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cInstitut de Fı́sica d’Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain
dInstitute for Theoretical Physics, University of Heidelberg, Philosophenweg 16, 69120, Heidelberg, Germany

eSub-department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH, UK
fDark Cosmology Centre, Niels Bohr Institute, University ofCopenhagen, Juliane Maries Vej 30, DK-2100

Copenhagen, Denmark

Abstract

We study the detailed evolution of the fine-structure constant α in the string-inspired runaway
dilaton class of models of Damour, Piazza and Veneziano. We provide constraints on this sce-
nario using the most recentα measurements and discuss ways to distinguish it from alternative
models for varyingα. For model parameters which saturate bounds from current observations,
the redshift drift signal can differ considerably from that of the canonicalΛCDM paradigm at
high redshifts. Measurements of this signal by the forthcoming European Extremely Large Tele-
scope (E-ELT), together with more sensitiveα measurements, will thus dramatically constrain
these scenarios.

Keywords: Cosmology, Dynamical dark energy, Fine-structure constant, Astrophysical
observations

1. Introduction

The observational evidence for cosmic acceleration, first inferred from the luminosity distance
of type Ia supernovae in 1998 [1, 2], opened a new avenue in cosmological research. The most
obvious task in this endeavor is to identify the source of this acceleration—the so-called Dark
Energy—and in particular to ascertain whether it is due to a cosmological constant or to a new
dynamical degree of freedom. While the former option, corresponding to the canonicalΛCDM
paradigm, is arguably the simplest, many alternative models have been proposed and still have
to be tested [3].

The most natural way to model dynamical energy is through a scalar field, of which the re-
cently discovered Higgs is the obvious example [4, 5]. String theory predicts the presence of a
scalar partner of the spin-2 graviton, the dilaton, hereafter denotedφ. Here, we will study the
cosmological consequences of a particular class of string-inspired models, the runaway dilaton
scenario of Damour, Piazza and Veneziano [6, 7]. In this scenario, which among other things
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provides a way to reconcile a massless dilaton with experimental data, the dilaton decouples
while cosmologically attracted towards infinite bare coupling, and the coupling functions have a
smooth finite limit

Bi(φ) = ci + O(e−φ) . (1)

As discussed in [7], provided there’s a significant (order unity) coupling to the dark sector, the
runaway of the dilaton towards strong coupling may yield violations of the Equivalence Principle
and variations of the fine-structure constantα that are potentially measurable.

More than a decade after the original analysis the availableα measurements have improved
substantially [8, 9], and it’s therefore timely to revisit these models. Additional gains in sensitiv-
ity will be provided by forthcoming facilities such as the E-ELT: its high-resolution ultra-stable
spectrograph (HIRES) will significantly improve tests of the stability of fundamental couplings
and will also be sensitive enough to carry out a first measurement of the redshift drift deep in the
matter-dominated era [10, 11]. The combination of both types of measurements is a powerful
probe of dynamical dark energy, as it can distinguish between models that are indistinguishable
at low redshifts [12]. In what follows we obtain constraintson this runaway dilaton scenario
using currentα data, and also discuss how they may be further improved.

2. Runaway dilaton cosmology

As discussed in [6, 7], the Einstein frame Lagrangian for this class of models is

L =
R

16πG
−

1
8πG

(∇φ)2 −
1
4

BF(φ)F2 + ... . (2)

whereR is the Ricci scalar andBF is the gauge coupling function. From this one can show [7]
that the corresponding Friedmann equation, relating the Hubble parameter,H, to the dilaton and
the other components of the universe is as follows

3H2 = 8πG
∑

i

ρi + H2φ′2 , (3)

where the sum is over the components of the universe, except the kinetic part of the dilaton field
which is described by the last term (where the prime is the derivative with respect to the logarithm
of the scale factor). The sum does include the potential partof the scalar field; the total energy
density and pressure of the field are

ρφ = ρk + ρv =
(Hφ′)2

8πG
+ V(φ) (4)

pφ = pk + pv =
(Hφ′)2

8πG
− V(φ) ; (5)

herek andv correspond to the kinetic and potential parts of the field, with the latter providing
the dark energy. On the other hand, the evolution equation for the scalar field is

2
3− φ′2

φ′′ +

(

1−
p
ρ

)

φ′ = −
∑

i

αi(φ)
ρi − 3pi

ρ
. (6)

Herep =
∑

i pi , ρ =
∑

i ρi , and sums are again over all components except the kinetic part of the
scalar field.
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The αi(φ) are the couplings of the dilaton with each componenti, so they characterize the
effect of the various components of the universe in the dynamicsof the field. One may gener-
ically expect that the dilaton has different couplings to different components [7]. Experimental
constraints impose a tiny coupling to baryonic matter, as wewill discuss presently. In these mod-
els, this small coupling could naturally emerge due to a Damour-Polyakov type screening of the
dilaton [13].

