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We present an evidence of strong radial flow in high-multiplicity pp collisions. We analyze the
CMS data on the inclusive spectra of the charged pions, kaons and protons in the LHC

√
s = 7 TeV

collisions. For 〈Ntracks〉 >∼ 75 we demonstrate the consistency of the hydrodynamic description with
the (idealized) Gubser’s flow. Using a one parameter fit of the model to experimental data, we
obtain the initial fireball size to be of the order of 1 fm. At smaller multiplicities, the fit cannot be
performed which shows a limitation of the hydrodynamic approach and provides us with falsifiability
of our theory.

INTRODUCTION

The idea of collective effects amenable to hydrody-
namic description of the proton-proton (pp) collisions
goes all the way back to the works of Landau [1]. How-
ever, experimental studies of the particle spectra, mea-
sured over decades at fixed-target and collider (ISR at
CERN, Tevatron at Fermilab, RHIC at Brookhaven) ex-
periments, demonstrated the so-called mT -scaling (to be
discussed in detail below) characteristic for individual
breaking of QCD strings stretched between protons. The
so-called Lund model and many forms of event genera-
tors based on this model were used to fit and explain the
data. More recent versions of those – such as PYTHIA 8,
with a certain form of string interaction or color recon-
nection [2]), successfully describe various observables as-
sociated with particle production in pp collisions. So, pp
(as well as pA) collisions have been for long time consid-
ered qualitatively different from heavy-ion AA collisions,
for which the hydrodynamic description became a main-
stream since its successful explanation of RHIC data, see
[3] and Refs. therein.

The situation changed since the beginning of LHC
operation in 2010, when CMS discovered the now fa-
mous “ridge” correlation at large multiplicities (100 and
higher) in AA collisions (and later also in pA), which
was confirmed to be a collective elliptic flow. At the
same time, the Lund-model mechanism failed to describe
strong growth of the mean pT with multiplicity: the pro-
posed explanations were (i) appearance of radial collec-
tive flow, or (ii) increase in the parton saturation mo-
menta Qs in GLASMA model. The former required that
T ′ slopes of the mT -spectra, defined via a fit

dNi
dymT dmT

∼ exp(−mT /T
′) (1)

with mT =
√
p2⊥ +m2, to be linearly growing with the

particle mass, T ′(m) ∝ m. The latter, however, required
the slopes to be m-independent.

Since relevant high-multiplicity pA collisions have
probability of several percents, contrary to ∼ 10−6 in
the pp case, their studies have statistical advantage and

were completed first. The data of the identified particle
spectra (π, K, p, Λ) have clearly shown that the dilemma
is resolved in the favor of the flow. Analysis of these data
using various versions of hydrodynamics has been made
successfully, see, e.g., [4, 5].

Participation of many Np ∼ 20 nucleons in high-
multiplicity pA collisions leads to a contribution of large
number of Pomeron exchanges and thus large number of
produced strings. In [6] we discussed the string-string
interaction, proposing it to be attractive one mediated
by sigma-meson exchanges, and described conditions for
collectivization of the multi-string systems.

Returning to the problem of flow in the pp case, let
us mention that early femtoscopy data by ALICE [7] al-
ready included strong evidences for such flow phenomena
with a surprisingly high transverse flow velocities, as re-
cently revealed in the analysis by Hirono and one of us
[8]. However, there were no detailed studies of the data
on the identified particle spectra: this gap we intend to
fill with our paper.

Collective flow and spectra

At the moment, there is basically no accepted theory of
the fluctuations at the initial stage of high multiplicity pp
events. Therefore, like in [4], we will use the simplest hy-
dro solution, an analytic solution known as the Gubser’s
flow [14], which is a generalization of the Bjorken’s flow
for the case of finite transverse size and both radial and
longitudinal expansion with respect to the beam axis.

