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Abstract.

Due to the nonperturbative masslessness of the ghost field, ghost loops that contribute to
gluon Green’s functions in the Landau gauge display infrared divergences, akin to those one
would encounter in a conventional perturbative treatment. This is in sharp contrast with gluon
loops, in which the perturbative divergences are tamed by the dynamical generation of a gluon
mass acting as an effective infrared cutoff. In this paper, after reviewing the full nonperturbative
origin of this divergence in the two-gluon sector, we discuss its implications for the three-
and four-gluon sector, showing in particular that some of the form factors characterizing the
corresponding Green’s functions are bound to diverge in the infrared.

1. Introduction

In the past few years, the infrared (IR) behavior of Yang-Mills Green’s functions in the Landau
gauge has been the subject of numerous studies both in the continuum and on the lattice.
Thanks to the use of a variety of different theoretical approaches (see, e.g., [1] and references
therein) as well as extensive numerical simulations on large lattices [2, 3, 4, 5], a consistent
picture has unequivocally emerged for the different n-point sectors of the theory.

Most notably, it has been firmly established that the gluon propagator saturates at small
momenta in a way consistent with the presence of a dynamically generated gluon mass [6, 7, 8, 9];
the ghost propagator is instead essentially free in the same momentum region: in this case it is
the ghost dressing function (defined as q2 times the propagator, see below) that saturates to a
finite non-vanishing value [10, 11].

This characteristic behavior of the two-point sector, which has been found to be valid in three
and four space-time dimensions, for SU(3) and SU(2) gauge groups, and with or without the
inclusion of dynamical quarks, profoundly affects the IR behavior of the theory’s entire tower of
n-point Green’s functions [12]. In fact, it turns out that n-point functions exhibiting an ‘ancestor’
ghost-loop (i.e., a ghost-loop that is originally present in the lowest order perturbative expansion
of the function under scrutiny), will develop a logarithmic IR singularity: the contribution of such
diagram will correspond in fact to a pure logarithm, log q2/µ2 (where µ is some chosen scale),
which is unprotected, in the sense that there is no mass term in its argument that could tame
the corresponding divergence in the low momenta region. On the contrary, if the lowest order
loops have a circulating gluon (and therefore a gluon propagator appears), the corresponding
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logarithm will be of the type log(q2 − m2)/µ2; thus, due to the presence of the dynamically
generated gluon mass, such contributions will be finite for arbitrary low momenta.

In the following, after reviewing the full nonperturbative analysis of the divergent ancestor
ghost loop appearing in the 2-point sector and its effects on the gluon propagator and (inverse)
dressing function, we will discuss the implications for the gluon three- and four-point sectors. In
particular, we will show that the presence of these loops implies the appearance of IR divergences
in some of the form factors comprising the general Lorentz decomposition of the corresponding
vertices [12, 13].

2. The 2-gluon sector

The so-called PT-BFM framework [14, 15, 16], originating from the combination of the Pinch
Technique (PT) [6, 17, 18, 19] with the Background Field Method (BFM) [20], turns out to be
particularly suited for studying the problem at hand, as it allows to separate in a gauge invariant
way the ghost and gluon contributions to Green’s functions. Consequently, one is able to isolate
ancestor ghost loops and study their IR behavior in a meaningful way.

Within the PT-BFM framework, one considers the Schwinger-Dyson equation (SDE) of Fig. 1

describing the propagator ∆̃µν(q) of a quantum (Q) and a background (B) gluon. Writing for
the conventional (i.e., QQ) propagator

i∆µν(q) = −iPµν(q)∆(q2); Pµν(q) = gµν − qµqν/q
2, (1)

and similarly for ∆̃µν(q), it turns out that the two propagators are related by a so-called
Background-Quantum identity (BQI), reading (see again Fig. 1)

[1 +G(q2)]∆−1(q2)Pµν(q) = ∆̃−1(q2)Pµν(q) = q2Pµν(q) + i

6∑

i=1

(ai)µν . (2)

The auxiliary function G(q2) appearing above, corresponds to the metric form factor of a special
Green’s function that is typical of this framework and describes the ghost-gluon dynamics. If
one introduces the ghost dressing function F (q2) through

F (q2) = q2D(q2), (3)

D(q2) being the full ghost propagator, one has the approximate identity [21, 22]

1 +G(q2) ≈ F−1(q2), (4)

a relation that becomes exact at q2 = 0.
The advantage of employing the BQI (2), and therefore considering the BQ self-energy

diagrams rather than the QQ ones, resides in the fact that owing to the background Ward
identity, all subsets of graphs enclosed within each box of Fig. 1 give rise to a transverse
contribution [14, 15, 16]. Thus, their individual treatment, or, in fact, the total omission of
entire subsets from one’s analysis, does not tamper with the transversality of the gluon self-
energy1.

