iota : G \to G \sqcup 1$ in \widehat{C} . In each stage C of C we have $char(\iota)_C(*) = \emptyset$. Now, let j be a topology on \widehat{C} . If ι is j-dense monomorphism, then in each stage C of C we have $j_C(\emptyset) = t(C)$. Now, for any sieve $S \in \Omega(C)$ by Definition [1.1](#page-2-1) we get

$$
t(C) = j_C(\emptyset) = j_C(\emptyset \cap S)
$$

= $j_C(\emptyset) \cap j_C(S) = t(C) \cap j_C(S) = j_C(S).$

Thus, j_C is the constant function on $t(C)$, as required.

Let F be the constant presheaf on a set A . One can easily checked that the exponential adjunction $(-) \times F \dashv (-)^F$ is determined by, for any presheaf G in $\widehat{\mathcal{C}}$, the exponential presheaf G^F assigns to any object C of C, the hom-set Homsets $(A, G(C))$ and to any arrow $f: C \to D$ of \mathcal{C} , the function

$$
G^F(f): \text{Hom}_{\textbf{Sets}}(A, G(D)) \longrightarrow \text{Hom}_{\textbf{Sets}}(A, G(C))
$$

given by $G^F(f)(g) = G(f) \circ g$. As any function $f : A \to G(C)$ can be considered as a sequence $(x_a)_{a \in A} \in \prod_A G(C)$, it yields that one has

$$
\forall C \in \mathcal{C}, \quad G^F(C) \cong \prod_A G(C). \tag{12}
$$

By [\(12\)](#page-14-0), [\(9\)](#page-12-2) and [\(10\)](#page-12-3), it is convenient to see that for each arrow α : $G \to F$ in $\widehat{\mathcal{C}}$ in which F stands for the constant presheaf on a set A, we get

$$
\forall C \in \mathcal{C}, \quad S(\alpha)(C) \cong \prod_{a \in A} \alpha_C^{-1}(a). \tag{13}
$$

Now, we will extract a special case of Theorem [3.1](#page-11-0) in $\hat{\mathcal{C}}$. First, let $\alpha: G \to F$ be an arrow in \widehat{C} in which F is the constant presheaf on a set A. For each element a of A, consider the subpresheaf H_a of G such that $H_a(C) = \alpha_C^{-1}$ $_C^{-1}(a)$, for any object C of C. Since limits in C are constructed pointwise, so [\(13\)](#page-15-1) shows that $S(\alpha) \cong \prod_{a \in A} H_a$.

Proposition 3.4. Let j be the topology true \circ ! Ω on $\hat{\mathcal{C}}$ and $\alpha : G \to F$ an arrow in $\hat{\mathcal{C}}$, where F is the constant presheaf on a set A. Then, α is a j_F-sheaf in $\widehat{\mathcal{C}}/F$ iff the monomorphism $(\mathrm{id}_G, \alpha) : \alpha \rightarrowtail \pi_F^G$ is a section in $\widehat{\mathcal{C}}/F$ as well as for any $a \in A$, the subpresheaf H_a of G is a j -sheaf in \mathcal{C} .

Proof. We deduce the result by Theorem [3.1,](#page-11-0) Lemma [3.2\(](#page-12-1)ii) and $(13).$ $(13).$ \Box

Since in topoi regular monomorphisms are exactly monomorphisms, so by $[3,$ Theorem 1.2, Lemma [3.2\(](#page-12-1)ii) and (13) , the following now gives which we are interested in.

Proposition 3.5. Let $\alpha : G \rightarrow F$ be an arrow in \hat{C} , where F is the constant presheaf on a set A. Then, α is injective in $\widehat{\mathcal{C}}/F$ iff the monomorphism $(\mathrm{id}_{G}, \alpha) : \alpha \rightarrowtail \pi_F^G$ is a section in $\widehat{\mathcal{C}}/F$ as well as for any $a \in A$, the subpresheaf H_a of G is injective.