The relevant parameter here is the coupling of the dilaton field to hadronic matter. As discussed
in [13], to a good approximation this is given by the logarithmic derivative of the QCD scale,
since hadron masses are proportional to it (modulo small corrections). Assuming that all gauge
fields couple, near the string cutoff, to the sameBF(φ), and in accordance with Eq. (1) which
yields

B−1
F (φ) ∝ (1− bFe−cφ) , (7)

we can write

αhad(φ) ∼ 40
∂ ln B−1

F (φ)

∂φ
, (8)

(where the numerical coefficient is further described in [7]) and we finally obtain

αhad(φ) ∼ 40bFc e−cφ . (9)

Note thatc andbF are constant free parameters: the former one is expected to be of order unity
and the latter one much smaller. Moreover, if we setc = 1 (which we will do henceforth) we can
also eliminatebF by writing

αhad(φ)
αhad,0

= e−(φ−φ0) , (10)

(whereφ0 is the value of the field today) and simultaneously writing the field equation in terms
of (φ − φ0).

There are two local constraints. Firstly the Eddington parameterγ, which quantifies the
amount of deflection of light by a gravitational source, has the value

γ − 1 = −2α2
had,0 , (11)

and is constrained by the Cassini bound,γ − 1 = (2.1± 2.3)× 10−5 [14]. Secondly the dimen-
sionless Eötvös parameter, quantifying violations to the Weak Equivalence Principle, has the
value

ηAB ∼ 5.2× 10−5α2
had,0 , (12)

and recent torsion balance tests lead toηAB = (−0.7± 1.3)× 10−13 [15], while from lunar laser
ranging one findsηAB = (−0.8±1.2)×10−13 [16]. From these we conservatively obtain the bound

|αhad,0| ≤ 10−4 . (13)

Using Eq. (9), and still assuming thatc ∼ 1, this yields a bound on the product ofbF and (the
exponent of)φ0, namelyφ0 ≥ ln (|bF |/2× 10−6). Nevertheless, this is not explicitly needed: the
evolution of the system will be determined byαhad rather than bybF or φ0.

These constraints do not apply to the dark sector (i.e. dark matter and/or dark energy) whose
couplings may be stronger. There are two possible scenariosto consider. A first possibility is
that the dark sector couplings (which we will denoteαm andαv for the dark matter and dark
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energy respectively) are also much smaller than unity, thatis αm, αv ≪ 1. In this case the small
field velocity leads to violations of the Equivalence Principle and variations of the fine-structure
constant that are quite small. Indeed, for this case to be observationally realistic the fractions of
the critical density of the universe in the kinetic and potential parts of the scalar field must be

Ωk =
1
3
φ′

2
≪ 1 , Ωv ∼ 0.7; (14)

note that if one assumes a flat universe, thenΩm+Ωk+Ωv = 1 (do not confuse the indexk, which
refers to the kinetic part of the scalar field, with the curvature term in standard cosmology, which
we are setting to zero throughout). A more interesting possibility is that the dark couplings (αm

and/or αv) are of order unity. If so, violations of the Equivalence Principle and variations of the
fine-structure constant are typically larger. In this caseΩk may be more significant, andΩv should
be correspondingly smaller [17]. Nevertheless the dark matter coupling is also constrained:
during matter-domination the equation of state has the form

wm(φ) =
1
3
φ′

2
∼

1
3
α2

m . (15)

The present value of the field derivative is also constrainedif one assumes a spatially flat
universe; in that case the deceleration parameter

q = −
aä
ȧ2
= −1−

Ḣ
H2

(16)

can be written as

φ′0
2
= (1+ q0) −

3
2
Ωm0 (17)

and using a reasonable upper limit for the deceleration parameter [18] and a lower limit for the
matter density (say, from the Planck mission [19]) we obtain

|φ′0| ≤ 0.3 , (18)

almost three times tighter than the one available at the timeof [7]. Thus in this scenario both the
hadronic coupling and the field speed today are constrained.

