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ABSTRACT: We considerSupersymmetridSUSY) and non-SUSY models of chaotic inflation based on
the ¢™ potential with2 < n < 6. We show that the coexistence of a non-minimal coupling &vity
fr = 1+ cr¢™? with a kinetic mixing of the formfx = ck fjr' can accommodate inflationary observables
favored by the BceP2/Keck ArrayandPlanckresults for0 < m < 4 and2.5 - 107* < rrx = cR/c;Q/4 <1,

where the upper limit is not imposed far= 2. Inflation can be attained for subplanckian inflaton valuéb w
the corresponding effective theories retaining the pbetive unitarity up to the Planck scale.

PACs numbers: 98.80.Cq, 04.50.Kd, 12.60.Jv, 04.65.+e

INTRODUCTION

It is well-known [1-3] that the presence of a non-minimal

coupling function

fr(¢) =1+ cro™?, (1)
between the inflatog and the Ricci scalaR, considered in
conjunction with a monomial potential of the type

Vor(¢) = N¢" /22, )
provides, at the strongr limit with ¢ < 1 —in the reduced
Planck units withmp = Mp/v/87 = 1 —, an attractor [3]
towards the spectral index,, and the tensor-to-scalar ratio,
r, respectively

ng~1—2/N, =0.965 and r ~ 12/N? = 0.0036, (3)

for N, = 55 e-foldings with negligibleng running,as. Al-
though perfectly consistent with the present combiBed
cer2/Keck ArrayandPlanckresults [4, 5],

ne = 0.968 +0.0045 and r = 0.0487053° (4)

r in Eq. (3) lies well below its central value in Eq. (4) and the

sensitivity of the present experiments searching for priiad

gravity waves — for an updated survey see [6]. Nonetheless,

this model — called henceforth naninimal chaotic inflation
(Mc1) — exhibits also a weakr regime, withg > 1 andcg-

dependent observables [3, 7] approaching for decreagiisg
their values within MCI [8].

Focusing on this regime, we
would like to emphasize that solutions covering nicely the 1
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NON-SUSY FRAMEWORK

Non-MCl is formulated in thélordan frame(JF) where the
action of¢ is given by

S = /d4:v\/—_g (—J%R

Jx

R + 79”1/6;1,¢6U¢ - VCI(¢)> .

(5)
Here g is the determinant of the background Friedmann-
Robertson-Walker metricg*” with signature(+, —, —, —)
and we allow for a kinetic mixing through the functign(¢).
By performing a conformal transformation [2] according to
which we define th&instein framggr) metricg,, = fr gu
we can writeS in the EF as follows

s [ a5 <—§7€ 17 0,00,8 - %(@) . (6a)

where hat is used to denote quantities defined in the EF. We

also introduce the EF canonically normalized fiéfdand po-
tential, V1, defined as follows:

do fx 3(f72¢>)2 = Var
Tog=y/E 2 (E2) and Vo= -2,
dé \/fn 2\ fr T

where the symbol¢ as subscript denotes derivatiafith re-
spect to(w.rt) the field¢. In the pure non-MCI [1-3] we take
fxk = 1 and so, as shown from Eq.4 the role of fz in
Eq. (1) is twofold:

(6b)

() it determines the canonical normalizatiorﬁofand

(iiy it controls the shape dfer affecting thereby the obser-
vational predictions.

Inspired by Ref. [9, 10], where non-canonical kinetic terms
assist in obtaining inflationary solutions for< 1, we liber-
ate fr from its first role above implementing it by a kinetic

o domain of the present data in Eq. (4) can be achieved, eveqy,tion of the form

for ¢ < 1, by introducing a suitable non-canonical kinetic

mixing fk(¢). For this reason we call this type of non-MCI
kinetically modified Although a new paramete, included

(@)

fK(¢) = CKf;zn where CK = (CR/TRK)4/H,

in fx, may take relatively high values within this scheme, nowith rzk being introduced for later convenience. The form

problem with the perturbative unitarity arises.

of fk in Eq. (7) is chosen so that the perturbative unitarity


http://arxiv.org/abs/1503.05887v4

C. Pallis

is preserved up to Planck scale. Its most general form coul@he incorporatiory’z in Eq. (1) andfk in Eq. (7) dictates the

be fx = cxf with f being an arbitrary function such that
fU) 0) 1 — see below. However, the variation of

fx generated byf can be covered by the parametrization of

Eq. (7) selecting convenienthy = In f/ In fr.
Plugging, finally, Egs. (7) and (2) into Eq.qpwe obtain

CK 3n2c "2 CK > Ao
J? = R ~ and Vg = ———
e T T eeg
8)

assumingk > cgr. In contrast to Ref. [10] the presence of
both fx and fz plays a crucial role within our proposal.