Now, in the presence, of an IR finite gluon propagator, the function ∆(q2) can be decomposed
as

∆−1(q2) = q2J(q2) +m2(q2), (5)

1 In fact, it has been shown in [23] that the PT-BFM framework is not an ad-hoc procedure, rather it naturally
emerges from the requirement of antiBRST invariance of the SU(N) Yang-Mills action. The additional identities
(background Ward identity, BQIs, etc.) present in this novel formulation, are then none but manifestations of the
underlying BRST-antiBRST invariance of the theory.



Q

+

(a3)(a2)(a1) (a4)

+ + +

(a6)(a5)

+

B
+˜

∆−1(q2) =∆̃−1
µν

(q2) = −1

a

a

Figure 1. (color online). The SDE obeyed by the QB gluon propagator. Each of the
three different boxes (continuous, dashed, and dotted line) contains an individually transverse
subgroup of diagrams, i.e., qµ[(ai)+ (ai+1)]µν = 0 with i = 1, 2, 3. Black (white) blobs represent
fully dressed 1-PI (connected) Green’s functions; finally, small gray circles appearing on the
external legs indicate background gluons.

where J(q2) is the inverse of the gluon dressing function, while m2(q2) is the dynamically
generated gluon mass. Notice that Eq. (2) is satisfied independently by J(q2) and m2(q2),
so that one has

X(q2) = F (q2)X̃(q2); X(q2) = J(q2),m2(q2), (6)

where we have used the approximation (4).
The block-wise transversality property of the BQ propagator together with the BQI (6),

allows then for a meaningful separation of two kinds of contribution to J(q2): the ones stemming
from the ghost graphs (a3) and (a4), and the ones stemming from the remaining gluon graphs.
Denoting them respectively by Jc(q

2) and Jg(q
2), one has therefore

q2Jg(q
2)Pµν(q) = F (q2)[(a1) + (a2)]µν + F (q2)[(a5) + (a6)]µν , ,

q2Jc(q
2)Pµν(q) = F (q2)[(a3) + (a4)]µν (7)

where on the right-hand side we assume that one is evaluating only the terms that vanishes as
q2 goes to zero (the non vanishing terms contributing instead to the mass equation, see [7, 8]).
Then one finally has

J(q2) = 1 + Jg(q
2) + Jc(q

2), (8)

with the “1” corresponding to the tree-level term.
It turns out that there is a profound difference in the behavior of the gluon inverse dressing

functions Jc(q
2) and Jg(q

2), which ultimately reflects the fact that the particle circulating in
the loops of the corresponding diagrams have completely different behavior in the IR. In fact,
in this momentum regime ghosts behave like massless free particles, D(q2) ∼ F (0)/q2, whereas
gluons are effectively massive, and therefore ∆(q2) ∼ 1/m2(0).

This difference between the inverse dressings Jc(q
2) and Jg(q

2) is most readily understood
at the lowest order in the perturbative expansion: in the four-dimensional case, Jg(q

2) develops
a logarithm tamed by the presence of the effective IR cutoff provided by the dynamical gluon
mass; on the contrary, Jc(q

2) displays an unprotected logarithm, which vanishes at a finite value
of q2, then reverses its sign, becoming finally divergent at the origin2. As a consequence, one can

2 In the three-dimensional case the divergence in Jc(q
2) is linear in q with Jc(q

2) ∼ 1/q while for the gluon
Jg(q

2) ∼ arctan q/2m.



easily show that the gluon propagator must display a maximum (and, consequently, its inverse
a minimum) located in the deep IR region [12].