Moreover, we can use the field equation, Eq. (6), to set a consistency condition forφ′0. For
this we only need to assume that the field is moving slowly today (a good approximation given
the bounds on its speed) and therefore theφ′′ term should be subdominant in comparison with
the other two. Then we easily obtain

φ′0 = −
αhadΩb + αmΩc + 4αvΩv

Ωb + Ωc + 2Ωv
, (19)

with all quantities being evaluated at redshiftz = 0. To avoid confusion we have denoted bary-
onic and cold dark matter byΩb andΩc respectively; naturallyΩm = Ωb + Ωc. We choose the
cosmological parameters in agreement with recent Planck data [19], specifically setting the cur-
rent fractions of baryons, dark matter and dark energy to be respectivelyΩb ∼ 0.04,Ωc ∼ 0.27
andΩφ = Ωk + Ωv ∼ 0.69. Noting that|αhad,0| ≤ 10−4, that |φ′0| ≤ 0.3 and thatΩk = φ

′
0

2/3 is
necessarily small, we can consider three particular cases of this relation
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Figure 1: Evolution ofH(z) in runaway dilaton models (left), compared to the measurements in [20], for|αhad,0| = 10−4

andφ′0 spanning the observationally allowed range. The right-side panel depicts the evolution of the field for the same
parameter choices.

• Thedark coupling case, whereαm = αv (and both are assumed to be constant), leads to

|αv| . 0.3
Ωm+ 2Ωv

Ωc + 4Ωv
∼ 0.17 ; (20)

• Thematter coupling case, whereαm = αhad (and both are field-dependent, as in Eq. 10),
leads to

|αv| . 0.3
Ωm+ 2Ωv

4Ωv
∼ 0.18 ; (21)

• Thefield coupling case, whereαm = −φ
′, leads to

|αv| . 0.3
Ωb + 2Ωv

4Ωv
∼ 0.15. (22)

Note that in all casesαv is a constant (field-independent) parameter. Naturally these are back-of-
the-envelope constraints that need to be improved by a more robust analysis, but they are enough
to show that order unity couplingsαv will be strongly constrained. An additional constraint will
come from atomic clock measurements, as we will now discuss.

3. Varying fine-structure constant

Given some recent evidence, from archival Keck and VLT data,of space-time variations of
the fine-structure constantα [21], it’s interesting to study its behavior in this class ofmodels.
Consistently with our previous assumption that all gauge fields couple to the sameBF, hereα
will be proportional toB−1

F (φ), as given by Eq. (7). Note that this will also imply thatα will be
related to the hadronic coupling, as further discussed below.

The original work of Damouret al. [7] shows (under the same assumptions as we are using
here) that the evolution ofα is given by

1
H
α̇

α
=

bFce−cφ

1− bFce−cφ
φ′ ∼ bFce−cφφ′ ∼

αhad

40
φ′ . (23)
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Figure 2: Evolution ofα, plotted with the same conventions as in Fig. 1. The data of [21] is plotted in the left panel (VLT
data as black asterisks, Keck data as green circles) while the data of Table 1 is shown as red circles in the right panel.
One-sigma uncertainties are shown in all cases.

In particular this equation applies at the present day (describing the current running ofα) and
this variation is constrained by the Rosenband bound [22]

(

1
α

dα
dt

)

0

= (−1.6± 2.3)× 10−17yr−1 ; (24)

assuming the Planck value for the Hubble constantH0 = (67.4± 1.4) km/s/Mpc, we find

|αhad,0φ
′
0| ∼ |bFce−cφ0φ′0| ≤ 3× 10−5 . (25)

Thus atomic clock experiments constrain the product of the hadronic coupling and the field
speed today. It is interesting to note that this constraint—which stems from microphysics—is
comparable to the one obtained by multiplying the individual constraints on each of them, which
are given respectively by Eq. 13 and Eq. 18 and come from macrophysics (Solar System or
torsion balance tests, plus a cosmology bound).

In [7] the authors obtain approximate solutions for the evolution of α by assuming thatφ′ =
const. in both the matter and the dark energy eras (naturally the twoconstants are different).
However, by integrating Eq. (23) or by directly using the relation betweenα andBF(φ) we can
express the redshift dependence ofα in the general form

∆α

α
(z) ≡

α(z) − α0

α0
= B−1

F (φ(z)) − 1 = bF

(

e−φ0 − e−φ(z)
)

, (26)

where for simplicity we have again setc ∼ 1. This can also be recast in the more suggestive form

∆α

α
(z) =

1
40
αhad,0

[

1− e−(φ(z)−φ0)
]

. (27)

Thus the behaviour of∆α/α close to the present day depends both onαhad,0 (which provides an
overall normalization) and on the speed of the field,φ′0, which can also be related to the values
of the couplings as in Eq. (19).