SUPERGRAVITY EMBEDDINGS

adoption of a logarithmid( [11] including the functions

Fr(®)=142%d%cg and Fx = (& — ®*)%2. (14a)
Here Fris an holomorphic function reducing #%;, along the
path in Eqg. (10), and'k is a real function which assists us
to incorporate the non-canonical kinetic mixing geneigaby

fx in Eqg. (7). IndeedFxk lets intactV(, since it vanishes
along the trajectory in Eq. (10), but it contributes to the-no
malization of® — contrary to the naive kinetic ter®|?/3
[11] which influences botly and Ve in Eq. (). Although
Fx is employed in Ref. [3] too, its importance in implement-
ing non-minimal kinetic terms within non-MCI has not been
emphasized so far. We also includefnthe typical kinetic
term for.S, considering the next-to-minimal term for stability

The supersymmetrization of the above models requires theeasons [11] — see below —, i.e.

use of two gauge singlet chiral superfields, i, = ®,S,
with ® (e« = 1) and S (« = 2) being the inflaton and a “sta-
bilized” field respectively. The EF action faf*’s within Su-
pergravity(SUGRA) [11] can be written as

=/ 15 . i o
S = /d‘*m/—g <—§R + Ko 50" 0,2%0,2"F — V> (9a)

where summation is taken over the scalar fieléls star ()
denotes complex conjugatiofy; is the Kahler potential with
Kos = K ,a..5 andK*PKz = §2. AlsoV is the EF F-
term SUGRA potential given by
V= eX (K“B(DQW)(DEW*) - 3|W|2) ., (%)
whereD W = W .« +K .. W with W being the superpoten-
tial. Along the inflationary track determined by the conistta
S=0-9*=0,0r s=5=60=0 (20)

if we expressb andS according to the parametrization

d= ¢e?/V2 and S = (s+i5)/V2,  (11)
Ve in Eq. (2) can be produced, in the flat limit, by
W = \S®"/2, (12)

The form of W can be uniquely determined if we impose two
symmetries:

(i) an R symmetry under whiclb and ® have charges
ando;

(i) a globalU (1) symmetry with assigned charged and
2/n for S and®.

On the other hand, the derivation &%; in Eq. (8) via
Eq. (%) requires a judiciously choseli. Namely, along the
track in Eq. (10) the only surviving term in Eq.{pis

~

Vo=V =s=5=0) ="K Wg>. (13)

Fs =|S[*/3 = ks|S|"/3. (14b)

Taking for consistency all the possible terms up to fourth or
der, K is written as

CK *\M
1 " /{.:p 2 ks@ 2

Alternatively, if we do not insist on a pure logarithmic, we
could also adopt the form

CK Fx
2™ (Pr + Fg) "

(150)
Note that form = 0 [m = 1], Fx and Fr in K given by
Eq. (1%) [Eq. (1%)] are totally decoupled, i.e. no higher or-
der term is needed. Our models, tgf > cr, are completely
natural in the 't Hooft sense because, in the limjts— 0 and
A — 0, the theory enjoys the following enhanced symmetries
—cf. Ref. [12]:

K

—3In (% (FR + F7*3) — Fs) —

- O, d— d+c and S — €8, (16)
wherec is a real number. Therefore, the terms proportional
to cg can be regarded as a gravity-induced violation of the
symmetries above.

To verify the appropriateness &f in Egs. (1&) and (1%),
we can first remark that, along the trough in Eq. (10), it is
diagonal with non-vanishing elemem&y,¢- = .J2, where.J
is given by Eq. (8), and{ss- = 1/ fr. Upon substitution of
K53 = fr andexp K = f*into Eq. (13) we easily deduce
that Ve in Eq. (8) is recovered. If we perform the inverse of
the conformal transformation described in Eqs)(énd (5)
with frame function(?/3 = — exp (—K/3) we end up with
the JF potential/cr = (22‘7@1/9 in Eq. (2). Moreover, the
conventional Einstein gravity at the SUSY vacuu{y =
(®) = 0, is recovered since () /3 = 1.
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Given thatp < 1 and sofrz ~ 1, Eq. (1&) is saturated at the

TABLE |: Mass spectrum along the path in Eg. (10). maximal¢ value, ¢, from the following two values

FIELDS EINGESTATES MASS SQUARED
1 real scalar 0 M2 ~ngVer/3 = neH2; d1r ~n/v2ek and go ~ \/(n —1)n/ck, (20)
2 real scalars 3,5 M2 ~ 2(6ks fr — 1) HE; R N
5 Weyl spinors (ds + da)/v/3 | Al o~ 30212, 20k 02 LT whereg ¢ andgor are such thad (¢1¢) ~ 1 andy (o) ~ 1.