In the case when $\mathcal C$ is a monoid, we obtain

Example 3.6. Let M be a monoid and M -**Sets** the topos of all (right) representations of a fixed monoid M . Since M is a small category with just one object, for two M-sets X, B we have $X^B = \text{Hom}_{M-\text{Sets}}(M \times$ B, X , where $M \times B$ has the componentwise action. Hence, by [\(9\)](#page-12-2) and [\(10\)](#page-12-3), for any equivariant map $f: X \to B$, in the diagram [\(8\)](#page-10-0) we observe

$$
i_B(*) = \pi_B^M : M \times B \to B,\tag{14}
$$

and

$$
\forall h \in X^B, \ \forall (m, b) \in M \times B, \ \ (f^B(h))(m, b) = fh(m, b). \tag{15}
$$

Note that one writes any equivariant map $h : M \times B \to X$ in X^B as a sequence $((x_{m,b})_{b\in B})_{m\in M}$, consisting of elements $x_{m,b} = h(m, b)$ of X, for any $(m, b) \in M \times B$. Also, h being equivariant map means that

$$
\forall n, m \in M, \forall b \in B, \quad x_{mn,bn} = x_{m,b}n.
$$

Hence, we obtain that X^B is equal to

$$
\{((x_{m,b})_b)_m \in \prod_{m \in M} \prod_{b \in B} X \mid \forall n, m \in M, \forall b \in B, x_{mn,bn} = x_{m,b}n\}. (16)
$$

Now, by (8) , (14) and (15) we have

$$
S(f) = \{((x_{m,b})_b)_m \in X^B \mid f^B(((x_{m,b})_b)_m) = \pi_B^M = ((b)_b)_m\}
$$

=
$$
\{((x_{m,b})_b)_m \in X^B \mid ((f(x_{m,b}))_b)_m = ((b)_b)_m\}
$$

=
$$
\{((x_{m,b})_b)_m \in X^B \mid \forall m \in M, \forall b \in B, x_{m,b} \in f^{-1}(b)\},
$$

Hence, by [\(16\)](#page-16-0) we interpret a simple form of underlying set of the M-set $S(f)$ in the topos M-**Sets** as follows

$$
\{((x_{m,b})_b)_m \in \prod_{m \in M} \prod_{b \in B} f^{-1}(b) \mid \forall n, m \in M, \forall b \in B, x_{mn, bn} = x_{m,b}n\}.
$$

If B has the trivial action \cdot , that is $\cdot = \pi_1 : B \times M \to B$ the first projection, then by [\(12\)](#page-14-0) and [\(13\)](#page-15-1) we can obtain $X^B \cong \prod_B X$ and $S(f) \cong \prod_{b \in B} f^{-1}(b).$

Furthermore, recall [\[12\]](#page-22-6) that for a group G and two G-sets X, B , we have

$$
X^{B} = \{h : B \to X | h \text{ is a function}\} \cong \prod_{B} X \tag{17}
$$

as two sets. According to the action on X^B , under the isomorphism [\(17\)](#page-16-1), the action on $\prod_B X$ is given by $(x_b)_{b \in B} \cdot g = (x_{bg^{-1}} \cdot g)_{b \in B}$, for any $g \in G$ and $(x_b)_{b \in B} \in \prod_B X$. Also, by [\(17\)](#page-16-1) for any equivariant map $f: X \to B$ in G-Sets, in a similar way to [\(13\)](#page-15-1), we have $S(f) \cong$ $\prod_{b\in B} f^{-1}(b).$

4 j-essential extensions in a topos

This section is devoted to introduce a class of monomorphisms in an elementary topos, which we call these 'j-essential monomorphisms'.

We present some equivalent forms of these and some their properties. Meanwhile, we prove that any presheaf in a presheaf topos has a maximal essential extension.

Remind that a monomorphism $\iota : A \rightarrow B$ is called *essential* whenever for each arrow $g : B \to C$ such that $g\iota$ is a monomorphism, then g is a monomorphism also. Now, we define a j -essential monomorphism in a topos $\mathcal E$ as follows.

Definition 4.1. For a topology j on \mathcal{E} , a monomorphism $\iota : A \rightarrowtail B$ is called *j*-essential whenever it is j -dense as well as essential. In this case, we say that B is a j-essential extension of A and we write $A \subseteq_i B$.

We shall say an arrow $f : A \rightarrow B$ in $\mathcal E$ is j-dense whenever the subobject $f(A)$, which is the image of f, is j-dense in B. In this way, any epimorphism in $\mathcal E$ becomes *j*-dense. (For the definition of image of an arrow in a topos, see [\[12\]](#page-22-6).)