Before we proceed, let us mention certain limitations
of this approach. (i) Since we discuss only the radial
flow in this work, we deal with an axially symmetric pic-
ture. Furthermore, Gubser’s flow assumes a certain ini-
tial shape of the fireball, induced by the conformal map
essential for its derivation. In reality, the shape of the ac-
tual system remains unknown, and we use this one just
for practical convenience. (ii) The Gubser’s flow assumes
conformity of matter and thus EOS ε = p/3. Small sys-
tems, pp, pA, do spend most of their time in the QGP
phase, and only a small fraction of time near Tc and the
freezeout: for the generation of an overall flow velocity
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FIG. 1: (Color online) Profiles of the freezeout surfaces (up-
per plot) and the corresponding velocities (lower plot) for
three different initial system sizes: at ε0 = 10 and 1/q =
0.7 fm (upper blue), 1/q = 1 fm (middle orange), 1/q = 2 fm
(lower red).

we will discuss this approximation should be fine. (The
femtoscopy radii, measured at the freezeout, are more
sensitive to the final stages, and that is why we com-
plemented Gubser’s flow by a numerical solution in [8].)
(iii) As discussed, e.g., in [4], the outer part of the freeze-
out surface is rather unrealistic, deviating qualitatively
from the more realistic hydro solutions. However, since
its contribution in the latter case is quite small, we may
simply exclude this region from the consideration.

The solution is given by the energy density and trans-
verse velocity,

ε(τ̄ , r̄) =
ε0(2q)8/3

τ̄4/3[1 + 2q2(τ̄2 + r̄2) + q4(τ̄2 − r̄2)2]4/3
, (2)

v⊥(τ̄ , r̄) ≡ tanhκ(τ̄ , r̄) =
2q2τ̄ r̄

1 + q2τ̄2 + q2r̄2
, (3)

where κ(τ̄ , r̄) is radial flow rapidity; r̄ and τ̄ =
√
t2 − z2

are the radial coordinate and the (longitudinal) proper
time, respectively. The solution is parameterized by a
pair (q, ε0). The dimensionless energy density parameter
ε0 is related to the entropy per unit rapidity,

ε0 = f
−1/3
∗

(
3

16π

dS

dη

)4/3

, (4)

FIG. 2: (Color online) Normalized spectra of pions (squares),
kaons (triangles) and protons (discs) at different multiplic-
ities. Open symbols correspond to the CMS data [12] for
|η| < 2.4 and

√
s = 7 TeV, while the solid ones are obtained

from the best one-parameter fit of the Gubser’s flow.

where f∗ = 11 is the number of effective degrees of free-
dom in quark-gluon plasma [14]. The entropy per unit
rapidity is given by the charged particle multiplicity,

dS

dη
' 7.5

dNch

dη
. (5)

Parameter q characterizes an inverse transverse size of
the system at the beginning of the hydrodynamic phase.
Since, as we already emphasized, there is no theory of the
initial state, we do not know its value a priori. Our study
of the spectra can thus be seen as an attempt to find its
value from the data, using the radial flow phenomenon.
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To simplify our further calculations, we consider the
Gubser’s solution in dimensionless variables τ = qτ̄ , r =
qr̄,

ε

q4
=

ε0 28/3

τ4/3 [1 + 2(τ2 + r2) + (τ2 − r2)2]
4/3

, (6)

v⊥(τ, r) ≡ tanhκ(τ, r) =
2τr

1 + τ2 + r2
. (7)

To illustrate typical flow solutions, we depict them in
Fig. 1 for some of the parameters similar to the ones used
in this paper. The freezeout surface profile is obtained
by solving (6) for ε = f∗ T

4
f and Tf = 170 MeV. As

one can see from the upper plot, for the lower curve the
freezeout happens from the edge inwards, meaning the
system cools down gradually. However, the upper curve
indicates a strong radial flow, i.e. the system undergoes
a fast expansion due to a high internal pressure and then
suddenly freezes out. In other words, a plateau in the
freezeout profile (and a “knee”) is an indicator of a strong
radial flow. The absolute magnitude of the radial flow,
shown in the lower part of Fig. 1, one can see the radial
distribution of the corresponding flow velocities.