In our analysis we will use both the data of Webbet al. [21] (which is a large dataset of
archival data measurements) and the smaller and more recentdataset of dedicated measurements
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Object z ∆α/α (ppm) Spectrograph Ref.

3 sources 1.08 4.3± 3.4 HIRES [25]
HS1549+1919 1.14 −7.5± 5.5 UVES/HIRES/HDS [9]
HE0515−4414 1.15 −0.1± 1.8 UVES [26]
HE0515−4414 1.15 0.5± 2.4 HARPS/UVES [27]
HS1549+1919 1.34 −0.7± 6.6 UVES/HIRES/HDS [9]
HE0001−2340 1.58 −1.5± 2.6 UVES [28]

HE1104−1805A 1.66 −4.7± 5.3 HIRES [25]
HE2217−2818 1.69 1.3± 2.6 UVES [8]
HS1946+7658 1.74 −7.9± 6.2 HIRES [25]
HS1549+1919 1.80 −6.4± 7.2 UVES/HIRES/HDS [9]
Q1101−264 1.84 5.7± 2.7 UVES [26]

Table 1: Recent dedicated measurements ofα. Listed are, respectively, the object along each line of sight, the redshift of
the measurement, the measurement itself (in parts per million), the spectrograph, and the original reference. The recent
UVES Large Program measurements are [8, 9]. The first measurement is the weighted average from 8 absorbers in the
redshift range 0.73 < z < 1.53 along the lines of sight of HE1104-1805A, HS1700+6416 and HS1946+7658, reported
in [25] without the values for individual systems. The UVES,HARPS, HIRES and HDS spectrographs are respectively
in the VLT, ESO 3.6m, Keck and Subaru telescopes.

listed in Table 1. The latter include the recent first result of the UVES Large Program for Testing
Fundamental Physics [8, 9], which is expected to be the one with a better control of possible
systematics. The source of the data in this Table is also further discussed in [23]. We emphasize
that all the data we use comes from high-resolution spectroscopy comparisons of optical/UV
fine-structure atomic doublets, which are only sensitive tothe value ofα—and not, say, to the
values of particle masses (ratios of which can be probed by other means) [24].

Note that since in the current work we will be interested in the evolution ofα at relatively low
redshifts, one could think of linearizing the field evolution

φ ∼ φ0 + φ
′
0 ln a , (28)

in which case Eq. (27) takes the simpler form

∆α

α
(z) ≈ −

1
40
αhad,0φ

′
0 ln (1+ z) ; (29)

this is indeed what is obtained with the simplifying assumptions of [6, 7]. Nevertheless, as shown
in the second panel of Fig. 1,φ − φ0 can still be of order unity by redshiftz= 5 for values of the
coupling that saturate the current bounds, and therefore inwhat follows the evolution ofα will
be calculated using the full equations.

4. Current constraints

By numerically solving the previously discussed Friedmannand scalar field equations we can
study the cosmological dynamics of this model. We will startby assuming that the value ofαhad,0

is the maximal one allowed by Eq. (9)—we will relax this assumption later on. We allowφ′0 to
vary in the whole range allowed by Eq. (18), and we further assume the dark coupling case,
whereαm = αv; it then follows from in Eq. (19) thatφ′0 ≈ −1.79αv.

7



−0.0001 0 0.0001
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Φ
0′

α
had,0

 

 

re
d

u
ce

d
 χ

2

1.14

1.145

1.15

1.155

1.16

Φ
0′

α
had,0

 

 

−0.0001 0 0.0001
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

re
d

u
ce

d
 χ

2

1.095

1.1

1.105

1.11

1.115

1.12

1.125

1.13

1.135
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α measurements were used, while the right one theH(z) measurements were also included. The colormap shows the
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We choose the same cosmological parameters as previously discussed. Note that in this model
the dark energy equation of state is

1+ w0 =
2Ωk

Ωk + Ωv
=

2
3

φ′0
2

Ωk + Ωv
, (30)

and the range of allowed values forφ′0 (specifically,|φ′0| ≤ 0.3) leads to−1 ≤ w0 < −0.91, which
is perfectly compatible with current observational bounds[19]. We then numerically integrate the
dynamical equations of this model backwards in time. The evolution of the Hubble parameter for
this set of models is plotted in Fig. 1, and compared to the available measurements, as compiled
in [20]. As expected the sign of the couplingαhad,0 has a negligible effect onH(z) (since the
coupling itself is very small), while that of the field speed is more noticeable.

