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We extend the picture of B-meson decay constants obtained in lattice QCD beyond those of the
B, Bs and Bc to give the first full lattice QCD results for the B∗, B∗s and B∗c . We use improved
NonRelativistic QCD for the valence b quark and the Highly Improved Staggered Quark (HISQ)
action for the lighter quarks on gluon field configurations that include the effect of u/d, s and c
quarks in the sea with u/d quark masses going down to physical values. For the ratio of vector to
pseudoscalar decay constants, we find fB∗/fB = 0.941(26), fB∗s /fBs = 0.953(23) (both 2σ less than
1.0) and fB∗c /fBc = 0.988(27). Taking correlated uncertainties into account we see clear indications
that the ratio increases as the mass of the lighter quark increases. We compare our results to those
using the HISQ formalism for all quarks and find good agreement both on decay constant values
when the heaviest quark is a b and on the dependence on the mass of the heaviest quark in the
region of the b. Finally, we give an overview plot of decay constants for gold-plated mesons, the
most complete picture of these hadronic parameters to date.

I. INTRODUCTION

Lattice QCD calculations are now an essential part of
B physics phenomenology (see for example [1]), providing
increasingly precise determinations of decay constants,
form factors and mixing parameters needed, along with
experiment, in the determination of Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements. As the constraints
being provided by lattice QCD become more stringent it
is increasingly important to expand the range of hadronic
matrix elements being calculated to allow tests both
against experiment where possible and/or against expec-
tations from other approaches. Decay constants are par-
ticularly useful in this respect because they are single
numbers expressing the amplitude for a meson to anni-
hilate to a single particle (for example a W boson or
a photon), encapsulating information about its internal
structure. They are straightforwardly calculated in lat-
tice QCD from the same hadron correlation functions
being used to determine the hadron masses. The only
additional complication is that normalisation of the ap-
propriate operator for the meson creation/annihilation
is required. In this way we can build up a tested and
consistent ‘big picture’ of meson decay constants within
which sit the results being used for CKM element deter-
mination.

To this end we determine here the decay constants that
parameterise the amplitude to annihilate for the vector
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mesons B∗ and B∗s . These mesons are the partners of
the B and Bs whose weak decay matrix elements are
critical to understanding heavy flavour physics. Decay
modes of the B∗ and B∗s are dominated by electromag-
netic radiative decays [2] to B and Bs, however, and so it
is unlikely that processes in which the decay constant is
the key hadronic parameter will be measured experimen-
tally. The determination of the vector decay constants
is nevertheless useful because the relationship with that
of the pseudoscalar decay constant can be understood
within the framework of Heavy Quark Effective Theory
(HQET) and the decay constants appear in phenomeno-
logical analyses of the vector form factor for semileptonic
decay processes for the pseudoscalar mesons (see [3] for
a recent discussion of this).

Since vector and pseudoscalar heavy-light mesons dif-
fer only in their internal spin configuration, their decay
constants might be expected to have rather similar val-
ues. The key question is then: by how much do they
differ and which is larger? A recent review [4] showed
tension between the results for the ratio of the B∗ to B
decay constants from QCD sum rules and from lattice
QCD. The lattice QCD results used u/d quarks (only)
in the sea and obtained results for mesons containing b
quarks from an interpolation between results for quarks
close to the c mass and the static (infinite mass) limit [3].
This gave a result for the ratio greater than 1 whereas
the QCD sum rules approach quoted preferred a value
less than 1.

The results we give here build on our state-of-the-art
calculation of the B and Bs decay constants [5] using
an improved NonRelativistic QCD (NRQCD) formula-
tion [6] that allows us to work to high accuracy directly
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at the b quark mass. We also use lattice QCD gluon field
configurations that have the most realistic QCD vacuum
to date, include u/d, s and c quarks in the sea (using the
Highly Improved Staggered Quark formalism [7]) with
the u/d quark mass taking values down to the physical
value. We therefore avoid significant systematic errors
from extrapolations in the u/d quark mass. We are able
to give results for the ratio of vector to pseudoscalar de-
cay constants for both the Bs and the B and the SU(3)-
breaking ratio of these ratios. We find clearly that the
vector decay constant is smaller than the pseudoscalar
decay constant in both cases.

We also give results for the decay constant of the Bc
meson and its vector partner the B∗c . The Bc has been
seen experimentally only relatively recently [2] and is in-
teresting because it can be viewed both as a heavy-heavy
meson and as a heavy-light meson. Here we compare its
ratio of vector to pseudoscalar decay constants to that of
the B and Bs, and find the ratio is significantly larger,
now being very close to 1.

The decay constant of the Bc is quite different from
that of the B and Bs, being nearly double their size.
The Bc decay constant can be used to predict its par-
tial width for leptonic decay that may be observed in
the future. We determine this decay constant here us-
ing NRQCD b quarks and HISQ c quarks and compare
to our previous result [8] that used the HISQ action for
both quarks and mapped out the behaviour of a range
of decay constants for valence heavy quarks in the region
between the c quark mass and the b quark mass. Since
the HISQ action is fully relativistic this is a good test of
our understanding of systematic errors in lattice QCD,
and confirmation of how well improved actions work.

In a further study of this point we go on to look at
the dependence of decay constants on the valence heavy
quark mass using quark masses lighter than that of the
b in the NRQCD action. This enables us to compare
both the value of specific decay constants and the depen-
dence on the heavy quark mass with that from using the
relativistic HISQ action. We also demonstrate the consis-
tency of our results for the ratio of vector to pseudoscalar
decay constants for the Bs meson here to our earlier re-
sult for the same ratio for the Ds meson [9] using HISQ
quarks.

A very consistent picture thus emerges from both
a nonrelativistic and a relativistic approach to heavy
quarks within lattice QCD. Both approaches are the re-
sult of several stages of improvement to reduce discreti-
sation errors and other systematic uncertainties to a low
level, important for making a detailed comparison.

We begin by outlining the methods used in our lat-
tice calculation, which follow [5, 10]. Section III A gives
results for the decay constants of the B∗s and B∗ and
their comparison, and then section III D gives results for
the decay constants of the Bc and the B∗c . Section III E
works with quarks lighter than b to demonstrate the
heavy quark mass dependence of the decay constants and
compare to our earlier results using the HISQ formalism

for b quarks. Section IV compares our results for vector
meson decay constants to those of earlier determinations
using other methods, including HQET arguments, and
shows how the Bc fits in between results for heavyonium
and heavy-light mesons. Section V gives our conclusions,
including the promised ‘big picture’ for the decay con-
stants of gold-plated mesons from lattice QCD, the most
complete picture of these hadronic parameters to date.

II. LATTICE CALCULATION

Since the first lattice NRQCD calculations were done
for heavy-light mesons [11], huge improvements have
been made. The current state-of-the-art [5, 10] uses an
improved NRQCD action for the heavy quark coupled to
a HISQ light quark on gluon configurations that include
an improved gluon action and HISQ sea quarks. Here we
extend these calculations to include the decay constants
of vector heavy-light mesons.

The gluon field configurations that we use were gen-
erated by the MILC collaboration [12, 13]. These are
nf = 2+1+1 configurations that include the effect of light
(up/down), strange and charm quarks in the sea with
the HISQ action [7, 14] and a Symanzik improved gluon
action with coefficients correct through O(αsa

2, nfαsa
2)

[15]. The lattice spacing values that we use range from
a = 0.15 fm to a = 0.09 fm. The configurations have
well-tuned sea strange quark masses and sea light quark
masses (mu = md = ml) with ratios to the strange mass
from ml/ms = 0.2 down to the value that corresponds to
the experimental π meson mass of ml/ms = 1/27.4 [16].

In [6] we accurately determined the lattice spacings us-
ing the mass difference of the Υ′ and Υ mesons using the
same NRQCD action for the b quark as we use here. The
details of each ensemble, including the lattice spacing,
sea quark masses and spatial volumes, are given in table
I. All ensembles were fixed to Coulomb gauge.

A. NRQCD valence quarks

We use improved NRQCD for the b quark, which takes
advantage of the nonrelativistic nature of the b quark
within its bound states for very good control of discreti-
sation uncertainties. This allows us to work with rela-
tively low numerical cost on the lattices with the lattice
spacing values given above. NRQCD has the advantage
that the same action can be used for both bottomonium
and B-meson calculations so that tuning of the b-quark
mass and determination of the lattice spacing can be done
using bottomonium and there are no new parameters to
be tuned at all for B-mesons. b-quark propagators are
calculated in NRQCD by evolving forward in time (using
eq. (2)) from a starting condition. This is numerically
very fast and high statistics can then readily be accu-
mulated for precise results. The action used here builds
on the standard NRQCD action [19] accurate through
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TABLE I. Details of the ensembles (sets) of gauge field configurations used in this calculation [12, 13]. β is the bare gauge
coupling, aΥ is the lattice spacing as determined by the Υ(2S−1S) splitting in [6], where the three errors are statistics, NRQCD
systematics and experiment. Column 4 gives the corresponding values of αs used in renormalisation factors. This is taken as
αV (nf = 4, q = 2/a) and determined from [17, 18]. aml, ams and amc are the sea quark masses in lattice units. We also give,
in column 8, values for δxsea, the fractional difference in the sum of the light quark masses from their physical values. δxsea

is defined as (2ml + ms)/(2ml,phys + ms,phys) − 1, using values of ms,phys from [6] and ms/ml = 27.4 [16]. L/a × T/a gives
the spatial and temporal extent of the lattices and ncfg is the number of configurations in each ensemble. 16 time sources were
used for the valence quark propagators on each configuration for increased statistics. Sets 1, 2 and 3 will be referred to in the
text as “very coarse”, 4, 5 and 6 as “coarse” and 7 as “fine”. Sets 3 and 6 include light sea quarks with their physical masses.

Set β aΥ (fm) αV (2/a) aml ams amc δxsea L/a× T/a ncfg

1 5.80 0.1474(5)(14)(2) 0.346 0.013 0.065 0.838 0.323 16×48 1020
2 5.80 0.1463(3)(14)(2) 0.344 0.0064 0.064 0.828 0.126 24×48 1000
3 5.80 0.1450(3)(14)(2) 0.343 0.00235 0.0647 0.831 0.027 32×48 1000
4 6.00 0.1219(2)(9)(2) 0.311 0.0102 0.0509 0.635 0.259 24×64 1052
5 6.00 0.1195(3)(9)(2) 0.308 0.00507 0.0507 0.628 0.108 32×64 1000
6 6.00 0.1189(2)(9)(2) 0.307 0.00184 0.0507 0.628 -0.004 48×64 1000
7 6.30 0.0884(3)(5)(1) 0.267 0.0074 0.0370 0.440 0.327 32×96 1008

v4 in the heavy quark velocity v (using power-counting
terminology for bottomonium) by including one loop ra-
diative corrections to many of the v4 coefficients [6, 20].
We studied the effect of these improvements on the bot-
tomonium spectrum in [6, 21, 22] and in B, Bs and Bc
meson masses in [10].

The NRQCD Hamiltonian we use is given by [19]:

e−aH =

(
1− aδH

2

)(
1− aH0

2n

)n
U†t

×
(

1− aH0

2n

)n(
1− aδH

2

)
(1)

with

aH0 = − ∆(2)

2amb
,

aδH = −c1
(∆(2))2

8(amb)3
+ c2

i

8(amb)2

(
∇ · Ẽ − Ẽ · ∇

)

−c3
1

8(amb)2
σ ·
(
∇̃ × Ẽ − Ẽ× ∇̃

)

−c4
1

2amb
σ · B̃ + c5

∆(4)

24amb

−c6
(∆(2))2

16n(amb)2
. (2)

Here ∇ is the symmetric lattice derivative and ∆(2) and
∆(4) the lattice discretization of the continuum

∑
iD

2
i

and
∑
iD

4
i respectively. amb is the bare b quark mass.

The parameter n has no physical significance, but is in-
cluded for numerical stability of high momentum modes.
We take the value n = 4 here in all cases. Ẽ and B̃
are the chromoelectric and chromomagnetic fields calcu-
lated from an improved clover term [23]. The B̃ and Ẽ
are made anti-hermitian but not explicitly traceless, to
match the perturbative calculations done using this ac-
tion.