Consider now the full non perturbative case. The fact that the background gluon-ghost vertex
appearing in the ghost block of Fig. 1 satisfies a QED-like Ward identity, furnishes a closed all-
order expression for the longitudinal part of this vertex (which is not possible to obtain for the
conventional gluon-ghost vertex). This leaves the transverse (automatically conserved) part of
the vertex undetermined; however, under mild assumptions on the behavior of the form factor
characterizing the latter vertex structure, one can show that the neglected term would give rise
only to IR subleading contributions to Jc(q

2) (see [12] for details).
Following the analysis presented in [12], one then finds that the ghost diagrams contribute

to the gluon inverse dressing function the term

q2Jc(q
2) =

g2N

2(d− 1)
F (q2)

[
4T (q2) + q2S(q2)

]
, (9)

where

T (q2) =

∫

k

F (k + q)− F (k)

(k + q)2 − k2
+

(
d

2
− 1

)∫

k

F (k)

k2
,

S(q2) =

∫

k

F (k)

k2(k + q)2
−

∫

k

F (k + q)− F (k)

k2[(k + q)2 − k2]
. (10)

In the equations above N represents the number of colors, and we have introduced the d-
dimensional measure

∫
k
≡ µǫ/(2π)d

∫
ddk, with µ the ’t Hooft mass and ǫ = 4− d. Then, using

the fact that T (0) = 0, in the deep IR region one finds the following behavior [12]

T (q2) →
q2→0

−
1

12
(d− 2) q2

∫

k

1

k2
∂F (k)

∂k2
+O(q4),

S(q2) →
q2→0

∫

k

F (k)

k4
−

∫

k

1

k2
∂F (k)

∂k2
+O(q2). (11)

The first integral appearing in the expansion of S(q2), contains the expected logarithmic
divergence, as it can be easily seen by setting F (k2) = 1. Since the full F (k2) saturates at a
constant value in the IR, its presence will not qualitatively modify the behavior of the integral;
it will rather change its prefactor from 1 to F (0). The second integral in S(q2), and therefore
T (q2), is subleading: introducing spherical coordinates and integrating by parts, makes manifest
that this integral is simply proportional to F (0). In fact, Eq. (8) can be rewritten as

J(q2) = Jℓ
c (q

2) + J sℓ(q2), (12)

where

Jℓ
c (q

2) =
g2N

2(d− 1)
F (q2)

∫

k

F (k)

k2(k + q)2
, (13)

whereas J sℓ(q2) represents the IR subleading terms (including the terms generated by gluon
graphs).

The terms appearing in Eq. (10) can be next evaluated numerically by using as input a
functional fit to the SU(2) [3] and SU(3) [4] quenched lattice data for the ghost dressing function.
The results are shown in Fig. 2, where, as anticipated, the IR logarithmic divergence is clearly
identified by the linear behavior (in log scale) of the S term above.
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Figure 2. (color online). The ghost-loop contribution, q2Jc(q
2), to the full gluon kinetic term

q2J(q2) for the SU(2) (left) and SU(3) (right) gauge groups.

To check whether or not the nonperturbative propagator has a maximum as a consequence of
the divergence of its ghost contribution Jℓ

c (q
2) (13), let us consider the derivative of the inverse

gluon propagator that reads

[∆−1(q2)]′ = [q2J(q2)]′ +m′(q2) = Jℓ
c (q

2) + [J sℓ(q2) + q2J ′(q2)]−m′(q2). (14)

Evidently, the quantity in brackets is subleading in the IR, while the fact that the propagator
is decreasing in the UV, ensures that the above derivative is positive in this region. In addition,
the dynamical equation governing m2(q2) is known [7, 8, 9] and its solutions are monotonically
decreasing and possess a finite derivative in the origin. Thus we conclude that the derivative
above must reverse the sign at a point q∆ where the propagator will display a maximum.

Thus, according to the reasoning developed so far, and as a consequence of the masslessness
of the ghost field, the lattice data for the gluon propagator ought to display a maximum, located
in the (deep) IR region. As displayed in the insets appearing on the right panels of Fig. 3, such
a maximum appears to be indeed encoded in the lattice data for ∆, which reveals a suppression
of the deep IR points independently from the gauge group chosen. In those same insets we also
plot different fitting curves in which the position of the maximum is varied.

For reasons that will become clear in the next section, it is interesting to study the full kinetic
term q2J(q2), an indirect knowledge of which3 can be acquired by evaluating the combination

q2J(q2) = ∆−1(q2)−m(q2), (15)

where ∆(q2) is obtained from the aforementioned fits to the lattice while m2(q2) is obtained by
solving the associated mass equation. Notice that one expects that the quantity (15) develops
a minimum at a location qJ , which in general however will not coincide with q∆.