The following gives some equivalent definitions of j -essential monomorphisms in a topos $\mathcal{E}.$

Lemma 4.2. Let j be a topology on \mathcal{E} and $\iota : A \rightarrow B$ a j-dense monomorphism. Then, the following are equivalent:

(i) for any $g : B \to C$, g is a monomorphism whenever g_i is a monomorphism;

(ii) for any $g : B \to C$, g is a j-dense monomorphism whenever gi is a j-dense monomorphism;

(iii) for any $g : B \to C$, g is a monomorphism whenever gu is a j-dense monomorphism.

Proof. (i) \implies (ii) and (iii) \implies (ii) are proved by [\[9,](#page-22-8) A.4.5.11(iii)]. $(ii) \implies (iii)$ is clear.

(ii) \implies (i). Consider an arrow $q : B \to C$ for which $q\iota$ is monomorphism. We show that g is monomorphism also. Assume that $B \stackrel{k}{\rightarrow}$ $g(B) \stackrel{m}{\rightarrow} C$ is the image factorization of the arrow g. Since $g\iota = m(k\iota)$ and μ is monomorphism, it follows that the arrow $k\iota$ is a monomorphism. Meanwhile, we get

$$
g(B) = k(B) \qquad \text{(as } k \text{ is epic)}
$$

= $k(\overline{A})$ (as ι is dense)
 $\subseteq k(\overline{A})$
 $\subseteq g(B).$

Therefore, $g(B) = \overline{k(A)} = \overline{k(\overline{A})}$. It follows that the compound monomorphism $k \iota : A \rightarrow g(B)$ is dense monomorphism and by (ii), k is also. That k is monomorphism and so isomorphism, yields that q is monomorphism. \square

We point out that the proof of (ii) \implies (i) of Lemma [4.2](#page-17-0) shows that any composite $k\iota$, for an epic k and a dense monomorphism ι , is dense.

The follwing shows that j-essential monomorphisms in $\mathcal E$ are closed under composition.

Proposition 4.3. Let j be a topology on \mathcal{E} . For two subobjects $A \stackrel{\iota}{\mapsto}$ $A' \stackrel{\overline{\iota'}}{\rightarrow} B$ in \mathcal{E} , then $A \subseteq_j B$ iff $A \subseteq_j A'$ and $A' \subseteq_j B$.

Proof. By [\[9,](#page-22-8) 13, A.4.5.11(iii)], one has $\iota' \iota$ is j-dense iff ι' and ι are j-dense.

Necessity. First, by Lemma [4.2\(](#page-17-0)i), we show that $A \subseteq_j A'$. To do so, consider an arrow $f' : A' \to C$ for which $f' \iota$ is a monomorphism. Now, by $[12, Corollary IV. 10. 3]$, the object C can be embedded into an injective object D as in $C \stackrel{\nu}{\rightarrow} D$ and hence there is an arrow $\tilde{f}' : B \to D$ such that $\tilde{f'}\iota' = \nu f'$. Since $A \subseteq_j B$ and $\tilde{f'}\iota'\iota = \nu f'\iota$ is a monomorphism, we deduce that \tilde{f}' is a monomorphism. As $\tilde{f}' \iota' = \nu f'$ it follows that f' is a monomorphism.

To prove $A' \subseteq_j B$, choose an arrow $f : B \to C$ for which $f\iota'$ is a monomorphism. Then, $f\iota'\iota$ is also a monomorphism. Now $A \subseteq_j B$ implies that f is a monomorphism, as required.

Sufficiency. Let $f : B \to C$ be an arrow in $\mathcal E$ such that $f\iota'\iota$ is a monomorphism. Since $A \subseteq_j A'$ and $(f\iota')\iota = f\iota'\iota$ is a monomorphism, it concludes that $f\iota'$ is a monomorphism. Using $A' \subseteq_j B$, we achieve that f is a monomorphism and hence $A \subseteq_j B$. \square

In the following, we achieve another property of j -essential monomorphisms in \mathcal{E} .

Lemma 4.4. Let j be a topology on \mathcal{E} . If $A \subseteq_i B$ and A is embedded in a j-sheaf F , then B also is embedded in F .