The coefficients ci in the action are unity at tree level
but radiative corrections cause them to depend on amb

TABLE II. The coefficients c1, c5, c4 and c6 used in the
NRQCD action (eq. (2)) for the values of the b quark mass
corresponding to those in III. c2 and c3 are set to 1.0.

Set c1 c5 c4 c6
very coarse 1.36 1.21 1.22 1.36
coarse 1.31 1.16 1.20 1.31
fine 1.21 1.12 1.16 1.21

at higher orders in αs. These were calculated for the
relevant b quark masses using lattice perturbation theory
in [6, 20] and the values used in this paper are given in
Table II. Including the one-loop radiative corrections to
c4 is particularly important here, since this coefficient
controls the hyperfine splitting between the vector and
pseudoscalar states. We showed in [10] that improving
c4 leads to accurate results for b-light hyperfine splittings
in keeping with the results of [6] for bottomonium. Most
of the correlators we use here for determining the vector
heavy-light meson decay constants come from the same
calculation as that of [10].

The tuning of the b quark mass on these ensembles was
discussed in [6]. We use the spin-averaged kinetic mass
of the Υ and ηb and tune this to an experimental value
of 9.445(2) GeV. This allows for electromagnetism and
ηb annihilation effects missing from our calculation [24].
Note that we no longer have to apply a shift for missing
charm quarks in the sea [24]. The values used in this
calculation are the same as those in [5, 10] and given in
table III along with other parameters.

We end this section with a brief discussion of the as-
sessment and removal of discretisation errors in a calcula-
tion that uses NRQCD [6]. A typical procedure to remove
finite-a errors in a lattice QCD calculation consists of :

• assume that the error is given by a function with
leading term ca2 (for suitably accurate actions)

• perform calculations at multiple values of a
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TABLE III. Parameters used in the NRQCD action. amb

is the bare b quark mass and u0L the Landau link tadpole-
improvement factor used in the NRQCD action [25]. δxb
gives the fractional mistuning in the b quark mass ((amb −
amb,phys)/amb,phys) obtained from the determination of the
spin-averaged kinetic mass of the Υ and ηb [6], when this has
a magnitude larger than 0.5%. The column asm gives the size
parameters of the quark smearing functions (see section II C
and [10]), which take the form exp(−r/asm). asm is kept ap-
proximately constant in physical units a.

Set amb δxb u0L asm/a
1 3.297 0 0.81950 2.0,4.0
2 3.263 0 0.82015 2.0,4.0
3 3.25 0.005 0.81947 2.0,4.0
4 2.66 -0.013 0.8340 2.5,5.0
5 2.62 0 0.8349 2.0,4.0
6 2.62 0 0.8341 2.0,4.0
7 1.91 0.009 0.8525 3.425,6.85

a Note that there was a typographical error in [10] in the table
giving asm values for sets 5 and 6 - the correct values are the
ones given here.

• determine the unknown parameter c above by fit-
ting the results as a function of a

• subtract the fitted error function to obtain a phys-
ical result.

The first step of the procedure changes for NRQCD,
because the error function must be more complicated.
The coefficient of a2 errors will be in general a function
c(amb). This function is not known but varies slowly
with amb for amb > 1. It can therefore be approximated
by a simple polynomial in amb for the range of values of
amb used here, which are all larger than 1. Note that this
polynomial approximation is not valid as amb → 0, but
the procedure only requires that it be valid over the range
used for our results. Our fit to the a-dependence of our
results, to be discussed further in Section III, then has ad-
ditional parameters to allow for the a-dependence coming
from NRQCD (we also have simpler a-dependence com-
ing from the gluon and light quark actions). The final
physical result then has larger uncertainties because of
this but it does allow us to account for NRQCD effects.

B. HISQ valence quarks

For the u/d, s and c valence quarks in our calculation
we use the same HISQ action as for the sea quarks. The
advantage of using HISQ is that amq discretisation er-
rors are under sufficient control that it can be used both
for light and for c quarks [7, 14, 26]. The HISQ action
is also numerically inexpensive which means we are able
to perform a very high statistics calculation to combat
the signal to noise ratio problems that arise in simulat-
ing B-mesons. For example, we use 16 time sources for

TABLE IV. The parameters used in the generation of the
HISQ propagators. amval

l and amval
s are the valence light and

strange quark masses respectively, in lattice units. amval
c is

the charm quark mass in lattice units (only a subset of the
ensembles was used in this case) and εNaik is the corresponding
coefficient of the Naik term in the HISQ action for charm. On
set 5 εNaik is very slightly wrong - it should be -0.224. The
impact of this is negligible.

Set amval
l amval

s amval
c εNaik

1 0.013 0.0641 0.826 -0.345
2 0.0064 0.0636 0.818 -0.340
3 0.00235 0.0628 - -
4 0.01044 0.0522 0.645 -0.235
5 0.00507 0.0505 0.627 -0.222
6 0.00184 0.0507 - -
7 0.0074 0.0364 0.434 -0.117

both NRQCD and HISQ propagators on each configura-
tion, so we are typically generating 16,000 correlators per
ensemble.

The masses used on each ensemble are given in ta-
ble IV. Again these are the same as in [5, 10]. In [6]
accurate strange quark masses were determined for each
ensemble, tuned from the mass of the ηs meson, a pseu-
doscalar ss which can be prevented from mixing with
other states on the lattice so that its mass can be deter-
mined very accurately [27]. Using experimental K and
π meson masses we found Mηs = 0.6893(12) GeV (see
also [28]). The values of amval

s in table IV correspond to
these tuned values. The light valence quarks are taken
to have the same masses as in the sea.

Charm quark masses are tuned by matching the mass
of the ηc to experiment. The experimental value is shifted
by 2.6 MeV for missing electromagnetic effects and 2.4
MeV for not allowing it to annihilate to gluons, giving
2.985(3) GeV [27]. The εNaik term in the action is not
negligible for charm quarks and we use the tree level for-
mula given in [26]; the values appropriate to our masses
are given in table IV.

C. NRQCD-HISQ correlators

The NRQCD b and HISQ u/d, s or c light quark prop-
agators are combined into a meson correlation function
in a straightforward way. Since staggered quarks have
no spin index, staggered quark propagators must first
be converted to 4-component ‘naive’ propagators so that
they can be combined with quark propagators from other
formalism such as NRQCD. To do this, the 4x4 ‘stagger-
ing matrix’ Ω(x) =

∏4
µ=0(γµ)xµ that was used to convert

the naive quark action into the staggered quark action
has to be applied to the staggered quark propagator at
each end to ‘undo’ the transformation [29]. The spin
and colour components of the naive propagator and the
NRQCD propagator can then be tied up at source and
sink with appropriate γ matrices (taking appropriate 2×2
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blocks since the NRQCD propagator is 2-component) to
form a pseudoscalar or vector meson correlator. We sum
over the spatial sites on the sink time-slice to project onto
zero spatial momentum in all cases.

One complication is that ‘random-wall’ sources (i.e. a
set of U(1) random numbers over a timeslice) are used
for the light quark propagators to improve statistical ac-
curacy in our light meson calculations (see, for exam-
ple, [28]). When these propagators are tied together
the result is equivalent to having a delta function source
at each point on the time-slice. As well as the conve-
nience, statistical accuracy is also improved by re-using
these propagators in our heavy-light meson calculations.
The source for the NRQCD propagators must then use
the same random numbers on the same source time-slice
and in addition must also include a spin trace over the
staggering matrix and appropriate gamma matrix for a
pseudoscalar or vector meson [24], i.e. there is a sep-
arate NRQCD propagator for each meson that will be
made. Combining these NRQCD propagators with the
light quark propagators is then equivalent to having a
delta function source at each point on the timeslice, as
for the light meson case.

A further numerical improvement is to make smeared
sources for the NRQCD propagators by convoluting a
smearing function with the random-wall source as above.
Suitably chosen smearing functions can improve the over-
lap of the correlator with different states in the spectrum,
and this is particularly important for fits to extract ra-
dially excited energies [6]. Here we use it to improve
the determination of ground-state properties by improv-
ing the overlap with the ground-state at early times be-
fore the signal/noise ratio has degraded significantly. For
each ensemble we then use a local source and 2 smeared
sources. The smearing functions were optimised in our
heavy-light meson spectrum calculation [10] and take the
form exp(−r/asm) as a function of radial distance, with
two different radial sizes, asm, on each ensemble as given
in Table III.

Propagators were calculated, and meson correlators
obtained, using 16 time sources on each configuration.
The calculation was also repeated with the heavy quark
propagating in the opposite time direction. All correla-
tors from the same configuration were binned together
to avoid underestimating the statistical errors. When
each smearing is used at source and sink this gives a
3 × 3 matrix of correlation functions on each ensemble.
In addition we have a 3-vector of correlation functions
from using each smearing at the source and a relativistic
current correction operator at the sink, to be discussed
below.

Meson energies and amplitudes are extracted from the
meson correlation functions using a simultaneous multi-
exponential Bayesian fit [30] as a function of time sepa-

ration between source and sink to the form

Cmeson(i, j, t0; t) =

Nexp∑

k=0

bi,kb
∗
j,ke
−Ek(t−t0) (3)

−
Nexp−1∑

k′=0

di,k′d
∗
j,k′(−1)(t−t0)e−E

′
k′ (t−t0).

Here i, j label the smearing (or current correction oper-
ator) included in the correlator and k labels the set of
energy levels for states appearing in the correlator. Here
we are concentrating on the properties of the ground-
state, k = 0. k′ labels a set of opposite-parity states
that appear with an oscillating behaviour in time as a
result of using staggered quarks. Energies for ground-
states, radially excited states and oscillating states were
extracted from these correlation functions in [10]. Here
we use similar fits to determine ground-state amplitudes
and thereby decay constants.

The fits are straightforward and follow the same pat-
tern in all cases. We fit the pseudoscalar and vector cor-
relators simultaneously for each pair i.e. B and B∗, Bs
and B∗s and Bc and B∗c . That enables us to extract a cor-
related ratio of amplitudes that we need for the ratio of
decay constants. We take a prior on the ground-state en-
ergy determined from effective mass plots, with a width
of 300 MeV. The prior on the lowest oscillating state
is taken to be 400 MeV higher than the ground-state
with a width of 300 MeV. The prior on the energy split-
tings in both the oscillating and non-oscillating sectors,
En+1 − En, is taken as 600(300) MeV and the priors on
the amplitudes as 0.1(2.0). The fits include points from
tmin to tmax, close to half the temporal extent of the lat-
tice. tmin is taken from 6− 8 for B and Bs fits and tmax

is taken as 18 on the very coarse lattices, 28 on coarse
and 40 on fine. For Bc we use time ranges 12 − 24 on
very coarse, 8 − 21 on coarse and 10 − 30 on fine. In
all cases we have good fits that reach stable ground-state
parameters quickly. We take results from fits that use
Nexp = 4.

D. Determining decay constants

Meson decay constants, f , are hadronic parameters de-
fined from the matrix element of the local current that
annihilates the meson (coupling for example to a W bo-
son). For mesons at rest:

〈0|JA0
|H〉 = fHMH

〈0|JVi |H∗j 〉 = fH∗MH∗δij . (4)

Here H is one of the pseudoscalar mesons, Bq for q =
l, s, c. These matrix elements depend on the QCD inter-
actions that keep the quark and antiquark bound inside
the meson. They can be calculated directly from the
amplitudes obtained from fits to the meson correlators,
provided that we can accurately represent the continuum
QCD currents, JA0

and JVi on the lattice.
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The representation of these currents when combining
a lattice NRQCD b-quark with a light quark is discussed
most recently in [5, 31]. The procedure is similar for the
temporal axial and spatial vector currents and so we just
give the temporal axial case in detail.

For the temporal axial current whose matrix element
gives the pseudoscalar decay constant, we determine ma-
trix elements on the lattice made from light quark fields
Ψq and NRQCD field ΨQ of:

J
(0)
A0

= Ψqγ5γ0ΨQ (5)

J
(1)
A0

= − 1

2mb
Ψqγ5γ0~γ · ~∇ΨQ.

J
(0)
A0

is the leading term in a nonrelativistic expansion

of the current operator, and J
(1)
A0

is the first relativistic
correction, appearing with one inverse power of the b
quark mass.