The indirect determination of q2J(q2) from Eq. (15), using as basic input the family of
curves for ∆(q2) obtained in the previous step is shown in Fig. 3. First we established that,
when the latter curves are used as input to determine the solution to the mass equation, the
resulting masses are completely independent of the location and the size of the maximum of the

3 The reason why we do not perform a direct SDE analysis of this quantity is because we do not have a satisfactory
control over some of the basic ingredients appearing in the integral equation governing J(q2); in particular, and
most notably contrary to what happens for the Landau gauge mass equation, the equation for J(q2) involves the
fully-dressed four-gluon vertex, whose structure is presently poorly known (see also Sect. 3.2).
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Figure 3. (color online). The dynamical gluon mass (left panels) and the propagator’s full
kinetic part ∆−1(q2) − m2(q2) (right panels) for the SU(2) (top) and SU(3) (bottom) gauge
groups. Whereas the solutions of the mass equation are clearly insensitive to the presence of a
maximum in the propagator, as shown here for two representative cases, the full kinetic term
develops a negative minimum (qJ), whose position is marked in the right panels by open (down)
triangles. Insets show in all cases the IR behavior of the various propagator fits used as input,
together with the corresponding lattice data of Refs. [2, 3] and [4].

propagator (left panels of Fig. 3). Once the combination (15) is formed (right panels of Fig. 3),
we observe that the full kinetic term obtained vanishes at the origin, decreases in the deep IR,
and reaches a negative minimum before crossing zero and turning positive (we mark for each
curve the location of the corresponding minimum, qJ).

Summarising, the fact that the ghost field remains nonperturbatively massless, as opposed
to the gluon which acquires a dynamically generated mass, implies unavoidably the existence
of a negative IR divergence in the dimensionless co-factor J(q2) of the kinetic part of the gluon
propagator. While this divergence, which originates exclusively from one-loop dressed diagrams
involving a ghost loop, does not spoil the overall finiteness of the gluon two-point function,
it affects it in two different ways: (i ) it forces the appearance of a maximum in the gluon
propagator located at q∆, and, correspondingly, (ii ) it makes the full kinetic term develop a
minimum at a location qJ .
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Figure 4. Ancestor ghost loops in the case of the three- and four-gluon sector. For later
convenience we show the color and Lorentz indices of the external legs together with the
momentum flow (all momenta are entering).

3. The n-gluon sector

The generality of the analysis performed in the previous section, suggests that the IR divergence
appearing in the two-point sector, is likely to manifest itself in other Green’s functions that
contain an ancestor ghost loop. Natural candidates are clearly the three- and four-point
functions, due to the presence respectively of the triangular- and box-like diagrams shown
in Fig. 4.

In order to study this issue, in what follows we resort to the quantity usually employed at
the non-perturbative level for studying n-point functions in the Landau gauge, namely the ratio

RT

n(q1, · · · , qn) =
T a1···an
µ1···µn

(q1, · · · , qn)P
µ1ν1(q1) · · ·P

µnνn(q1)Γ
a1···an
ν1···νn

(q1, · · · , qn)

T a1···an
µ1···µn (q1, · · · , qn)P

µ1ν1(q1) · · ·Pµnνn(q1)T
a1···an
ν1···νn (q1, · · · , qn)

. (16)

What Eq. (16) achieves is therefore the projection of the full vertex Γa1···an
ν1···νn

(q1, · · · , qn) under
scrutiny onto a particular tensor structure T a1···an

µ1···µn
(q1, · · · , qn), factoring out at the same time

external leg corrections4. Such a ratio depends generally by the modulo of the n−1 independent
momenta and the (n− 1)(n − 2)/2 angles between them.

3.1. The three-gluon sector

We start by considering the case of the three gluon vertex, defined according to (all momenta
entering)

ΓAa
µA

b
νA

c
ρ
(p1, p2, p3) = −igΓabc

µνρ(p1, p2, p3);

Γ(0)abc
µνρ (p1, p2, p3) = fabc[gµν(p1 − p2)ρ + gνρ(p2 − p3)µ + gρµ(p3 − p1)ν ], (17)

where fabc are the real and totally antisymmetric structure constants, satisfying the
normalization condition famnf bmn = Nδab.