In order to obtain inclusive particle spectra, we use the
Cooper-Frye formula [15],

dNi
dy pT dpT dφp

=

∫
pµd3σµ(x)

(2π)2
fi(x, p), (8)

where φp is the azimuthal angle of ~pT , fi(x, p) is the dis-
tribution function for the particles of the chosen type
i, and the integration is performed over a hypersur-
face of constant temperature (the freezeout temperature,
Tf = 170 MeV). For the further discussion one should
also introduce the so-called “transverse mass”, mT ≡√
p2T +m2, with a useful property mT dmT = pT dpT .
In the Boltzmann approximation, fi = gi e(p·u−µi)/T

(for kaons and protons), and an azimuthally symmetric
case, the Eq. (8) reduces to [16]

dNi
dymT dmT

=
gi
π2

∫ rcut

0

r⊥dr⊥ τ eµi(r⊥)/Tf×

×
[
mTK1

(mT coshκ(r⊥)

Tf

)
I0

(pT sinhκ(r⊥)

Tf

)
− pT

∂τ

∂r⊥
K0

(mT coshκ(r⊥)

Tf

)
I1

(pT sinhκ(r⊥)

Tf

)]
, (9)

where gi is a number of states for the given particle mass
mi, and τ is taken at the freezeout surface.

We already mentioned that the outer tail of the Gub-
ser’s solution is clearly unphysical: its power fall off with
distance is different from the exponentially falling nu-
clear densities. We simply do not include the part out-
side a peak value (it either corresponds to small times,
when hydro regime is not yet developed, or describes hy-
dro incorrectly), and take a cut-off rcut, which is defined

by the position of integrand’s maximum as a function
of r⊥. In what follows, we assume the chemical poten-
tial µi = const and normalize the distributions, which
makes the exponent and other numerical prefactors irrel-
evant. One should not expect to reproduce pion spec-
tra in this approximation because of the Bose-Einstein
statistics and resonance decays which are not taken into
account. For pions one should, in principle, change the
Eq. (9) by multiplying arguments of the exponent and
Bessel functions by n, multiply the whole expression by
(−1)n+1 and sum over n ∈ N, but in our case it turned
out to be not essential and does not change the result
much, so we present it as it is. This procedure would
take into account the Bose-Einstein statistics but not the
other effects.

Before turning to the results, let us discuss some qual-
itative features of the spectra. First, let us assume for a
moment a complete absence of the flow, i.e. put κ = 0.
Then the Eq. (9) reduces to (1) meaning the mT spectra
for all hadrons are identical, with a slope T ′ = Tf (the
so-called, mT -scaling). By turning on the flow, κ 6= 0,
one would violate this mT -scaling, since distributions for
different particles will in general have different shapes,
and in particular different slopes. Such difference is in-
deed visible from the data in Figure 2. The larger is the
multiplicity, the more pronounced is the mT -scaling vio-
lation. It is clear that 〈Ntracks〉 = 75 is a transition case,
i.e. slopes are nearly similar. It is also visible from the
corresponding Gubser solution, Fig. 3, where this case is
almost similar to a complete absence of the radial flow.

Results of our calculations are shown in Fig. 2, together
with the experimental data. We use the CMS data [12]
for charge particles distributions in

√
s = 7 TeV pp colli-

sions. The transverse momentum (or mass) distributions
for
√
s = 0.9 and 2.76 TeV in the chosen multiplicity

classes, if present, are practically the same and we do
not consider them separately. Typical parameters and
output are listed in Table I. It is important to note that
for lower multiplicities, i.e. 〈Ntracks〉 < 75, we could not
perform any fit, which would describe the data. We treat
this fact as a breakdown of hydrodynamic approach for
low multiplicities. It is amusing to note that collective
effects start appearing at a similar multiplicity in pPb
collisions [6, 13].