J
(0)
A0

is simply the operator that corresponds to our lo-
cal sources for the b quark described in Section II C. Thus

the matrix element of J
(0)
A0

between the vacuum and the
ground-state meson is obtained directly from the ampli-
tude of this operator from our fit function, i.e. bloc,0
from eq. (3). By inserting a complete set of states with
standard normalisation into the pseudoscalar meson cor-
relation function we have

bloc,0 =
〈0|J (0)

A0
|H〉√

2MH

. (6)

Similarly, by inserting the operator J
(1)
A0

at the sink for
meson correlators made from the three different sources
that we use we can determine an amplitude for this op-
erator in the ground-state

bJ1,0 =
〈0|J (1)

A0
|H〉√

2MH

. (7)

The way in which J
(0)
A0

and J
(1)
A0

can be combined into
an accurate representation of JA0 from full QCD is de-
scribed in [5]. Here, for most of our results, we will use an
expression that is slightly less accurate than that in [5].
We take:

JA0 = (1 + zA0αs)(J
(0)
A0

+ J
(1)
A0

). (8)

Thus, we can combine matrix elements above to obtain:

Φ
(0)
A0

=
√

2bloc,0 (9)

Φ
(1)
A0

=
√

2bJ1,0

fH
√
MH = (1 + zA0

αs)(Φ
(0)
A0

+ Φ
(1)
A0

)

up to sources of uncertainty that will be discussed in the
appropriate subsections of Section III. Note that the de-
cay constant appears naturally multiplied by the square
root of the meson mass in these expressions.

TABLE V. Amplitudes for J(0) and J(1) for temporal axial
and vector currents between the vacuum and the Bs and B∗s
mesons respectively, extracted from correlator fits and multi-
plied by

√
2 in accordance with eq. (9). Results are in lattice

units and the errors given are statistical/fit errors only. Re-
sults for theBs were previously given in [5]. Results here differ
slightly because the fits included both vector and pseudoscalar
correlators in a simultaneous fit and also incorporated more
correlators that included J(1) amplitudes.

Set a3/2Φ
(0)
Bs

a3/2Φ
(1)
Bs

a3/2Φ
(0)
B∗s

a3/2Φ
(1)
B∗s

1 0.3714(8) -0.02939(10) 0.3403(12) 0.00909(4)
2 0.3628(13) -0.02874(13) 0.3321(10) 0.00889(3)
3 0.3606(9) -0.02870(9) 0.3295(4) 0.00887(1)
4 0.2728(5) -0.02343(6) 0.2425(7) 0.00706(3)
5 0.2680(3) -0.02323(4) 0.2369(5) 0.00697(2)
6 0.2657(2) -0.02298(2) 0.2351(2) 0.00689(1)
7 0.1747(2) -0.01713(3) 0.1491(3) 0.00497(1)

Analogous expressions are used for the vector current
case, using amplitudes from the vector meson correlator
fits.

Systematic errors are reduced by working with the ra-
tio of vector to pseudoscalar meson decay constants (mul-
tiplied by the ratio of the square root of the masses).
Hence we define the quantity Rq for meson Bq, deter-
mined from:

Rq ≡
f∗H
√
M∗H

fH
√
MH

= (1 + δz · αs)
(Φ

(0)
Vi

+ Φ
(1)
Vi

)

(Φ
(0)
A0

+ Φ
(1)
A0

)
. (10)

For convenience we expand the ratio of renormalisation
constants to O(αs) so that δz is zVi − zA0

. δz will be
tabulated, along with the results, in Section III. This ex-
pression is accurate up to missing α2

s pieces of the overall
renormalisation factor (i.e. in the term (1 + δz ·αs)) and
missing additional αs renormalisation factors for the sub-
leading current contributions (that would appear multi-

plying Φ
(1)
A0

for example). These sources of systematic
uncertainty will be estimated in Section III and included
in our final error budgets.

We will first calculate Rs as the ‘calibration’ ratio of
vector to pseudoscalar decay constants. It is convenient
subsequently to calculate ratios of Rl and Rc to Rs. Some
systematic errors cancel in these ratios of ratios, allowing
us to obtain a more accurate picture of how much the
ratio of vector to pseudoscalar heavy-light meson decay
constants depends on the light quark mass.

III. RESULTS

A. b-light correlators

Correlators for Bs, B
∗
s , Bl and B∗l are fitted as de-

scribed in Section II and results for the ground-state am-
plitudes of leading, J (0), and sub-leading, J (1), currents
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TABLE VI. Amplitudes for J(0) and J(1) for temporal axial
and vector currents between the vacuum and the Bl and B∗l
mesons respectively, extracted from correlator fits and mul-
tiplied by

√
2 in accordance with eq. (9). l denotes a u or d

quark, taken here to have the same mass. Results are in lat-
tice units and the errors given are statistical/fit errors only.
Results for the Bl were previously given in [5]. Results here
differ slightly for reasons given in the caption to Table V.

Set a3/2Φ
(0)
Bl

a3/2Φ
(1)
Bl

a3/2Φ
(0)
B∗
l

a3/2Φ
(1)
B∗
l

1 0.3245(20) -0.02612(21) 0.2964(24) 0.00812(9)
2 0.3062(21) -0.02456(25) 0.2752(29) 0.00748(9)
3 0.2962(37) -0.02381(30) 0.2681(31) 0.00719(13)
4 0.2352(21) -0.02033(21) 0.2086(25) 0.00623(12)
5 0.2276(13) -0.01989(15) 0.1997(16) 0.00596(6)
6 0.2190(14) -0.01904(16) 0.1915(20) 0.00558(9)
7 0.1521(4) -0.01500(5) 0.1292(4) 0.00432(2)

TABLE VII. Coefficients zA0 and zVi needed for the one-loop
renormalisation factor for the pseudoscalar and vector decay
constants respectively for the values of mba used on the dif-
ferent ensembles. z is constructed from results given for the
appropriate NRQCD bare masses and massless HISQ quarks
in [31] as z = ρ0−ζ10. The uncertainties come from statistical
errors in the numerical integration, taken to be uncorrelated.
In [5] zA0 is called z0. Column 4 gives δz which is the differ-
ence between zVi and zA0 . Column 5 gives the corresponding
values of δz for the case where only the leading-order NRQCD

currents (J
(0)
A0

and J
(0)
Vi

) are used in the calculation.

mba zVi zA0 δz δzLO

3.297 -0.078(2) 0.024(2) -0.102(3) 0.026(3)
3.263 -0.077(2) 0.022(2) -0.099(3) 0.030(3)
3.25 -0.077(2) 0.022(1) -0.099(3) 0.030(3)
2.66 -0.073(2) 0.006(2) -0.079(3) 0.076(3)
2.62 -0.072(2) 0.001(2) -0.073(3) 0.083(3)
1.91 -0.044(2) -0.007(2) -0.037(3) 0.168(3)

are tabulated in Tables V and VI respectively. In Ta-
ble VIII we also tabulate for both Bs and Bl the ratio
of the sum of the amplitudes that make up the NRQCD
vector and temporal axial currents (without any renor-
malisation factors) defined as:

Runren.
q ≡

(Φ
(0)
Vi

+ Φ
(1)
Vi

)

(Φ
(0)
A0

+ Φ
(1)
A0

)
. (11)

These ratios are determined directly from the fits, in-
cluding the correlations between the fitted amplitudes
for vector and pseudoscalar mesons, and therefore have
smaller statistical errors than determining them naively
from the results in Tables V and VI.

The z factors needed to multiply αs in the one-loop
renormalisation for the temporal axial and spatial vector
currents are given in Table VII. These are calculated for
massless HISQ light quarks and the values of amb in the
NRQCD action used on each of the ensembles. The fact
that these z coefficients are very small was already noted

TABLE VIII. Results for ratios of amplitudes for vector
and pseudoscalar mesons on each ensemble as defined in
the text. Column 2 gives the unrenormalised ratio of am-
plitudes for the B∗s/Bs including the current corrections,

Runren.
s = (Φ

(0)
B∗s

+ Φ
(1)
B∗s

)/(Φ
(0)
Bs

+ Φ
(1)
Bs

) eq. (11). Column 3

gives the equivalent quantity for the B∗l /Bl mesons. Col-
umn 4, RLO

s , gives renormalised ratio from eq (12) but in-

cluding only the leading-order NRQCD currents, J(0). Fi-
nally column 5 gives the renormalised ratio of amplitudes
including the current corrections. These numbers are deter-
mined from eq. (10) and plotted as the points in Figure 1.

Rs = (fB∗s
√
MB∗s )/(fBs

√
MBs), correct through O(αs) and

O(Λ/mb). Errors on the values are statistical only, but in-
clude correlations between vector and pseudoscalar meson
correlation functions.

Set Runren.
s Runren.

l RLO
s Rs

1 1.0215(25) 1.0205(59) 0.9243(24) 0.9854(26)
2 1.0206(36) 1.0038(73) 0.9247(34) 0.9858(36)
3 1.0196(26) 1.0106(97) 0.9232(25) 0.9850(27)
4 1.0006(19) 1.0001(90) 0.9098(19) 0.9760(21)
5 0.9965(17) 0.9899(71) 0.9067(18) 0.9741(20)
6 0.9967(8) 0.9854(97) 0.9071(11) 0.9744(12)
7 0.9775(14) 0.9734(23) 0.8916(16) 0.9678(17)

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

0 0.005 0.01 0.015 0.02 0.025

Rs

a2 [fm2]

FIG. 1. Results for Rs, the ratio of B∗s to Bs decay con-
stants (multiplied by the square root of the mass ratio), plot-
ted against the square of the lattice spacing in fm2. Note the
magnified y-axis scale. The errors on the data points include
statistical/fitting errors. Blue filled squares are results on sets
with ml/ms = 0.2, red filled circles sets with ml/ms = 0.1
and green filled triangles sets with physical ml. The grey
shaded band gives our physical result including all systematic
errors discussed in the text. The black dotted line marks the
value 1.0.

in [5]. This means that renormalisation factors to the
continuum current are close to 1 1.

1 Note that we do not need an initial nonperturbative step to
achieve this, as is used by the Fermilab Lattice/MILC Collab-
oration [32]. That step is largely required to remove large but
generic renormalisation factors associated with the clover action
and has been tested nonperturbatively in [33].
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From Table V and VI it is immediately clear that the
leading order amplitudes, Φ(0), show a difference between
vector and pseudoscalar mesons with the vector result
being smaller than the pseudoscalar. This difference is
largely down to the ‘hyperfine’ interaction in the NRQCD
Hamiltonian (the term with coefficient c4 in eq. (2)). The
Tables make clear that the impact of this interaction is
to lower the ratio of vector to pseudoscalar decay con-
stants. This effect agrees in sign with that seen in an
earlier lattice NRQCD analysis of the impact of different
relativistic corrections on heavy-light meson decay con-
stants [34, 35]. It also agrees with early estimates using
HQET and QCD sum rules [36].

From the tables it is also clear that the relativistic cur-
rent correction matrix element, Φ(1), has opposite sign
for the vector and pseudoscalar cases, being positive for
the vector and negative for the pseudoscalar. The im-
pact of these corrections is then to raise the ratio of vec-
tor to pseudoscalar decay constants. This sign, and the
fact that the pseudoscalar J (1) matrix element is approx-
imately three times that of the vector, agrees with HQET
expectations [36, 37] and earlier lattice NRQCD analy-
ses [34, 35].

Simply dividing the current correction matrix element,
Φ(1), by Φ(0) gives naively a relative contribution to the
amplitude from the relativistic current corrections of size
-(8-10)% for the pseudoscalar and +3% for the vector.
This does not take into account the fact that the addi-
tion of the relativistic current correction J (1) which ap-
pears at tree-level changes the overall renormalisation of
the lattice NRQCD current at O(αs) because radiative
corrections to J (1) can look like J (0) [31]. Therefore to
determine more accurately the effect of the relativistic
current corrections we have to compare the renormalised
result with and without the inclusion of the J (1) current
correction.