Choosing to project the vertex on its tree-level tensor structure, and considering for the
momenta the so-called orthogonal configuration, corresponding to setting the angle between p1
and p2 to π/2 and then taking the limit p22 → 0, it can be shown that [12]

RΓ(0)

3 [q2, 0, π/2] = F (0)[q2J(q2)]′ +Rsℓ(q2), (18)

4 This definition allows, when data are available, for a direct comparison with lattice results, as in this case only
connected (as opposed to 1-PI) Green’s functions can be measured.
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Figure 5. (color online). Left panel: Prediction for the zero-crossing compared with the

SU(2) ratio RΓ(0)

3 (q2, 0, π/2) measured on the lattice in four-dimensions [27]. The inset shows a
logarithmic plot of the same quantity. Right panel: Same thing, but for the three-dimensional
case [27]; notice that in this case the ghost divergence is linear in q, and therefore the lattice is
able to resolve both the zero crossing and the negative divergence.

where we have set q2 = p21, and the last term collects all subleading corrections not contained in
the first one. Then the IR behavior of the ratio (18) is driven once again by the gluon inverse
dressing function so that

RΓ(0)

3 [q2, 0, π/2] ∼
q2→0

F (0)Jℓ
c (q

2). (19)

Thus, the expectation is that RΓ(0)

3 in the orthogonal configuration will vanish at a point q0 an
then have a negative logarithmic IR divergence5. Notice that an estimate for q0 is provided by
qJ as the relation (18) reveals; in particular, for the SU(2) gauge group the minimum of the full
kinetic term provides the estimate q0 ≈ 45 MeV, while for SU(3) we obtain q0 ≈ 130 MeV.

Our SU(2) result is compared with the behavior of RΓ(0)

3 (q2, 0, π/2) obtained from lattice
simulations [27] on the left panel of Fig. 5; as one can see while there is indeed an indication
that the zero crossing is going to happen, the actual value is located too deep in the IR to be
resolved with current lattice volumes. On the other hand, we show on the right panel of the
same figure the three-dimensional case, where the leading ghost divergence Jℓ

c (q
2) is linear in

momentum rather than logarithmic: in this case the zero crossing and divergent behavior are
clearly resolved by the lattice and our prediction q0 ≈ 175 MeV compares reasonably well with
the available data [27].

3.2. The four-gluon sector

We next turn our attention to the four-gluon vertex which is defined according to (all momenta
entering)

ΓAa
µA

b
νA

c
ρA

d
σ
(p1, p2, p3, p4) = −ig2Γabcd

µνρσ(p1, p2, p3, p4);

Γabcd(0)
µνρσ = fadrf cbr(gµρgνσ − gµνgρσ) + fabrf rdc(gµσgνρ − gµρgνσ)

+ facrfdbr(gµσgνρ − gµνgρσ). (20)

5 For related studies on the three-gluon vertex, see [24, 25, 26].



Figure 6. The 18 diagrams contributing to the four-gluon vertex in the one-loop dressed
approximation. The diagrams are divided in four different classes: (a) ghost boxes, (b) gluon
boxes, (c) triangles, (d) fishnets (which carry a statistical factor of 1/2).

As already remarked this is the most poorly understood vertex of the theory, e.g., no lattice
simulation of this quantity exists to date (and, consequently, no data on any ratio RT

n in any
momentum configuration are available).

However, motivated by our successful description of the 2- and three-gluon sector, a
preliminary nonperturbative study of this vertex can be attempted [13]. To this purpose, one can
resort to a somewhat simplified methodology, in which the different form factors are extracted
directly from the evaluation of one-loop diagrams with fully dressed propagators but tree-level
vertices (Fig. 6).

Even within this simplified setting, the calculation of the 18 one-loop dressed diagrams
of Fig. 6 in a general momentum configuration would be a challenging task, due to the vast
proliferation of tensorial structures. Indeed, at the level of rank-4 Minkowski tensors one has
schematically the structures gg, gpipj and pipjpkpm, whereas for the rank-4 color tensors the
possible combinations are of the type ff , dd, fd and δδ (d being the totally symmetric SU(N)
color tensor). This adds up to 138 possible tensors for a general kinematical configuration.