For the nonrelativistic region, mT ∼ mi, the inverse
slope parameter T ′ characterizes a blueshifted freezeout
temperature [17], i.e. T ′ = Tf + mi〈v⊥〉2/2. As one
can see from Table I, the inverse slope for protons and

〈Ntracks〉 ε0 1/q [fm] dS/dη vmax
⊥ T ′(p) T ′(K)

131 12.7 1.05±0.05 204.7 0.71 574 MeV 397 MeV
98 8.6 1.00±0.05 153.1 0.68 458 MeV 338 MeV
75 6.0 1.00±0.05 117.2 0.63 394 MeV 301 MeV

TABLE I: Parameters used in the calculation and the output.
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FIG. 3: (Color online) Profiles of the freezeout surfaces (up-
per plot) and velocities (lower plot) for the Gubser solutions
at various values of the parameters (1/q [fm], ε0) used in our
calculations. Upper red - (1.05, 12.7), middle blue - (1.0, 8.6),
lower orange - (1.0, 6.0).

kaons extracted from experimental data is, indeed, larger
than the freezeout temperature. The fact that the pion
spectra are steeper (especially at the low transverse mo-
menta) can be related to the so-called feed-down pions,
the presence of additional pions from resonance decays.
Such contribution to other species is much smaller and,
therefore, we considered a simultaneous fit to the kaon
and proton slopes to be the priority. As seen from the
plot, this goal is reached.

In Fig. 3 we show the freezeout surface profile and the
corresponding transverse velocity distribution, producing
the aforementioned spectra. Note that the value of the
scale parameter happen to be very close to q = 1 fm in
all cases. Looking at the upper plot Fig. 3 one finds that
both the proper time and radius of the fireball at the
freezeout are close to 1 fm. Looking at the lower plot of
Fig. 3 one finds that the maximal value of the transverse
velocity at its edge reaches vmax⊥ ≈ 0.65 or so.

CONCLUSIONS AND DISCUSSION

We demonstrated that the high multiplicity pp colli-
sions, like those in pA, possess strong indications for a

collective radial flow. The magnitude of the flow, needed
to explain the spectra of identified secondaries, mostly
kaons and protons, is quantified. We further observe that
the freezeout time and radius of the system are both close
to 1 fm. As we already mentioned in the introduction,
independent analysis of the femtoscopy data [8] provides
similar velocity estimates, and even a bit smaller size
1/q ≈ 2/3 fm. To use a hydrodynamic description one
should make sure the mean free path in QGP is much
smaller than that size. This conclusion, following from
the data, is of course highly nontrivial. One may also
wonder how for such a small system it was possible to
acquire the transverse velocity as large as vmax⊥ ≈ 0.65
(at its edge). Hydrodynamics, in the particular form of
Gubser flow solution, provides a picture of that as a space
and time dependence of the energy density. As time τ
goes to zero, one sees that the corresponding energy den-
sity (2) becomes very large, and it is physically obvious
that at some “initial time” τi the hydrodynamical de-
scription should break down. From our analysis we, of
course, do not know what this value can be, since the
final observable does not depend on it.

We also do not know, and do not even speculate, what
physical process is responsible for the system formation.
Let us only comment on the string model interpretation
put forward for the pA data in our paper [6]. In our
analysis, we considered the initial system as a collec-
tion of strings, stretched between the colliding proton
and a nucleus, and then undergoing a collective collapse.
We also introduced there the so-called diluteness of the
“spaghetti” of the QCD strings (i.e. fraction of the trans-
verse area occupied by strings), which was about 0.3 or
so, i.e. small enough to treat the system as sparse.

However, in the pp case we considered in this paper,
there is no large number ∼ 20 of participant nucleons
and Pomerons, and we have no clue whether a muti-string
description can or cannot be used at all. All we can say is
that both systems, high multiplicity pp and pA collisions,
have very similar femtoscopy sizes and flow magnitudes.
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