This is done in Table VIII in which we compare the two
results for the ratio of f

√
M for B∗s and Bs. The right-

hand column, denoted Rs, is the full result obtained from
eq. (10) using the values of δz from Table VII. The values
for αs used in that expression are taken in V scheme
at the scale 2/a, where a is the lattice spacing on that
ensemble, and are given in Table I. The column denoted
RLO
s gives results using only the leading-order currents

and

RLO
s = (1 + δzLO · αs)

Φ
(0)
B∗s

Φ
(0)
Bs

(12)

with δzLO values given in Table VII and the same values
of αs. Note the difference between δzLO and δz. Both
coefficients are small, but they have opposite sign. This
then compensates to some extent for the effect of the
current corrections and means that, comparing Rs and
RLO
s in Table VIII we see now that the total effect of the

current correction terms in the ratio amounts to 7-8%,
somewhat less than the naive estimate of 12-15%. There
is of course an uncertainty on this estimate coming from

missing α2
s terms in the renormalisation. A similar pro-

cedure would be needed to estimate accurately the effect
of the hyperfine term on the ratio Rq. However, because
the hyperfine interaction is embedded in the NRQCD
Hamiltonian it is automatically included in the pertur-
bative matching calculation for the NRQCD currents and
we do not have the z coefficients without the hyperfine
term included. Note that the size of the hyperfine coeffi-
cient (c4 in eq. (2)) is tested through determination of the
mass splitting between vector and pseudoscalar mesons
in [10].

B. fB∗s

Figure 1 plots the full results for Rs, the ratio of f
√
M

for the B∗s and Bs mesons, obtained from eq. (10) and
given as column 5 of Table VIII. Statistical errors in Rs
are small, less than 0.5%, so we see that the value for
the ratio is clearly less than 1 and the dependence on the
lattice spacing is small, but clear and unambiguous. To
derive a physical result we need to fit this dependence,
as discussed in Section II A, allowing for other systematic
uncertainties from lattice QCD.

The key sources of systematic error that need to be
allowed for, by inclusion in our fit function, are:

• Matching uncertainties - α2
s. The missing α2

s coef-
ficient in the overall renormalisation factor for the
ratio of amplitudes of the NRQCD currents is po-
tentially the largest source of uncertainty here. We
can allow for this by simply taking a fractional er-
ror which is α2

s ≈ 0.1 times a value for this co-
efficient. However, the value of α2

s changes with
the lattice spacing and the coefficient may also de-
pend on amb, as the known one-loop coefficient δz
does, see Table VII. Thus a better estimate is ob-
tained by incorporating a factor to take account
of this missing term into the fit. We write the
factor as (1 + cα2

s) and take c to have the form
c1 × (1 + c2δxm + c3δx

2
m) where c1 sets the overall

allowed size of the coefficient and the δxm terms al-
low for dependence on amb. δxm = (amb−2.7)/1.5
varies from -0.5 to 0.5 over the range of amb values
we use here [6].

• Matching uncertainties - αsΛ/mb. We must also
allow for missing αs terms that alter the normali-
sation of the relativistic current corrections within
the NRQCD current and/or include the matrix el-
ements of additional current corrections that only
appear first at O(αsΛ/mb). Such corrections were
included in our determination of fBs and fB in [5]
since they are known for the temporal axial cur-
rent for massless HISQ quarks [31]. They will be
discussed further in Subsection III E but here we
must include an uncertainty for the fact that they
are missing in our ratio. For this we can include an
additional term in the factor described above of the
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form dαsΛ/mb where d has an expansion in powers
of δxm of the same form as c above. Here we can
take Λ/mb to be 0.08, the size of the relativistic
current corrections as determined above.

• Matching uncertainties - (Λ/mb)
2. Further cur-

rent corrections at the next order in the relativis-
tic expansion would appear at (Λ/mb)

2. Since we
have no information about these we do not include
them in the fit but take an additional uncertainty of
(0.1)2 = 1% (where 0.1 is a suitable power-counting
estimate of Λ/mb) to account for them.

• NRQCD systematics. The improved NRQCD
Hamiltonian that we use (eq. (2)) is accurate
through O(αsΛ/mb) in the context of heavy-light
power-counting. Thus the hyperfine interaction
that contributes to Rs is accurate through this or-
der, which is to a higher order than the match-
ing uncertainties discussed above. Errors from the
NRQCD Hamiltonian are then smaller than, and
are effectively included in, the matching uncertain-
ties already discussed. Likewise missing terms in
the NRQCD Hamiltonian are at even higher order,
O(1/m3

b) [19].

• Discretisation uncertainties. These can come from
the gluon action, the HISQ action and the NRQCD
action. However, most discretisation uncertain-
ties will cancel between vector and pseudoscalar
mesons since the difference between them is a spin-
dependent effect and hence suppressed by Λ/mb.
This is clear from Figure 1 which shows very little
dependence on a. In all three actions discretisation
errors appear as even powers of a. We therefore in-
clude a factor (1+(Λ/mb)

∑
j ej(Λa)2j) to allow for

these uncertainties in the fit. We take a value 0.2
for Λ/mb here to be conservative. For e1 we allow
for dependence on amb coming from the NRQCD
action as discussed in Section II A and above for
the coefficients c and d.

• Tuning uncertainties - valence quark masses. Our
valence masses are tuned very accurately (to an
uncertainty of 1%) but we allow for effects of mis-
tuning. For the s quark mass these will be neg-
ligible since, as we show below, the difference be-
tween Rs and Rl is very small. Mistuning of the
b quark mass will affect Rs through the hyperfine
interaction and the size of the current correction
matrix elements, i.e. through a term of the form
(Λ/mb)δmb/mb. We therefore allow for a term of
this form in the factor that includes discretisation
effects above. We determine δmb from the physical
values for mb given on each ensemble in [6, 10] and
these are tabulated in Table III. The largest value
of δmb/mb is 1.3% on set 4.

• Tuning uncertainties - sea quark masses. Our re-
sults include values on ensembles of gluon field con-

figurations at a variety of values of the u/d quark
mass in the sea, varying from 0.2ms down to the
physical point. The s and c quark masses in the
sea are well-tuned. Dependence on the sea quark
masses is very small, as is clear from Figure 1.
We therefore include a simple linear dependence
on the sea quark masses, as might be expected
from leading-order chiral perturbation theory. This
dependence takes the form gδmsea/(10msea,phys)
where the mass-dependent variable is a physical one
because we take a mass ratio in which Z factos can-
cel. We include u/d and s quarks in msea and the
factor of 10 is a convenient way to introduce the
chiral scale of 1 GeV expected from chiral pertur-
bation theory. δmsea = (2ml + ms) − (2ml,phys +
ms,phys) and is obtained using values for ms,phys

given in [6]. We take ml,phys/ms,phys = 1/27.4 [16].
Values for δxsea ≡ δmsea/msea,phys on each ensem-
ble are given in Table I.

• Uncertainties in the value of the lattice spacing.
Since we are determining a dimensionless ratio of
decay constants, uncertainties in the value of the
lattice spacing only enter indirectly through the
uncertainty in tuning the quark masses. As dis-
cussed above the tuning of mb affects the size of
the relativistic correction terms that affect the vec-
tor/pseudoscalar ratio. We have a 1% uncertainty
in our lattice spacing values, largely correlated be-
tween the ensembles and so we add an additional
overall uncertainty of 0.2×0.01 = 0.2% to allow for
this. The factor of 0.2 is a conservative estimate for
the size of relativistic corrections.

Putting the features above together we arrive at a fit
form for Rs as a function of a and quark masses as:

Rs(a,m) = Rs,phys × F1(a,m)/F2(αs) (13)

F2(αs) = (1 + cα2
s + 0.08dαs)

F1(a,m) = 1 + 0.2

3∑

j=1

ej(Λa)2j

+ 0.2f
δmb

mb,phys
+ g

δmsea

10msea,phys

c = c1 × (1 + c2δxm + c3(δxm)2)

d = d1 × (1 + d2δxm + d3(δxm)2)

e1 = e11 × (1 + e12δxm + e13(δxm)2)

In dividing by F2 we follow the convention that we used
at O(αs) in eq. (10) of writing the renormalisation as
a multiplicative factor. Thus if F2 were instead known,
rather than fitted, the raw results would be multiplied
by this correction factor along with the factor at O(αs).
We use a Bayesian fitting approach [30] to implement the
fit function of eq. (13). Priors on all of the coefficients
are taken as 0.0(1.0) except for c1, which is taken as
0.0(0.2). This allows for an α2

s coefficient in the overall
renormalisation factor that is twice as large as the largest



10

seen at O(αs) (see δz values in Table VII). The prior on
the physical value, Rs,phys, is taken as 1.0(0.2).

Applying this fit function to our results gives a
χ2/dof = 0.13 and a physical result for Rs of 0.957(23),
when we include the uncertainty from missing higher or-
der current corrections and the lattice spacing. The error
budget from the fit is laid out in Table IX. As expected
the uncertainty is dominated by that from current match-
ing, although the fit has constrained this uncertainty to
be a bit smaller than the naive expectation. The physical
value, along with the total error, is plotted as a grey band
on Figure 1. Rs is the ratio of decay constants multiplied
by the square root of the meson masses. Our earlier re-
sults [10] showed that the vector and pseudoscalar meson
masses calculated here agree with experiment. We can
therefore convert our value of Rs to a ratio for the decay
constants using the square root of the experimental ratio
of the meson masses of 1.0045(2) [2]. We obtain:

fB∗s
fBs

= 0.953(23). (14)

This is 2σ below 1.

TABLE IX. Full error budget for the various ratios of vector
to pseudoscalar decay constants that we calculate here, giv-
ing each error as a percentage of the final answer, following
the discussion of uncertainties in the text. The effects of fi-
nite volume and missing electromagnetism are expected to be
negligible.

Rs Rl/Rs Rc/Rs
stats/fitting/scale 0.6 0.8 0.7
current matching 1.9 1.0 0.8
(Λ/mb)

2 currents 1.0 0.2 0.5
a-dependence 0.9 0.1 0.15
msea-dependence 0.05 0.2 0.1
mb tuning 0.4 0.03 0.1
Total 2.4 1.3 1.2

C. fB∗

To analyse the corresponding ratio, Rl, for the B/B∗

it is convenient to take the ratio to Rs. Table VI gives
our results for the B and B∗ amplitudes and Table VIII
gives the ratio of the sum of amplitudes for J (0) and J (1)

for vector and pseudoscalar. These results include the
correlations between the vector and pseudoscalar meson
correlators from the simultaneous fit. The results for
B∗l /Bl are very similar, not surprisingly, to those for Bs
and B∗s . The statistical errors are significantly larger,
however, as is expected when the light quark mass is re-
duced [26]. The renormalisation factor (eq. (10)) for Rl
is the same as that for Rs (since mass effects for light
quarks are negligible in the matching) and so the renor-
malisation cancels in the ratio Rl/Rs. We can therefore

0.94

0.96

0.98

1

1.02

1.04

0 0.05 0.1 0.15 0.2 0.25

R
l/

R
s

ml/ms,phys

FIG. 2. Results for Rl/Rs, the SU(3)-breaking ratio of the
ratio of vector to pseudoscalar decay constants (multiplied by
the square root of the mass) plotted against the light quark
mass (the average of u and d) in units of the physical s quark
mass. The filled blue squares gives results on very coarse lat-
tices, red filled circles, on coarse and filled green triangles, on
fine. The errors on the data points include statistical/fitting
errors. The grey shaded band gives the physical result in-
cluding all systematic errors discussed in the text. The black
dashed line shows the physical value of ml/ms,phys and the
blue dotted line indicates the value 1.0.

simply determine Rl/Rs from the ratio of the first two
columns in Table VIII:

Rl
Rs

=


Φ

(0)
B∗l

+ Φ
(1)
B∗l

Φ
(0)
Bl

+ Φ
(1)
Bl




Φ

(0)
Bs

+ Φ
(1)
Bs

Φ
(0)
B∗s

+ Φ
(1)
B∗s


 . (15)

Figure 2 shows our results for Rl/Rs on each ensem-
ble, plotted against the light quark mass in units of the
physical s quark mass taken from [6]. The results are
very close to the value 1.0, but show a small downward
trend as the light quark mass falls towards its physical
value. There is no significant dependence on the lattice
spacing.