Thus, in order to simplify the calculation as much as possible without compromising
the physics we want to describe, we choose the momentum configuration (p1, p2, p3, p4) =
(p, p, p,−3p). This particular choice has the following advantages:

(i ) It gives rise to loop integrals that are symmetric under the crossing of external legs, thus
reducing the amount of diagrams one needs to evaluate;

(ii ) It allows to concentrate only on form factors multiplying tensor structures depending
quadratically on the metric; all other possible structures will vanish when constructing
the Landau gauge projectors RT

n;

(iii ) It is the only momentum configuration in which the 1-PR contributions to the connected
four-gluon Green’s function vanish, thus allowing to study the (projected) 1-PI component
of the connected four-gluon vertex in isolation6.

6 This aspect would make the (p, p, p,−3p) as the configuration of choice in a possible attempt to study this
vertex on the lattice.



Within this configuration, for a general SU(N) gauge group one has 3×9 = 27 possible tensor
structures7; however, for the special case of N = 3, the additional identity [28]

δabδcd + δacδbd + δadδbc = 3[dabrdcdr + dacrdbdr + dadrdbcr], (21)

further reduces the total number of tensorial combinations down to 24.
When all this is combined with the one-loop dressed approximation employed, it turns out

that the tensor structures to be considered are in fact only two, as the result can be cast in the
form

Γabcd
µνρσ(p, p, p,−3p)

∣∣∣
gg

= VΓ(0)(p2)Γabcd(0)
µνρσ + VG(p

2)Gabcd
µνρσ , (22)

where Γ
abcd(0)
µνρσ is the tree-level tensor defined in (20), whileGabcd

µνρσ represents the totally symmetric
tensor

Gabcd
µνρσ = (δabδcd + δacδbd + δadδbc)(gµνgρσ + gµρgνσ + gµσgνρ). (23)

In addition, the IR leading term coming from the ghost diagrams (a) of Fig. ?? only contributes
to the latter structure, as one has

6∑

i=1

(ai)
abcd
µνρσ

∣∣∣
gg

= g2Gabcd
µνρσA(p

2), (24)

with

A(p2) = −
9

2

1

d2 − 1

∫

k

k2
[
1−

(k ·p)2

k2p2

]2
F (k)F (k + p)F (k + 2p)F (k + 3p)

(k + p)2(k + 2p)2(k + 3p)2
. (25)

Notice that as p2 → 0, Eq. (25) yields

A(p2) →
p2→0

−
9

2d(d + 2)

∫

k

F 4(k2)

k4
, (26)

that is, the form factor VG(p
2) will develop a logarithmic IR divergence (in four-dimensions).

The (rather lengthy) expressions for the remaining class of diagrams can be found in [13].
The different contributions to the four-gluon vertex form factors can be evaluated using the

functional fits to the quenched lattice data for the gluon and ghost two-point functions8. The
results are shown in Fig. 7.

Consider first the left panel, where we show the contributions to VΓ(0) . These are purely
gluonic in nature, and all of them saturate in the IR. In particular we notice that, the contribution
of the gluon boxes is negligible (indeed, as p → 0 it vanishes); the triangle terms feature a bump
in the low momentum region, while the fishnet is negative. Adding everything up, one obtains
the shape shown by the black line.

In the case of VG the situation is completely different (Fig. 7, right panel). Gluon contributions
are again saturating in the IR; however, in this case, the ghost boxes take over below few
hundreds MeV2, driving VG to an IR logarithmic divergence. As far as the remaining diagrams
are concerned, gluon boxes are negative in this case; in addition, they are almost perfectly
cancelled by the triangle contributions. When the negative contribution from the fishnet
diagrams is finally added, one obtains the shape shown by the black line of Fig. 7; in particular,

7 The terms quadratic in the metric gives the 3 possible combinations gµνgρσ, gµρgνσ, and gµσgνρ; for the color
structures on has 15 possibilities and 6 identities [28], and therefore 9 independent tensors.
8 In the case of the gluon propagator we have also employed a fit featuring the IR maximum discussed in Sect. 2;
the results obtained were, however, independent from its presence.
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Figure 7. (color online). Individual one-loop dressed contributions to the tensor structure

Γ
abcd(0)
µνρσ (left panel) andGabcd

µνρσ (right panel). The black line coincides with the coefficient VΓ(0)(p2)

and VG(p
2) respectively.

notice the presence of a zero crossing, a feature that was also present in the RΓ(0)

3 ratio previously
studied in the case of the three-gluon vertex.