Proof. Let $\iota : A \rightarrow B$ be a *j*-essential monomorphism and m : $A \rightarrow F$ an arbitrary embedding. Since F is a j-sheaf, there exists a unique morphism $f : B \to F$ making the diagram below commutative;

As $A \subseteq_j B$ being j-essential, f is an embedding, as required. \Box

By Remark [2.7\(](#page-9-0)ii), essential monomorphisms in a topos $\mathcal E$ are exactly j-essential monomorphisms in $\mathcal E$ with respect to the topology $j = \text{true} \circ \cdot_{\Omega}$ on \mathcal{E} .

Now, we would like to prove that any presheaf in \hat{C} has a maximal essential extension.

Theorem 4.5. Any presheaf in \widehat{C} has a maximal essential extension.

Proof. Let F be a presheaf in \widehat{C} and G an injective presheaf into which F can be embedded. By Lemma [4.4,](#page-19-0) we can assume that both F and all its essential extensions are subpresheaves of G. Consider \sum as the set of all essential extensions of F which is a poset under subpresheaf inclusion \subseteq . Since the arrow id_F is an essential extension of $F,$ it follows that \sum is non-empty. If

$$
\ldots \subseteq F_i \subseteq \ldots,
$$

 $i \in I$, is a chain in \sum , then the subpresheaf H of G given by $H(C)$ = $\bigcup_{i\in I} F_i(C)$ for any object C in C is an upper bound of this chain. Now we show that H lies in Σ , i.e., H is an essential extension of F. To achieve this, let $\alpha : H \to K$ be an arrow in \widehat{C} such that the restriction arrow $\alpha|_F$ is a monomorphism. We prove that α is a monomorphism. To verify this claim, we show that for any $C \in \widehat{C}$, the function α_C : $\bigcup_{i\in I} F_i(C) \to K(C)$ is one to one. Take $a, b \in \bigcup_{i\in I} F_i(C), a \neq b$. Then there is a $j \in I$ such that $a, b \in F_j(C)$. Denote $\alpha|_{F_j}$ by α_j . Since F_j

is an essential extension of F and $\alpha_j|_F = \alpha|_F$, it implies that α_j is a monomorphism. Now

$$
\alpha_C(a) = (\alpha_j)_C(a) \neq (\alpha_j)_C(b) = \alpha_C(b).
$$

Therefore, α is a monomorphism. Thus, $H \in \sum$. Now it follows from Zorn's Lemma that there is a maximal element M in \sum . Then, M is a maximal essential extension of F . \Box

It is straightforward to see that any essential extension of B can be embedded in any injective extension of B.

For a topology j on a topos \mathcal{E} , by a j-injective object we mean an injective object with respect to the class of all j -dense monomorphisms in \mathcal{E} .

The following shows that the *j*-injective presheaves $(j$ -sheaves) in $\tilde{\mathcal{C}}$ have no proper *j*-essential extension.

Proposition 4.6. Let j be a topology on \widehat{C} and F a j-injective presheaf (j-sheaf) in $\widehat{\mathcal{C}}$. Then, F has no proper j-essential extension.

Proof. Suppose that G is a proper j-essential extension of F and so F is a j-dense subpresheaf of G and $F \neq G$. Thus there is an object C of C such that $G(C) \not\subset F(C)$ and then, an $a \in G(C)$ such that $a \notin F(C)$. Since F is j-injective (j-sheaf) implies that there is an arrow $\alpha: G \to F$ for which $\alpha|_F = id_F$. That $a \notin F(C)$ and $\alpha_C(a) \in F(C)$ follows that $a \neq \alpha_C(a)$. But $\alpha_C(\alpha_C(a)) = \alpha_C(a)$. Then, α_C and so α is not a monomorphism although $\alpha|_F = id_F$ is. This shows that G is not a proper *j*-essential extension of F and it is a contradiction. \Box

The following shows that the pullback functor Π_B reflects j-essential extensions.

Proposition 4.7. Let j be a topology in a topos \mathcal{E} . For every object $B \in \mathcal{E}$, the pullback functor $\Pi_B : \mathcal{E} \to \mathcal{E}/B$ reflects j-essential monomorphisms.