To fit the dependence of Rl/Rs and extract a physical
result, we use much of the same fit function as that given
for Rs in eq. (13). The two key differences are that the
overall renormalisation factor now cancels, so that we can
drop the factor cα2

s from F2, and that we now want to
include a fitted dependence on ml. We can also use the
known similarity of Bl and Bs to constrain the fit further.
For example, we know that decay constants for heavy-
light and heavy-strange mesons differ by about 20% [5,
14]. This is in fact a very strong result, still true even
when the light/strange quark is accompanied by a light
or strange quark (see, for example, [28] for π, K and
ηs results). The dαs term in eq. (13) takes account of
missing radiative corrections to the sub-leading currents,
J (1). We retain that term here but multiply its coefficient
by 0.2 to allow for strange/light differences in the matrix
element for J (1). We reduce the coefficient 0.2 (allowed
for the size of Λ/mb) in front of discretisation errors and
mb tuning terms by a further factor of 0.2 for the same
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TABLE X. Amplitudes for J(0) and J(1) for temporal axial
and vector currents between the vacuum and the Bc and B∗c
mesons respectively, extracted from correlator fits and mul-
tiplied by

√
2 in accordance with eq. (9). Results are in lat-

tice units and the errors given are statistical/fit errors only.
The ground-state energies determined from the fits agree with
those given in [10] and we do not repeat them here.

Set a3/2Φ
(0)
Bc

a3/2Φ
(1)
Bc

a3/2Φ
(0)
B∗c

a3/2Φ
(1)
B∗c

1 0.83048(86) -0.04792(5) 0.8022(11) 0.01541(3)
2 0.82001(45) -0.04779(3) 0.7904(6) 0.01532(2)
4 0.58564(17) -0.04068(2) 0.54496(22) 0.01267(1)
5 0.57350(11) -0.04055(1) 0.53195(14) 0.01260(1)
7 0.36166(9) -0.03158(1) 0.31990(11) 0.00941(1)

reason. Finally, we include an additional term in the fit
to allow for dependence on the light valence mass, since
we have results for a variety of ml values. For this we
include a term in F1 of the form h(ml/(10ms,phys)). The
factor of 10 once again is used to convert ms into the
chiral scale of 1 GeV. The prior on h is taken as 0.0(1.0).
Since this term is already largely covered by including a
term to allow for sea quark mass dependence, it has very
little impact.

The fit has a χ2/dof of 0.23 and gives a physical result:

Rl
Rs

= 0.987(13). (16)

Since Rl/Rs measures both SU(3)-breaking and spin-
breaking effects in heavy-light meson decay constants we
expect a result very close to 1.0. Our value is consistent
with 1, but enables us to constrain any difference from 1.0
to a few percent. We will return to this in section III D
when comparing to results for Bc mesons. A full error
budget for Rl/Rs is given in Table IX.

Combining our result for Rl/Rs with our earlier result
for Rs gives Rl = 0.945(26). Combining with the experi-
mental value for the square root of the ratio of the meson
masses, 1.0043 [2], we obtain

fB∗l
fBl

= 0.941(26) (17)

which is more than 2σ below 1.

D. fBc and fB∗c

Bc and B∗c meson correlation functions are calculated
from NRQCD b and HISQ c propagators in exactly the
same way as those described for NRQCD b and HISQ s
or l propagators in subsection III A. We do not include
the full set of ensembles used for the lighter HISQ quark
mass calculations since experience has shown very little
sea quark mass dependence for heavy meson correlators
that do not include valence light quarks [10, 24]. We thus
include ensembles at two different values of the sea u/d

TABLE XI. Coefficients zA0,c and z1, z2 used in the matching
factors to determine the decay constant for the Bc meson
(eq. (18)). zA0,c is constructed from results given for the
appropriate NRQCD bare masses and massive HISQ quarks
with the appropriate values of mca in [31] as zc = η0 − τ10.
z1 and z2 are results for massless HISQ quarks [5, 31]. The
values of αs used with these z coefficients are given in Table I.

Set zA0,c z1 z2

1 -0.111(5) 0.024(3) -1.108(4)
2 -0.105(5) 0.024(3) -1.083(4)
4 -0.046(5) 0.007(3) -0.698(4)
5 -0.041(5) 0.007(3) -0.690(4)
7 -0.034(5) -0.031(4) -0.325(4)
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FIG. 3. Results for the decay constant of the Bc meson (mul-
tiplied by the square root of its mass) obtained with NRQCD
b quarks and HISQ c quarks for ensembles at different values
of the lattice spacing as described in the text. The errors
on the points include uncertainties in the value of the lattice
spacing and statistical/fitting errors. Blue filled squares give
results at sea light quark mass ml/ms = 0.2 and red filled
squares at ml/ms = 0.1. The grey shaded band gives the
physical result including all systematic errors discussed in the
text. For comparison we include as the green burst the phys-
ical result obtained from using the HISQ formalism for both
b and c quarks [8].

quark mass for very coarse and coarse sets rather than
three. The meson correlation functions are fit simultane-
ously so that correlations between them can be included
in the determination of the ratio of amplitudes needed
for the ratio of decay constants.

The results for the matrix elements, Φ, of the lead-
ing, J (0), and subleading, J (1), pieces of the temporal
axial and spatial vector currents are given in Table X.
We first discuss combining the results for the temporal
axial current into a value for the decay constant of the
pseudoscalar Bc meson. We will use a formula [5] which
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is somewhat more accurate than that used in eq. (9):

fBc
√
MBc = (1 + zA0,cαs)×

(
Φ

(0)
Bc

+ Φ
(1)
Bc

(18)

+ z1αsΦ
(1)
Bc

+ z2αsΦ
(2)
Bc

)
.

z1αs is an additional radiative correction to the sub-
leading current J (1). z2αs multiplies an additional sub-
leading current which has the same matrix element as
J (1) and so does not need to be separately calculated.
The z coefficients now have to be calculated for massive
HISQ quarks with a mass in lattice units corresponding
to our values for amc on the different ensembles. This has
been done for zA0,c and the values are given in Table XI.
They differ slightly from those for massless HISQ quarks
in Table VII but are still very much less than 1. The z1
and z2 coefficients have only been calculated for massless
HISQ quarks and these are also given in Table XI. There
is then a systematic error in our formula of eq. (18) as
a result of using the massless z1 and z2 coefficients and
we will allow for that in our error budget along with sys-
tematic errors from unknown higher order terms in the
overall renormalisation factor.

The results obtained from applying eq. (18) are plotted
in Figure 3 as a function of lattice spacing. We see, as ex-
pected, very little change between ensembles with similar
lattice spacings but different sea u/d quark masses. To
determine a physical value for the decay constant we fit
the results to a functional form that includes allowance
for systematic errors in the lattice QCD calculation.

The systematic errors have the same sources as those
discussed for Rs in section III A and we will use the same
fit form as that given in eq. (13) and we reproduce that
below as eq. (19) with the modifications appropriate here.
As in section III A, the major source of uncertainty here
comes from missing higher order terms in the matching
of the NRQCD-HISQ current to continuum QCD. This is
taken account of in eq. (19), as before, by the term F2(αs)
which includes an α2

s term with coefficient c in the overall
renormalisation factor and a term with coefficient d that
allows for systematic errors in the αs corrections to the
J (1) current contribution included in eq. (18) from the
fact that z1 and z2 are taken for massless HISQ quarks.
Given the values we have for zA0,c and the dependence on
amc seen in that coefficient, we do not expect coefficients
c and d to be large and we take priors on their fit values
of 0.0(0.2).

From Fig. 3 we see significant lattice spacing depen-
dence in the results and we must allow both for regu-
lar lattice spacing dependence and that coming from the
NRQCD action. This dependence is included in factor
F1. The regular lattice spacing coming the HISQ action
can have a scale set by mc in this case and we expect
that to dominate. We take mc to be 1 GeV here. The
analysis of discretisation errors for c quarks in the HISQ
action [7] shows that the dependence comes from terms
suppressed by powers of the velocity of the c quark. Since
v2c ≈ 0.5 in a Bc [38] we include a factor of 0.5 in front of
the terms allowing for discretisation errors. We must also

allow for dependence on the u/d quark mass in the sea,
as before, and for mistuning of the b quark mass. For
mistuning of the b quark mass we allow a conservative
factor of 0.3 based on the variation in decay constants
between heavyonium mesons (see Fig. 8).

Our fit function is:

fBc
√
MBc(a,m) =

(
fBc
√
MBc

)
phys

(19)

× F1(a,m)/F2(αs);

F2(αs) = (1 + cα2
s + 0.08dαs)

F1(a,m) = 1 + 0.5
∑

j

ej(mca)2j

+ 0.3f
δmb

mb,phys
+ g

δmsea

10msea,phys

c = c1 × (1 + c2δxm + c3(δxm)2)

d = d1 × (1 + d2δxm + d3(δxm)2)

e1 = e11 × (1 + e12δxm + e13(δxm)2)

We take prior values on all coefficients to be 0.0(1.0) ex-
cept for the physical value on which we take 1.0(2), c
and d, on which we take 0.0(2) and e1 on which we take
0.0(3) (since it is O(αs)). The error on the plotted values
in Figure 3 is dominated by the uncertainty in the value
of the lattice spacing (given in Table I). In doing the fit
we allow for half of this error to be correlated between
ensembles (since it comes from systematic uncertainties
from the NRQCD calculation used to fix the lattice spac-
ing [6]) and half to be uncorrelated.

The fit gives a χ2/dof of 0.11 and a physical value for

f
√
M for the Bc of 1.087(37) (GeV)3/2. The 3.4% un-

certainty is split between 1.2% from matching and 3.2%
from other sources, dominated by lattice spacing uncer-
tainties and discretisation errors. We have checked that
missing out z1 and z2 from eq. (18) and allowing a larger
prior of 0.0(1.0) on the coefficient d in eq. (19) gives a
physical result with almost the same central value and
uncertainty.

Our physical result is plotted as a grey band in Fig-
ure 3. It agrees very well with our result of 1.070(15)

GeV3/2 [8] based on using the HISQ action for a heavy
quark combined with a HISQ c quark and working at
a range of heavy quark masses between c and b on lat-
tices with a range of lattice spacings from 0.15 fm down
to 0.045 fm. The HISQ-HISQ result has an uncertainty
which is a factor of 2 smaller than the NRQCD-HISQ
result we give here. This is because the HISQ-HISQ cur-
rent is absolutely normalised in the calculation of pseu-
doscalar decay constants and the calculation is done over
a wider range of values of the lattice spacing for bet-
ter control of discretisation errors. Good agreement be-
tween the HISQ-HISQ result and NRQCD-HISQ result
was already seen for the Bs in [5, 39] and this further
test increases our confidence in our handling of lattice
QCD errors. In particular it is an important test of our
normalisation of improved NRQCD-HISQ currents that
are also in use for semileptonic decay rate calculations
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TABLE XII. Column 2 gives the Coefficient zVi,c needed for
the one-loop renormalisation factor for the vector decay con-
stant B∗c . zVi,c is constructed from results given for the appro-
priate NRQCD bare masses and massive HISQ quarks with
the appropriate values of mca in [31] as zc = η0−τ10. Column
3 gives δzc, which is the difference between zVi,c and zA0,c

from Table XI. Column 4 gives the difference between δzc and
the corresponding value δz for massless HISQ quarks (from
Table VII). The values of αs used with these z coefficients are
given in Table I. Column 5 gives the unrenormalised ratio of
vector to pseudoscalar amplitudes (see text) determined from
the simultaneous fit to B∗c and Bc meson correlators. Results
from columns 4 and 5 are used in the determination of Rc/Rs.

Set zVi,c δzc δzc − δz Runren.
c

1 -0.166(5) -0.055(7) 0.047(8) 1.0447(14)
2 -0.160(5) -0.055(7) 0.044(8) 1.0434(8)
4 -0.073(5) -0.027(7) 0.052(8) 1.02324(27)
5 -0.068(5) -0.027(7) 0.046(8) 1.02175(17)
7 -0.013(5) 0.021(7) 0.058(8) 0.99766(22)
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FIG. 4. Results for the ratio of Rc to Rs plotted against
the square of the lattice spacing. Rc is the ratio of vector
to pseudoscalar decay constants (f

√
M) for the B∗c and Bc

and Rs is the corresponding ratio for the B∗s/Bs. Filled blue
squares are results on ensembles with ml/ms = 0.2 and filled
red circles results on ensembles with ml/ms = 0.1. The errors
on the points are statistical errors only (including those from
(δzc − δz)). The grey shaded band gives the physical result
including all systematic errors as discussed in the text. The
black dashed line marks the value 1.0.

underway on these gluon field configurations.
Using the experimental value of the Bc meson mass of

6.276(1) GeV [40] we can convert our value for f
√
M into

a result for the decay constant:

fBc = 0.434(15)GeV. (20)

Again this agrees with our earlier result using HISQ
quarks of 0.427(6) GeV [8].