We then calculate the evolution ofα in these models; this is shown in Fig. 2, again for the
maximally allowed|αhad,0| = 10−4. With these parameter choices the typical variations are at
the parts per million level, comparable to the sensitivity of the current measurements [8, 9]. The
value ofα also depends on the present speed of the field (and not only on its absolute value),
which can be understood from Eq. 27.

As a second step in our analysis, we now relax the assumption of αhad,0 fixed to its maximum
allowed value and let it vary freely. We use the available data to constrain it, together with the
field speed. The results of this analysis are shown in Fig. 3. Using all availableα data (both
that of [21] and the dedicated measurements of Table 1) one finds no significant evidence for a
non-zero couplingαhad,0. While the weighted mean of the data in Table 1 is consistent with no
variations, that of [21] is slightly negative; this explains why in the first panel of Fig. 3 there
is a slight preference for similar signs for the field speed and the coupling (however, this is not
statistically significant). We thus see that with theα data alone the constraints are not that much
stronger than we already discussed above. The addition of Hubble parameter measurements
does constrain the current speed of the field to be small, and the combination of the two datasets
yields the constraints in the second panel of Fig. 3. In both cases the model is compatible with
the current data.

We caution the reader that this analysis assumed fixed valuesof the cosmological parameters
8
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Figure 4: Redshift drift signal for allowed runaway dilatonmodels (plotted with the same conventions as in Fig. 1)
compared to the standardΛCDM model (red curve, shown with errorbars expected for E-ELT measurements).

Ωb, Ωc andΩφ, but we expect the results not to change significantly had we allowed them to
vary and marginalized over them. Perhaps more relevant are our ‘maximal’ assumptions for the
dark sector couplings, which can be justified in the context of a preliminary assessment of the
feasibility of the model. Thus our present results suggest that a more thorough exploration of
this parameter space is justified, but we leave it for a more detailed follow-up publication.

5. Outlook

While current astrophysical and laboratory constraints onα provide (together with Equiv-
alence Principle tests) interesting constraints on stringtheory inspiredscenarios, prospects for
further improvements are excellent in the context of European Extremely Large Telescope (E-
ELT): this will not only enable much more sensitive measurements of the fine-structure constant
but it will also open a new and complementary observational window into these models.

Redshifts of cosmologically distant objects drift slowly with time [29]. This provides a direct
measurement of the Universe’s expansion history, with the advantage of being a non-geometric,
completely model-independent test, uniquely probing the global dynamics of the metric [10].
Rather than mapping our past light-cone, it directly measures evolution by comparing past light-
cones at different times. While plans are being developed to carry out these measurements at
low redshift (with the SKA [30] and intensity mapping experiments [31]), the E-ELT offers the
unique advantage of probing deep in the matter era and thus a much larger redshift lever arm.
The precision needed for these measurements, a few cm/s, will be reached with the E-ELT’s
high-resolution ultra-stable spectrograph currently dubbed ELT-HIRES. A Phase A study [10]
led to the following estimate for the spectroscopic velocity precision

σv = 1.35

(

S/N
2370

)−1 (

NQS O

30

)−1/2 (

1+ zQS O

5

)−1.7

; (31)

this depends on the signal-to-noise of the spectra, as well as on the number and the redshift of the
quasar absorption systems used. The signal for a given modelcan be derived from the definition
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of redshift and expressed in a model independent way in termsof the spectroscopic velocity
(which is the actual observable) as

∆v
c
=
∆t

(1+ z)
[H0(1+ z) − H(z)] , (32)

where∆t is the timespan of the measurements.
The drift signal for our range of models is plotted in Fig. 4 and compared toΛCDM, for
∆t = 30 years. The error bars depict the expected accuracy of ELT-HIRES, assuming 40 sources
with S/N = 2000. As with several other alternatives toΛCDM studied in the literature [32], it is
clear that the drift signal in runaway dilaton models can differ significantly from that ofΛCDM,
and ELT-HIRES will thus be able to distinguish the two paradigms and set tighter constraints
both onαhad,0 and on the dark sector couplings.

In conclusion, the runaway dilaton scenario is compatible with current data. It (and many other
models) will be subject to much more stringent tests as the next generation of high-resolution,
ultra-stable spectrographs becomes available. A roadmap for these tests is further discussed in
[33]. Meanwhile, the Eötvös parameter sensitivity is also expected to improve to 2× 10−15 with
a hypothetical STE-QUEST [34] and to 10−18 with STEP [35], and these will provide comple-
mentary constraints. Thus quantitative astrophysical tests of string-inspired scenarios will soon
become possible.
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