Now, the result (22) is due to the one-loop dressed approximation employed; a general analysis
based on Bose symmetry [13], shows that the terms quadratic in the metric contributing to the
four-gluon vertex in the (p, p, p,−3p) momentum configuration allow for an extra tensor, namely
one has

Γabcd
µνρσ(p, p, p,−3p)

∣∣∣
gg

= VΓ(0)(p2)Γabcd(0)
µνρσ + VG(p

2)Gabcd
µνρσ + VX′(p2)X

′abcd
µνρσ , (27)

where9

X
′abcd
µνρσ = gµνgρσ(δ

abδcd/3 − dabrdcdr) + gµρgνσ(δ
acδbd/3− dacrdbdr)

+ gµσgνρ(δ
adδbc/3 − dadrdbcr). (28)

This means that a possible lattice evaluation of the connected four-gluon function in this
particular momentum configuration completely determines the terms of the four-gluon vertex
quadratic in the metric tensor, through the measurement of the ratios

RΓ(0)

4 (p2) = VΓ(0)(p2)+
1

81
VX′(p2); RG

4 (p
2) = VG(p

2); RX′

4 (p2) = VX′(p2)+
9

164
VΓ(0)(p2).

(29)
According to our description one expects VΓ(0)(p2) to be finite and VG(p

2) to display an IR
divergence; nothing can be however said at the moment for the form factor VX′ ; however
the vanishing of this latter quantity in the one-loop dressed approximation, points towards
its finiteness. Thus, we would expect the measurement of only one divergent ratio, and namely
RG

4 (p
2).

9 Bose symmetry alone does not permit to fix completely the tensor X
′abcd
µνρσ ; its explicit form (28) is obtained by

requiring that the latter should be orthogonal to the tensor G, that is

Gabcd
αβργP

µα(p)P νβ(p)P ργ(p)P σδ(p)X
′abcd
αβργ = 0.



4. Conclusions

The gluon and ghost field display a very different behavior in the deep IR: the latter remains
nonperturbatively massless, whereas the former acquires a dynamically generated mass. This
fact, which has been unequivocally established in the Landau gauge using discrete as well as
continuous methods, turns out to have a profound impact on the n-gluon sector of the theory,
as diagrams involving ghost loops gives unavoidably origin to IR divergences.

In the case of the 2-gluon sector it is the gluon inverse dressing function J(q2) that shows such
a divergence (with J(q2) ∼ log q2 in four dimensions); while the presence of such a divergence
does not interfere with the finiteness of the gluon 2-point function (for the gluon full kinetic
term is multiplied by q2), it nevertheless implies that the full propagator has an IR maximum
located at q = q∆, and, correspondingly, q

2J(q2) has a minimum, located at q = qJ .
For the three-gluon sector a (negative) IR divergence appears when projecting the full

three-gluon vertex onto its tree level value, and choose the so-called orthogonal momentum

configuration. Due to the relation (19), the location of the point q = q0 at which RΓ(0)

3 (q2, 0, π/2)
crosses zero and turns negative can be roughly estimated from qJ and turns out to be around
130 MeV (45 MeV) for the N = 3 (N = 2) case.

An IR divergence appears also when evaluating the four-gluon vertex in the (p, p, p,−3p)

momentum configuration, even though in this case it does not manifest in the projector RΓ(0)

4 (p2)
onto the tree-level tensor, rather in RG

4 (p
2), where G is the totally symmetric tensor (23).

The picture presented here, elaborated within the PT-BFM formalism which allows for a
gauge-invariant separation of ghost and gluon contributions to the gluon propagator, is found
to be in agreement with lattice data whenever the latter are available.

Two are the questions that needs to be addressed.
To begin with, since Green’s functions depend on the gauge fixing employed, it would be

important to evaluate them in different gauges in order to ascertain what aspects of their
nonperturbative behavior are affected by a change of gauge. This is particularly relevant in the
2-point sector, as a recent preliminary study using a combination of SDE and Nielsen identities10

has revealed that in the renormalizable ξ gauges the ghost dressing function vanishes in the deep
IR [31]. If this result persists refined studies, possibly including lattice simulations, its impact
on the IR behavior of ancestor ghost loops (and consequently the n-gluon sector of the theory)
needs to be thoroughly addressed.