The vector to pseudoscalar decay constant ratio, Rc,
is obtained in an analogous way to that for the Bs and
B∗s mesons described in Section III A. The formula we

use is that given in eq. 10, in which zA0
and zVi are the

coefficients calculated for temporal axial and spatial vec-
tor currents respectively using HISQ quark mass values
appropriate to c quarks. Values for zA0,c are given in
Table XI and values for zVi,c are given in Table XII. Ta-
ble XII also gives δzc, the difference between the two,
which is needed for the decay constant ratio in eq. 10.
Note that we are now neglecting radiative corrections to
the current correction J (1) (i.e. the terms with coeffi-
cients z1 and z2 in eq. (18)) since we do not have these
terms for the vector current.

Table X gives the results for the amplitudes that we
need to construct the decay constants and their ratio.
We see that the qualitative features of the results are the
same i.e. that the amplitude of the leading order current
is smaller for the vector than for the pseudoscalar meson,
lowering the vector to pseudoscalar decay constant ratio,
whereas the current correction contributions have oppo-
site effect. The impact of the current corrections is a few
percent less than in the Bs case but varies more strongly
with lattice spacing.

In a similar approach to that used for Rl in Sec-
tion III A we will study Rc through its ratio with Rs.
In this case the renormalisation factor does not cancel
completely at O(αs) since δzc is not equal to δz. In-
stead we have a renormalisation factor for Rc/Rs which
is (1 + [δzc − δz]αs), i.e. we can write:

Rc
Rs

= (1 + [δzc − δz]αs)


Φ

(0)
B∗c

+ Φ
(1)
B∗c

Φ
(0)
Bc

+ Φ
(1)
Bc




Φ

(0)
Bs

+ Φ
(1)
Bs

Φ
(0)
B∗s

+ Φ
(1)
B∗s




(21)
Values of (δzc − δz) are given in Table XII. We see that
these are small and independent of the value of amb

within statistical uncertainties. Since the dependence on
amb comes from the NRQCD action it is not surprising to
find some cancellation between these two cases. The re-
maining small renormalisation then reflects the fact that
the c quark mass is not zero (i.e. mc/mb 6= 0). Table XII
gives in the final column results for the appropriate ratio
of sums of amplitudes needed in eq. (21), i.e. Runren.

c .
This can be combined with Runren.

s from Table V and the
small renormalisation applied to form Rc/Rs.

Figure 4 gives results for the ratio of Rc to Rs from
eq. (21) as a function of lattice spacing. We see that the
results are independent of lattice spacing and sea quark
mass. Importantly the values obtained are all signifi-
cantly larger than 1.0, showing that the vector to pseu-
doscalar decay constant ratio is sensitive to the mass of
the light quark combined with the b. Half of the differ-
ence from 1.0 comes from the raw amplitudes and the
other half from the renormalisation factor in eq. (21).

In fitting this ratio as a function of lattice spacing to
obtain a physical result we will use the same fit form as
that used in subsection III A, eq. (13). The only change
in form that we make is to remove amb dependence from
the coefficient of unknown α2

s renormalisation terms in
the factor F2 assuming they follow the same form as dis-
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cussed above for the O(αs) term. We take the radiative
correction terms for the J (1) currents in F2 to have the
same form as in eq. (13) but allow for cancellation be-
tween Rc and Rs by giving that term coefficient 0.03
rather than 0.08. For the discretisation errors and mb

tuning error terms in F1 we likewise allow for cancella-
tion between Rc and Rs by giving these terms coefficient
0.1 rather than 0.2.

The fit to our results gives χ2/dof of 0.1 and a physical
result of

Rc
Rs

= 1.037(12) (22)

where we have allowed a 0.5% uncertainty from missing
higher-order relativistic current corrections. This value
is 3σ greater than 1.0 giving a clear indication that Rq
increases as the mass of the quark q increases. This is
consistent with what was found (with much lower signif-
icance) in Section III A for q = l and s. Our physical
result for Rc/Rs is plotted as the grey band in Figure 4.
A full error budget for Rc/Rs is given in Table IX.

Using our earlier value for Rs of 0.957(23) we obtain
Rc = 0.992(27). We convert Rc into a ratio of the decay
constants of the B∗c and Bc mesons by dividing by the
square root of the ratio of the masses. For this we use the
experimental value for the Bc mass of 6.276(1) GeV [40]
and our lattice QCD result for the mass difference be-
tween B∗c and Bc of 54(3) MeV [10]. This gives a mass
ratio for B∗c to Bc of 1.0086(5). We then obtain

fB∗c
fBc

= 0.988(27). (23)

E. Heavy Quark Mass Dependence

In this subsection we give results for calculations that
use NRQCD quarks with masses lighter than that of the
b in order to study the heavy-quark mass dependence
of decay constants and their ratios and make a link be-
tween b and c. Using the HISQ action we have previously
mapped out the dependence of pseudoscalar decay con-
stants and quark masses [8, 17, 33, 39] in this region in
some detail, and we will be able to compare to these re-
sults.

The HISQ action has the smallest discretisation errors
of any quark action in current use, since it removes tree-
level a2 errors and has no odd powers of a appearing. It
is therefore a very good action for c physics [7, 26, 42].
Raising the mass from that of c requires fine lattices to
keep masses in lattice units belowma = 1, where, naively,
it might be expected that discretisation errors would be-
come large. It is possible to reach the b on ‘ultrafine’ lat-
tices with a lattice spacing as small as a = 0.045 fm. This
has given accurate results for mb, fBs and fBc [8, 17, 39]
because we can use operators that are absolutely nor-
malised.

For NRQCD the issues are complementary ones. In
this case we have systematic control of a non-relativistic
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FIG. 5. Results for the decay constant of the pseudoscalar
heavy-strange meson Hs multiplied by the square root of its
mass as a function of the heavy quark mass in units of the
physical b quark mass. Open red circles are results on set
1 ensembles from improved NRQCD heavy quarks combined
with HISQ s quarks (from Tables V and XIII). The open blue
squares are results from a = 0.044 fm lattices using the HISQ
formalism for both b and s [39]. The solid error bars on both
sets of points include statistics and the (correlated) uncer-
tainty in the value of the lattice spacing. The dotted error
bars on the NRQCD points include in addition an estimate of
NRQCD systematic errors [5]. The black bursts are the final
physical values for the Ds and Bs [5, 26].

effective theory. Discretisation errors are much smaller,
having a scale set by internal momenta rather than the
quark mass. In this case naive arguments suggest that
we need ma > 1 to control coefficients of relativistic cor-
rection operators, for high precision. In fact for b quarks
on the ensembles we use here, with lattice spacing values
ranging from 0.15 fm down to 0.09 fm, values of ma are
well above 1 and there is significant headroom to reduce
the mass, particularly on the coarser lattices. Since the
ratio of c to b quark mass is 4.5 [17], we cannot reach the c
quark mass with ma > 1 even on the very coarse lattices.
However, it is still of interest to vary the mass and com-
pare the mass-dependence using NRQCD heavy quarks
to that obtained from a completely different perspective,
in terms of systematic errors, using HISQ quarks.

We have already shown that using HISQ b quarks and
NRQCD b quarks gives results in agreement for the decay
constant of the Bs [5, 39] and the Bc ( [8] and subsec-
tion III D). Here we will illustrate how well this agree-
ment continues to lighter masses.

We work on one ensemble each from the very coarse
(set 1) and coarse (set 4) lattices. We will focus on results
using s HISQ quarks where, as we have seen, dependence
on the sea u/d mass is negligible. It is most convenient
to use the same values of amb as those used before on
the finer lattices, since then the coefficients of the ra-
diative corrections to terms in the NRQCD Hamiltonian
are already known. We simply have to change the value
of αs multiplying them on the coarser lattices. In Ta-
ble XIII we give the coefficients that we use for heavy
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TABLE XIII. The coefficients c1, c5, c4 used in the NRQCD action (eq. (2)) for values of the heavy quark mass in lattice units

given in column 2. c6 is equal to c1 and c2 and c3 are set to 1.0. Amplitudes for J(0) and J(1) for temporal axial and vector
currents between the vacuum and heavy pseudoscalar and vector mesons respectively, made from a heavy NRQCD quark and
a HISQ s quark and denoted Hs and H∗s . The different heavy quark masses in lattice units used on sets 1 and 4 are given in
column 2. Results are in lattice units and the errors given are statistical/fit errors only.

Set amh c1 c5 c4 z1 z2 a3/2Φ
(0)
Hs

a3/2Φ
(1)
Hs

a3/2Φ
(0)
H∗s

a3/2Φ
(1)
H∗s

Rs

1 1.91 1.29 1.18 1.19 -0.031(4) -0.325(4) 0.3401(6) -0.04274(10) 0.2958(14) 0.01273(8) 1.0242(43)
2.66 1.36 1.19 1.21 0.007(3) -0.698(4) 0.3600(8) -0.03430(9) 0.3233(16) 0.01052(7) 0.9969(41)

4 1.91 1.26 1.15 1.18 -0.031(4) -0.325(4) 0.2602(4) -0.02958(6) 0.2237(6) 0.00865(3) 0.9956(21)
3.297 1.31 1.17 1.21 0.024(3) -1.108(4) 0.2802(7) -0.01997(6) 0.2534(8) 0.00611(2) 0.9657(21)
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FIG. 6. Results for the ratio of vector to pseudoscalar de-
cay constants for heavy-strange mesons made with a range of
heavy quark masses, mh, as a function of the heavy quark
mass in units of mb. Filled red circles give results from very
coarse set 1, and filled blue triangles from coarse set 4, for
NRQCD heavy quarks (Tables VIII and XIII). Dotted error
bars include an estimate of NRQCD systematic errors. Black
bursts indicate the physical result for B∗s/Bs mesons from
this paper and for D∗s/Ds mesons using HISQ c and s quarks
from [41].

quark masses amh = 1.91 and 2.66 on very coarse set
1 and for amh = 1.91 and 3.297 on coarse set 4. On
very coarse set 1 the lightest amh then corresponds to
1.91/3.297= 0.58 times mb. On coarse set 4 the mass
3.297 is higher than mb (since there amb = 2.66, see
Table III), but am = 1.91 corresponds to 0.72 times mb.
The coefficients are calculated by combining the one-loop
coefficients at the appropriate amb values given in [6, 20]
with the appropriate αs value (also given in [6]) for that
lattice spacing. These coefficients are then used in the
NRQCD action (eq. (2)) along with relevant tadpole-
improvement factors given in Table III for that ensemble.

We again use a local and two smeared sources for the
NRQCD propagators, with smearing radii as given in Ta-
ble III. We combine the NRQCD propagators with those
for the HISQ s quarks on each ensemble. Table XIII gives
results for the amplitudes for the leading-order and rela-
tivistic correction currents for the heavy-strange pseu-
doscalar meson (Hs) and vector meson (H∗s ). These

are obtained from simultaneous fits to the vector and
pseudoscalar meson correlators as described in subsec-
tion II C.

To determine the pseudoscalar decay constant, fHs ,
we are able to use a more accurate formula than the one
given in eq. (9), because additional current corrections
coefficients are available in this case (only). We can use
the formula accurate through αsΛ/mh given in [5]:

fH
√
MH = (1 + zA0

αs)×
(

Φ
(0)
A0

+ Φ
(1)
A0

(24)

+ z1αsΦ
(1)
A0

+ z2αsΦ
(2)
A0

)
.

z1αs is an additional radiative correction to the sub-
leading current J (1). z2αs multiplies an additional sub-
leading current which has the same matrix element as
J (1) and so does not need to be separately calculated.
The coefficients z1 and z2 are given for the masses we
use in Table XIII. The zA0 values are in Table VII and
αs values in Table I.