Proof. Let $f : A \to C$ be an arrow in $\mathcal E$ such that $\Pi_B(f)$ is a j_B essential monomorphism. We show that f is a j-essential monomor-phism. By Lemma [2.3,](#page-6-0) f is a j-dense monomorphism in \mathcal{E} . Let $g: C \to D$ be an arrow in E such that gf is a monomorphism. We show that g is too. Since gf is a monomorphism, the arrow $(g \times \mathrm{id}_B)\Pi_B(f) = (gf) \times \mathrm{id}_B$ is also a monomorphism. As $\Pi_B(f)$ is j_B -essential, so $g \times id_B$ is a monomorphism. Then g is a monomorphism. This is the required result. \square

Recall [\[10\]](#page-22-7) that a *weak topology* on a topos $\mathcal E$ is a morphism $j : \Omega \to$ Ω such that:

(i) $j \circ \text{true} = \text{true};$

(ii) $j \circ \wedge \leq \wedge \circ (j \times j)$, in which \leq stands for the internal order on Ω . Meanwhile, a weak topology j on $\mathcal E$ is said to be *productive* if $j \circ \wedge = \wedge \circ (j \times j).$

In what follows, we review the whole paper for a weak topology j on a topos $\mathcal E$ instead of a topology.

Remark 4.8. Similar to $[9, A.4.5.11(i)]$, one can easily check that for a weak topology j on $\mathcal E$ pushouts also preserve dense monomorphisms. Hence, we can obtain a version of Lemma [2.1](#page-3-0) for a weak topology j on $\mathcal E$ as well. One can observe that completely analogous assertions to Lemmas [4.2,](#page-17-0) [4.4](#page-19-0) and [2.3,](#page-6-0) Proposition [4.6](#page-20-0) and Theorem [3.1,](#page-11-0) hold for a weak topology j on $\mathcal E$. But, by [\[10\]](#page-22-7), in the proof of Theorem [2.6,](#page-8-0) the part (vi) \implies (vii) is true for a productive weak topology j on \mathcal{E} . The rest parts of this proof satisfies for weak topologies.

Recall [\[10\]](#page-22-7) that, for a weak topology j on \mathcal{E} , it is convenient to see that if the composite subobject mn is dense then so are m and n . In contrast with topologies [\[9,](#page-22-8) A.4.5.11(iii)], the converse is not necessarily true. Hence, the sufficiency part of Proposition [4.3](#page-18-0) does not necessarily hold for a weak topology j on a topos $\mathcal E$. The necessity part of this proposition satisfies for a weak topology j as well.

References

- [1] J. Adamek, H. Herrlich, J. Rosicky and W. Tholen, Weak Factorization Systems and Topological Functors, Appl. Categ. Struc., 10 (2002), 237-249.
- [2] F. Borceux, Handbook of Categorical Algebra, Vol. I and III, Cambridge University Press, (1994).
- [3] F. Cagliari and S. Mantovani, Injectivity and Sections, J. Pure and Appl. Alg., 204 (2006), 79-89.
- [4] D. Dikranjan and W. Tholen, Categorical Structure of Closure Operators, Kluwer, Netherlands, (1995).
- [5] L. Español and L. Lambán, On Bornologies, Locales and Toposes of M-Sets, J. Pure and Appl. Alg., 176 (2002), 113-125.
- [6] S. N. Hosseini and S. SH. Mousavi, A Relation Between Closure Operators on a Small Category and Its Category of Presheaves, Appl. Categ. Struc., 14 (2006), 99-110.
- [7] M. Jackson, A Sheaf Theoretic Approach to Measure Theory, PhD Thesis, University of Pittsburgh, (2006).
- [8] P. T. Johnstone, Remarks on Quintessential and Persistent Localizations, Theory and Applications of Categories, Vol. 2, 8 (1996), 90-99.
- [9] P. T. Johnstone, Sketches of an Elephant: a Topos Theory Compendium, Vol. 1, Clarendon Press, Oxford, (2002).
- [10] Z. Khanjanzadeh and A. Madanshekaf, On Weak Topologies in a Topos, Submitted.
- [11] R. Lavendhome, Basic Concepts of Synthetic Differential Geometry, Kluwer, Dordrecht, (1996).
- [12] S. Mac Lane and I. Moerdijk, Sheaves in Geometry and Logic, Springer-Verlag, New York, (1992).
- [13] P. W. Michor, Topics in Differential Geometry, American Mathematical Society, (2008).
- [14] K. Nakayama, Topologies on Quantum Topoi Induced by Quantization, J. Math. Phys. 54, (2013) 072102.
- [15] K. Nakayama, Topos Quantum Theory on Quantization-Induced Sheaves, J. Math. Phys. 55, (2014) 102103.