Second, one would like to see wether or not the presence of zero crossings and IR divergences
has some impact on hadron phenomenology (e.g., the hadron spectrum), in order to connect
results on the theory’s most basic building blocks with its observables properties, along the lines
recently discussed in [32]. At a first sight it would look like the zero crossing momentum q0 is
located too deep in the IR for both the three- and four-gluon vertex to affect the Bethe-Salpeter
equations one needs to solve. However, a preliminary analysis of unquenching effects shows
that dynamical quarks have the tendency to move q0 closer to the phenomenologically relevant
region of few hundreds MeV. This is relatively easy to understand, as the main effect of adding
dynamical quarks is to suppress the saturation point of the gluon propagator while leaving the
ghost dressing function practically invariant [5, 33, 34]; consequently gluonic contributions will
be suppressed whereas ghost contributions will be of the same size of the unquenched ones,
which results in pushing the zero crossing towards higher momentum values with respect to the
quenched case.

10These identities express the gauge-dependence of ordinary Greens functions (propagators, vertices, etc.) in
terms of special auxiliary functions associated with an extended BRST sector [29, 30].
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[13] Binosi D, Ibañez D and Papavassiliou J 2014 JHEP 1409 059 (Preprint 1407.3677)
[14] Aguilar A C and Papavassiliou J 2006 JHEP 12 012 (Preprint hep-ph/0610040)
[15] Binosi D and Papavassiliou J 2008 Phys.Rev. D77 061702 (Preprint 0712.2707)
[16] Binosi D and Papavassiliou J 2008 JHEP 0811 063 (Preprint 0805.3994)
[17] Cornwall J M and Papavassiliou J 1989 Phys. Rev. D40 3474
[18] Binosi D and Papavassiliou J 2002 Phys. Rev. D66 111901(R) (Preprint hep-ph/0208189)
[19] Binosi D and Papavassiliou J 2004 J.Phys.G G30 203 (Preprint hep-ph/0301096)
[20] Abbott L F 1982 Acta Phys. Polon. B13 33
[21] Grassi P A, Hurth T and Quadri A 2004 Phys. Rev. D70 105014 (Preprint hep-th/0405104)
[22] Aguilar A C, Binosi D, Papavassiliou J and Rodriguez-Quintero J 2009 Phys. Rev. D80 085018 (Preprint

0906.2633)
[23] Binosi D and Quadri A 2013 Phys.Rev. D88 085036 (Preprint 1309.1021)
[24] Pelaez M, Tissier M and Wschebor N 2013 Phys.Rev. D88 125003 (Preprint 1310.2594)
[25] Blum A, Huber M Q, Mitter M and von Smekal L 2014 Phys.Rev. D89 061703 (Preprint 1401.0713)
[26] Eichmann G, Williams R, Alkofer R and Vujinovic M 2014 Phys.Rev. D89 105014 (Preprint 1402.1365)
[27] Cucchieri A, Maas A and Mendes T 2008 Phys.Rev. D77 094510 (Preprint 0803.1798)
[28] Pascual P and Tarrach R 1980 Nucl. Phys. B174 123
[29] Nielsen N K 1975 Nucl. Phys. B101 173
[30] Nielsen N K 1975 Nucl. Phys. B97 527
[31] Aguilar A, Binosi D and Papavassiliou J 2015 (Preprint 1501.07150)
[32] Binosi D, Chang L, Papavassiliou J and Roberts C D 2015 Phys.Lett. B742 183–188 (Preprint 1412.4782)
[33] Aguilar A C, Binosi D and Papavassiliou J 2012 Phys. Rev. D86 014032 (Preprint 1204.3868)
[34] Aguilar A C, Binosi D and Papavassiliou J 2013 Phys. Rev. D88 074010 (Preprint 1304.5936)

0909.2536
0710.0412
1001.2584
0901.0736
1208.0795
1107.3968
1208.1451
1401.3631
0803.2161
0802.1870
1312.1212
1407.3677
hep-ph/0610040
0712.2707
0805.3994
hep-ph/0208189
hep-ph/0301096
hep-th/0405104
0906.2633
1309.1021
1310.2594
1401.0713
1402.1365
0803.1798
1501.07150
1412.4782
1204.3868
1304.5936