Figure 5 shows results for fHs
√
MHs as a function of

inverse heavy quark mass in units of the physical b quark
mass. The results for set 1 are shown as open red circles
including the value at the b quark mass (amb = 3.297)
from Table V as well as the results for lighter heavy
quark masses from Table XIII. The solid error bar is
the dominant error in the raw results coming from the
uncertainty in the lattice spacing. The dotted error bar
includes an estimate of systematic errors from NRQCD
coming from missing α2

s renormalisation and (Λ/mh)2

current corrections. The latter systematic error grows as
mh falls. The open blue squares give results from ‘ultra-
fine’ (a =0.044fm) nf = 2 + 1 lattices using the HISQ
formalism for the heavy quark [39]. These results were
part of an analysis of the heavy-strange pseudoscalar me-
son decay constant that spanned the range from c to b.

The plot shows good consistency between the two sets
of results, which use very different formalisms on lattices
that differ in lattice spacing by over a factor of 3. The
black stars mark the final physical result for the Bs [5]
and Ds [26] decay constants obtained by HPQCD after
performing a fit including discretisation uncertainties.

Table XIII also includes results for the vector
to pseudoscalar ratio of decay constants, Rs =
fH∗s

√
MH∗s

/fHs
√
MHs . This is defined from eq. (10) up
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to missing α2
s and αsΛ/mb matching uncertainties. These

are plotted as a function of the inverse heavy quark mass
in units of the b quark mass in Figure 6, including also
results from Table VIII at the b quark mass. We see, as
expected, that the values rise as mb/mh grows towards
the c quark mass. The dotted error bars include an es-
timate of the (correlated) systematic error from missing
factors in the matching of the NRQCD current to full
QCD. These are estimated by rescaling results from our
study here for the Bs (subsection III A). The missing
terms are: α2

s terms in the overall renormalisation which
are taken to be independent of mh; αsΛ/mh current cor-
rections which grow linearly with mb/mh and (Λ/mh)2

current corrections which grow quadratically.
The black bursts mark the physical result at the Bs

obtained in subsection III A and the result at the Ds ob-
tained using HISQ c and s quarks in [41]. The mass
dependence of our NRQCD results is consistent with a
value for Rs that grows from our result at the Bs towards
the result we obtained at the Ds with a relativistic for-
malism. The growth of the NRQCD systematic errors
and indeed the fact that the c quark in a Ds is not very
nonrelativistic mean that we cannot accurately extrapo-
late from results here around the Bs to the Ds. We can
estimate the slope at the Bs, however. Our results on the
coarse lattices, set 4, give a linear slope with mb/mh for
the ratio Rs of 0.050(17) at a point close to the b, where
the uncertainty comes from NRQCD systematic errors in
the current matching.

IV. DISCUSSION

Naively we expect heavy mesons with the same valence
quark content but with vector or pseudoscalar quantum
numbers to be very similar since spin-dependent (hyper-
fine) intereactions that distinguish between quark and
antiquark having spins parallel or anti-parallel are sup-
pressed by the quark mass. Such arguments in respect
of the meson masses are straightforward to make even
within the quark model. For NRQCD the dominant
source of such effects for the vector to pseudoscalar me-
son mass difference is the term proportional to c4 in the
NRQCD Hamiltonian, eq. (2) [10, 22].

For decay constants the arguments are more subtle
which is why lattice QCD calculations are important to
pin down the results. Viewed from the perspective of
a nonrelativistic effective theory, there are three sources
for terms that affect the ratio of vector to pseudoscalar
decay constants for heavy mesons: one is the hyperfine
term in the Hamiltonian as above, the second is the rel-
ativistic current correction terms (J (1) in eq. 5) and the
third is matching of the current operator to full QCD.
The first two give an effect that is proportional to Λ/mh

whereas the third gives corrections to 1 that are propor-
tional to αs. The different dependence of the three effects
and the possibilities of cancellation between them have
given rise to a variety of predictions for the ratio of decay
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constants for vector and pseudoscalar heavy-light mesons
over the years and controversy has surrounded the ques-
tion of whether the ratio is larger or smaller than 1 at
the b quark mass. Our results here show that the ratio is
less than 1 (to 2σ) for B∗/B and B∗s/Bs mesons. In this
subsection we set this in the context of earlier results.

A baseline that can be used for heavy-light mesons [37]
is Heavy Quark Effective Theory (HQET) in which the
quark Lagrangian becomes simple, with no spin depen-
dence, in the infinite quark mass limit. The matrix ele-
ments of the spatial vector and temporal axial currents
between the vacuum and heavy-light mesons become the
same in this limit within the effective theory but the
renormalisation factors that match the currents to full
QCD are not the same. These have been calculated
through O(α2

s) in [45] and through O(α3
s) in [46] giv-

ing, to this leading nonrelativistic order and in terms of
the MS coupling [46]:

f∗B
fB

∣∣∣∣
HQET,LO

= 1− 2α
(4)
s (mb)

3π
(25)

− (6.370 + 0.189)

(
α
(4)
s (mb)

π

)2

− (77.549 + 6.575)

(
α
(4)
s (mb)

π

)3

+O(α4
s).

This is evaluated for u, d, s and c quarks in the sea
with the second term in the α2

s and α3
s coefficients taking

account of the non-zero mass for the c quark. Evaluating
the expression in eq. (25) gives 0.896 [46], well below 1.0.

Early calculations added sum-rule estimates of Λ/mh

hyperfine and current corrections to the one-loop piece
of eq. (25) and obtained a variety of results depending
on the relative sign of hyperfine and current correction
terms. In [36] it was found that the hyperfine and cur-
rent corrections terms have opposite sign (in agreement
with a subsequent lattice NRQCD study [34]) and this
gave a vector to pseudoscalar decay constant ratio for b-
light mesons of 1.00(4). The central value in this result
would be reduced below 1.0 using the three-loop expres-
sion above.

The calculation we give here improves on this approach
since it is a fully integrated calculation in lattice QCD,
including dynamics for the b quark from the outset. We
use an improved NRQCD action for the b quark accurate
(for heavy-light calculations) through O(αsΛ/mh) which
has been tested on the heavy-light meson spectrum [10]
and from which we can calculate the matrix elements of
current operators nonperturbatively. The nonrelativistic
current, combining the leading term and first, Λ/mb, rel-
ativistic correction is matched to full QCD and the O(αs)
matching correction is found to be very small.

Our results, as described in Subsection III A, show that
fB∗s /fBs and fB∗/fB are about 5.0(2.5)% below 1, and
the ratio for the B∗/B is 1.3(1.4)% below that of the

B∗s/Bs. Our values are compared to results from two
recent QCD sum-rule analyses [43, 44] in Figure 7. Al-
though there is some tension, those results are consistent
with each other and with our numbers here. All the re-
sults show the same tendency for the ratio for B∗/B to be
slightly smaller than for B∗s/Bs, although the difference
is not significant in any of the cases.

We also compare to a recent lattice QCD result [3]
which used the twisted-mass formalism for both heavy
and light quarks on gluon field configurations that in-
cluded the effect of u/d quarks (only) in the sea. The
twisted-mass value is obtained from results calculated for
heavy quark masses around the c quark mass and above.
An interpolation between those results and the infinite
mass limit is performed to reach the b, using the first
two-loops of the three-loop formula of eq. (25) to rescale
results so that 1.0 (up to higher-order corrections) is ob-
tained in the infinite mass limit. The value quoted for
fB∗/fB is 1.051(17) and this disagrees with our value by
more than 3 (combined) standard deviations. It is not
clear that results using only u/d quarks in the sea will
necessarily agree with those, like ours, that include a full
complement of sea quarks. This may be a case where
the ‘quenching’ of the s quark produces a visible effect.
A more likely source of difference is probably the inter-
polation in [3] between the charm mass and the infinite
mass limits. Such an interpolation requires evaluating
the formula of eq. (25) using αs at a scale much lower
than mb where the relatively large coefficients make that
problematic.

It is also interesting to compare results for the ratio of
vector to pseudoscalar decay constants between heavy-
heavy mesons and heavy-light mesons. The decay con-
stant of vector heavyonium mesons can be determined
from their experimental decay rate to leptons:

Γ(vh → e+e−) =
4π

3
α2
QEDe

2
h

f2v
mv

. (26)

The decay constants can also be calculated in lattice
QCD [42, 47, 48] and good agreement with experiment
is found. Since heavyonium pseudoscalar mesons do not
annihilate to a single particle, there is no direct experi-
mental determination of the decay constant. Again, how-
ever, the decay constants can be accurately determined
in lattice QCD [8, 26].

Figure 8 shows the ratio of vector to pseudoscalar de-
cay constants (multiplied by the square root of the ratio
of the masses) for (J/ψ)/ηc, Υ/ηb, B

∗
s/Bs and D∗s/Ds

plotted against the inverse of the corresponding pseu-
doscalar meson mass. For the J/ψ and Υ decay constants
we use the values determined from the experimental an-
nihilation rates [2] and eq. (26). These are 0.407(5) GeV
and 0.689(5) GeV respectively. From full lattice QCD the
ηc decay constant is 0.3947(24) GeV [26] and the ηb decay
constant is 0.667(6) GeV [8]. The D∗s/Ds decay constant
ratio is taken from [41]. We see that the behaviour for
heavyonium and heavy-light mesons is similar but the
slope is larger for heavy-light mesons.
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For heavyonium mesons, similar considerations apply
to the decay constant ratio as discussed above for heavy-
light mesons. A baseline might be considered a simple
spin-independent potential model in which the decay con-
stant can be related to the ‘wavefunction-at-the-origin’.
However there are significant QCD radiative corrections
to match ψ(0) to the decay constant in both the vector
(see, for example [49]) and pseudoscalar [50] cases, and
these need to be included. Going beyond this requires
the inclusion of spin-dependent terms in the Hamiltonian
and relativistic corrections to the leading-order current.
These are taken care of in a lattice QCD calculation,
either explicitly when using a nonrelativistic formalism
such as NRQCD [48] or implicitly included when using a
relativistic formalism such as HISQ [8].

Here we have calculated the decay constant of both
the Bc and the B∗c , using NRQCD b quarks and HISQ
c quarks and working through first-order in the QCD
matching and relativistic spin-dependent corrections to
the NRQCD Hamiltonian and the currents. Our result
for the Bc decay constant agrees well with that obtained
previously using the relativistic HISQ formalism for both
b and c quarks [8], adding confidence to our analysis of
systematic errors in both the nonrelativistic and relativis-
tic approach. Here we also calculate the ratio of decay
constants for the B∗c and Bc, for the first time from lattice
QCD.
Bc and B∗c decay constants have also been calculated

within a potential-model approach, including QCD ra-
diative corrections. See [51] for a discussion. Results
are in reasonable agreement with ours, but with a larger
uncertainty because the approach has less control of sys-
tematic errors.

We find a value for fB∗c /fBc which is larger than that of
fB∗s /fBs , indicating that the internal structure of the Bc
is somewhat different from that of a typical heavy-light
meson. Figure 8 shows this clearly. When the decay
constant ratio is plotted for the B∗c /Bc it lies very neatly
between the heavy-heavy line and the heavy-light line.

V. CONCLUSIONS

Decay constants, which parameterise the amplitude for
a meson to annihilate to a single particle, are as much a
part of a meson’s ‘fingerprint’ as its mass. They are often
harder to determine, however, and some cannot be ac-
cessed directly through an experimental decay rate. The
overall picture of meson decay constants gives informa-
tion about how the internal structure of mesons changes
for different quark configurations as a result of QCD in-
teractions. To obtain this picture in sufficient detail, for
example even to put the decay constants into an order,
requires calculations in full lattice QCD, since only then
can we reliably quantify the systematic errors.

Here we have expanded range of decay constant cal-
culations from full lattice QCD to include vector heavy-
light mesons. Our results for the ratio of vector to pseu-

doscalar decay constants are:

fB∗

fB
= 0.941(26) (27)

fB∗s
fBs

= 0.953(23)

fB∗c
fBc

= 0.988(27).

Thus

• The vector decay constant is smaller than the pseu-
doscalar decay constant for b-light mesons, at the
2σ level for B∗/B and B∗s/Bs. This is in contrast
to results for c-light mesons where the vector has a
larger decay constant than the pseudoscalar.

• The ratio of vector to pseudoscalar decay constants
shows an ordering so that fB∗c /fBc > fB∗s /fBs >
fB∗/fB . When correlations between the uncertain-
ties are taken into account using ratios, the first of
these relationships has 3σ significance, the second
1σ (see eqs. (22) and (16)).

Using our earlier world’s best results for fB (0.186(4)
GeV, isospin-averaged), fBs (0.224(5) GeV) [5] and fBc
(0.427(6) GeV) [8] we derive values for the vector decay
constants:

fB∗ = 0.175(6) GeV (28)

fB∗s = 0.213(7) GeV

fB∗c = 0.422(13) GeV.

Finally, in Figure 9 we give a ‘spectrum’ plot for the
decay constants of 15 gold-plated mesons from lattice
QCD, including the new results from this paper. It illus-
trates the coverage and predictive power of lattice QCD
calculations. The decay constants are ordered by value,
something that is only possible with sufficiently accurate
results. The range of values is much smaller than that for
meson masses and the ordering of values is not as obvious
because the quark masses do not have the same impact
on the decay constants as they do on the meson masses.
The plot therefore shows up some interesting features in
the ordering, for example that the K and B∗ mesons have
such similar values and that the φ meson appears so far
up the list. We see that the decay constants for vector-
pseudoscalar pairs are close together everywhere, closer
than for the pairings in which an s quark is substituted
for a light quark in a meson, for example.

Future work will improve the accuracy of lattice QCD
results for the vector-onium states such as the φ (not
strictly gold-plated) [33] and the ψ′ [52], both of which
can be determined accurately from experiment. The is-
sues there are mainly from lattice QCD statistical errors.
For b-light meson decay constants the dominant source of
uncertainty, as we have seen, is from systematic errors in
NRQCD such as current renormalisation factors. Work is
underway to reduce these further using techniques based
on current-current correlator methods [48, 53].



19

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
E

C
A
Y

C
O

N
S
T
A

N
T

[G
eV

]

π ψηcψ′φ ΥηbΥ′BcB∗
cBsB∗

sBB∗ Ds D∗
sDK

Experiment : weak decays
: em decays

Lattice QCD : predictions
: postdictions

FIG. 9. A summary of values for decay constants of mesons that are narrow and so well-characterised in experiment. Experi-
mental values are given as blue or grey bands and are taken from average weak or electromagnetic annihilation rates [2] using,
for weak decays, average values of the appropriate CKM matrix element. For full lattice QCD results, green open squares
(postdictions) or red open circles (predictions), we take world’s best values. The lattice result for fπ+ is marked with a cross
to indicate that it is used to set the scale in some analyses (although not here). The result for the K+ is from [28], the B+

and Bs from [5], the D+ and Ds from [16], the φ from [9], the D∗s from [41], the ηc from [26], the J/ψ from [42], the Bc and
ηb from [8], the Υ and Υ′ from [48] and the B∗, B∗s and B∗c from this paper.

ACKNOWLEDGEMENTS

We are grateful to the MILC collaboration for the use
of their gauge configurations, to R. Horgan. C.Monahan
and J. Shigemitsu for calculating the pieces needed
for the current renormalisation used here, and to B.
Chakraborty, A. Grozin, K. Hornbostel, F. Sanfilippo

and S. Simula for useful discussions. The results de-
scribed here were obtained using the Darwin Supercom-
puter of the University of Cambridge High Performance
Computing Service as part of the DiRAC facility jointly
funded by STFC, the Large Facilities Capital Fund of BIS
and the Universities of Cambridge and Glasgow. This
work was funded by STFC, NSF, the Royal Society and
the Wolfson Foundation.

[1] C. Davies, PoS LATTICE2011, 019 (2011), 1203.3862.
[2] K. Olive et al. (Particle Data Group), Chin. Phys. C38,

090001 (2014).
[3] D. Becirevic, A. L. Yaouanc, A. Oyanguren, P. Roudeau,

and F. Sanfilippo (2014), 1407.1019.
[4] W. Lucha, D. Melikhov, and S. Simula (2014), 1411.3890.
[5] R. Dowdall, C. Davies, R. Horgan, C. Monahan, and

J. Shigemitsu (HPQCD Collaboration), Phys.Rev.Lett.
110, 222003 (2013), 1302.2644.

[6] R. Dowdall, B. Colquhoun, J. Daldrop, C. Davies,
et al. (HPQCD Collaboration), Phys.Rev. D85, 054509
(2012), 1110.6887.

[7] E. Follana, Q. Mason, C. Davies, K. Hornbostel,
et al. (HPQCD Collaboration), Phys.Rev. D75, 054502
(2007), hep-lat/0610092.

[8] C. McNeile, C. Davies, E. Follana, K. Hornbostel, and
G. Lepage (HPQCD Collaboration), Phys.Rev. D86,
074503 (2012), 1207.0994.

[9] G. Donald, C. Davies, J. Koponen, and G. Lep-
age (HPQCD Collaboration), Phys.Rev. D90, 074506
(2014), 1311.6669.

[10] R. Dowdall, C. Davies, T. Hammant, and R. Hor-
gan (HPQCD Collaboration), Phys.Rev. D86, 094510
(2012), 1207.5149.

[11] C. Davies (UKQCD Collaboration), Proceedings of Lat-
tice93 p. 437 (1993), hep-lat/9312020.

[12] A. Bazavov et al. (MILC collaboration), Phys.Rev. D82,
074501 (2010), 1004.0342.

[13] A. Bazavov et al. (MILC Collaboration), Phys.Rev. D87,
054505 (2013), 1212.4768.

[14] E. Follana, C. T. H. Davies, G. P. Lepage, and
J. Shigemitsu (HPQCD Collaboration), Phys. Rev. Lett.
100, 062002 (2008), 0706.1726.

[15] A. Hart, G. M. von Hippel, and R. R. Horgan
(HPQCD Collaboration), Phys. Rev. D79, 074008
(2009), 0812.0503.



20

[16] A. Bazavov et al. (Fermilab Lattice, MILC Collabora-
tions), Phys.Rev. D90, 074509 (2014), 1407.3772.

[17] C. McNeile, C. T. H. Davies, E. Follana, K. Hornbostel,
and G. P. Lepage (HPQCD Collaboration), Phys. Rev.
D82, 034512 (2010), 1004.4285.

[18] B. Chakraborty, C. Davies, B. Galloway, P. Knecht,
J. Koponen, et al., Phys.Rev. D91, 054508 (2015),
1408.4169.

[19] G. Lepage, L. Magnea, C. Nakhleh, U. Magnea, and
K. Hornbostel, Phys.Rev. D46, 4052 (1992), hep-
lat/9205007.

[20] T. C. Hammant, A. G. Hart, G. M. von Hippel, R. R.
Horgan, and C. J. Monahan, Phys. Rev. Lett. 107,
112002 (2011), 1105.5309.

[21] J. Daldrop, C. Davies, and R. Dowdall (HPQCD Collab-
oration), Phys.Rev.Lett. 108, 102003 (2012), 1112.2590.

[22] R. Dowdall, C. Davies, T. Hammant, and R. Horgan
(HPQCD collaboration), Phys.Rev. D89, 031502 (2014),
1309.5797.

[23] A. Gray, I. Allison, C. Davies, E. Dalgic, G. Lepage,
et al. (HPQCD Collaboration), Phys.Rev. D72, 094507
(2005), hep-lat/0507013.

[24] E. B. Gregory, C. T. Davies, I. D. Kendall, J. Kopo-
nen, K. Wong, et al. (HPQCD Collaboration), Phys.Rev.
D83, 014506 (2011), 1010.3848.

[25] G. Lepage and P. B. Mackenzie, Phys.Rev. D48, 2250
(1993), phys. Lett. B., hep-lat/9209022.

[26] C. Davies, C. McNeile, E. Follana, G. Lepage,
et al. (HPQCD Collaboration), Phys.Rev. D82, 114504
(2010), 1008.4018.

[27] C. Davies, E. Follana, I. Kendall, G. P. Lepage, and
C. McNeile (HPQCD Collaboration), Phys.Rev. D81,
034506 (2010), 0910.1229.

[28] R. Dowdall, C. Davies, G. Lepage, and C. Mc-
Neile (HPQCD Collaboration), Phys.Rev. D88, 074504
(2013), 1303.1670.

[29] M. Wingate, J. Shigemitsu, C. T. Davies, G. P. Lepage,
and H. D. Trottier, Phys.Rev. D67, 054505 (2003), hep-
lat/0211014.

[30] G. Lepage, B. Clark, C. Davies, K. Hornbostel,
P. Mackenzie, et al., Nucl.Phys.Proc.Suppl. 106, 12
(2002), hep-lat/0110175.

[31] C. Monahan, J. Shigemitsu, and R. Horgan, Phys.Rev.
D87, 034017 (2013), 1211.6966.

[32] J. Harada, S. Hashimoto, K.-I. Ishikawa, A. S. Kronfeld,
T. Onogi, et al., Phys.Rev. D65, 094513 (2002), hep-
lat/0112044.

[33] B. Chakraborty, C. Davies, G. Donald, R. Dowdall,
J. Koponen, et al. (HPQCD collaboration), PoS LAT-

TICE2013, 309 (2014), 1401.0669.
[34] S. Collins, U. M. Heller, J. Sloan, J. Shigemitsu,

A. Ali Khan, and C. Davies, Phys.Rev. D55, 1630 (1997),
hep-lat/9607004.

[35] S. Collins, C. Davies, U. M. Heller, A. Ali Khan,
J. Shigemitsu, et al., Phys.Rev. D60, 074504 (1999), hep-
lat/9901001.

[36] P. Ball, Nucl.Phys. B421, 593 (1994), hep-ph/9312325.
[37] M. Neubert, Phys.Rev. D46, 1076 (1992).
[38] E. Gregory, C. Davies, E. Follana, E. Gamiz, I. Kendall,

et al. (HPQCD Collaboration), Phys.Rev.Lett. 104,
022001 (2010), 0909.4462.

[39] C. McNeile, C. Davies, E. Follana, K. Hornbostel, and
G. Lepage (HPQCD Collaboration), Phys.Rev. D85,
031503 (2012), 1110.4510.

[40] R. Aaij et al. (LHCb), Phys.Rev. D87, 112012 (2013),
1304.4530.

[41] G. Donald, C. Davies, J. Koponen, and G. Lepage
(HPQCD Collaboration), Phys.Rev.Lett. 112, 212002
(2014), 1312.5264.

[42] G. Donald, C. Davies, R. Dowdall, E. Follana, K. Horn-
bostel, et al. (HPQCD Collaboration), Phys.Rev. D86,
094501 (2012), 1208.2855.

[43] W. Lucha, D. Melikhov, and S. Simula, EPJ Web Conf.
80, 00046 (2014), 1410.6684.

[44] P. Gelhausen, A. Khodjamirian, A. A. Pivovarov, and
D. Rosenthal, Phys.Rev. D88, 014015 (2013), 1305.5432.

[45] D. J. Broadhurst and A. Grozin, Phys.Rev. D52, 4082
(1995), hep-ph/9410240.

[46] S. Bekavac, A. Grozin, P. Marquard, J. Piclum, D. Seidel,
et al., Nucl.Phys. B833, 46 (2010), 0911.3356.

[47] D. Becirevic and F. Sanfilippo, JHEP 1301, 028 (2013),
1206.1445.

[48] B. Colquhoun, R. Dowdall, C. Davies, K. Hornbostel, and
G. Lepage, Phys.Rev. D91, 074514 (2015), 1408.5768.

[49] R. Barbieri, R. Kogerler, Z. Kunszt, and R. Gatto,
Nucl.Phys. B105, 125 (1976).

[50] E. Braaten and S. Fleming, Phys.Rev. D52, 181 (1995),
hep-ph/9501296.

[51] V. Kiselev, Central Eur.J.Phys. 2, 523 (2004), hep-
ph/0304017.

[52] B. Galloway, P. Knecht, J. Koponen, C. Davies, and G. P.
Lepage (HPQCD collaboration), PoS LATTICE2014,
092 (2014), 1411.1318.

[53] J. Koponen, C. Davies, K. Hornbostel, et al. (HPQCD),
PoS LATTICE2010, 231 (2010), 1011.1208.


	B-meson decay constants: a more complete picture from full lattice QCD
	Abstract
	I Introduction
	II Lattice calculation
	A NRQCD valence quarks
	B HISQ valence quarks
	C NRQCD-HISQ correlators
	D Determining decay constants

	III Results
	A b-light correlators
	B fBs*
	C fB*
	D fBc and fBc*
	E Heavy Quark Mass Dependence

	IV Discussion
	V Conclusions
	 Acknowledgements
	 References