The number of e—foldingBAf* that the scalé, = 0.05/Mpc
experiences during this non-MCI and the amplitutieof the
power spectrum of the curvature perturbations generated by
can be computed using the standard formulae

Defining the canonically normalized fields via the relations

dp/dp =V Kee- = J, 0= 709, (17) P36
. ) N, — d VCI d A1/2 1 Ve (¢*)
and (5,5) = v/Kgs-(s,5) we can verify that the configu- A ¢‘7 an N RIARTA
ration in Eq. (10) is stable w.r.t the excitations of the non- ' CL$ CL¢ (21)
:c?r]lztsoigr:clse?fs.thgarl::ggstehse SII(!]TJIE%Q>> (\fv7izthwi ﬁnﬂ tZeaeg- whereg, [¢,] is the value of [¢] whenk, crosses the infla-
s) arranged in Table I, which approach rather well the quite tlonary horizon. Since, > ¢, from Eq. (21) we find
lengthy, exact expressions taken into account in our numer- K2

ical computation. These expressions assist us to appgeciat N, = = o Fy ( m,4/n;144/n; —0R¢n/2) , (22)
the role ofks > 0 in reta|n|ng positivem?. Also we con-
firm that ﬁ"ﬂa > HCI = V010/3 for ¢or < ¢ < ¢, —note  wheres F} is the Gauss hypergeometric function [14] which
thatng = 4 or 6 for K taken by Eq. (18) or Eq. (1%), re-  reduces to unity form = 0 (and anyn) or to the factor

spectively. In Table | we display the massﬁ%i ofthecor-  (fr™ —1)/¢2cr(1 + m) for n = 4 (and anym). Con-

responding fermions too. We defim/A% — VKss-s and cetrating on these cases, we solve Eq. (22) @,nwith result
Vo = vVEoo- o Whereyq andig are the Weyl spinors as-

sociated withS and® respectively. By A/ 2nN, Jex for m =0, 23)
Inserting the derived mass spectrum in the well-known T Ve — 1/ /irKCK for n =4,
Coleman-Weinberg formula, we can find the one-loop ra-

diative corrections, AV to 1791. It can be verified that
our results are immune frod V¢, provided that the renor-
malization group mass scalg, is determined by requiring
AVei(g.) = 0 or AVer(¢¢) = 0. The possible dependence
of our results on the choice & can be totally avoided if we
confine ourselves tb5<p ~ landks ~ (0.5 — 1.5) resulting N 1
to A ~ (4 —20)-10~° —cf. Ref. [2, 13]. Under these circum- \— /34 (CK/nN) (2nfn*/N*) for m =0,
ST
stances, our results in the SUGRA set-up can be exclusively 16¢ r3/2 (Foe — 1) £ for n=4
reproduced by usingc; in Eq. (8). K m m*

2n

wherefitm =1+ 8(m + 1)1"73;(]@. In both cases there is a
lower bound orek, above whichp, < 1 and so, our proposal
can be stabilized against corrections from higher ordenger

From Eg. (21) we can also derive a constrainfaandcy i.e.

R (24)
wherefn, = fr(dy) = 1 + rri(2nN,)"/4.
INFLATION ANALYSIS The inflationary observables are found from the relations
The period of slow-roll non-MCl is determined in the EF ns =1 _ig* + 20, Z - 16?*; (25)
by the condition: as = 2 (477 — (ns — 1)) /3 — 2¢,, (250)
max{€(®), |7()|} <1, (182)  where the variables with subscriptare evaluated at = ¢,

and§ Form = 0 we find

N N V2
where the slow-roll parametefsand7) read VorgVor s/ Ver

ng=1—(44+n+n/fo) /AN,, r=4n/fN,, (269)

~ ~ 2 ~ ~
e= (V. "/\/§VCI and 7/7\ =V AA/VCI (1&)) N
( Lo ) cLod as = (n2 —nn+4)fne —4(n+4) ,i)/le,iNf . (26b)

and can be derived employmgm Eq. (&), without express

explicitly Ver in terms ofg. Our results are In the limit rgrx — 0 or f,. — 1 the results of the simplest
power-law MCI, Eq. (2), are recovered — cf. Ref. [8]. The
~ n? 0 1 4+ n(l+m) n formulas above are also valid for the original non-MCI [3]
€= ——737 ==2|1-— | —-———F——cro?. .
202ck fr ™ € n 2n with cxk = 1 andrgk = cr lower than the one needed to

(19) reach the attractor’s values in Eq. (3). In this limit ouruies
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TABLE | 1: Inflationary predictions forn = 4 andm = 1, 2, and4.

| m=1 | m=2 | m=4
ne| 1—3/2N, — 3/8(N3rrx)"/? 1—4/3N, — 1/2(3N}rrx)/? 1—6/5N, — 3/5(40N%rzx)"> — 3/10(50 N7 r%)"/>
r| 1/2N?rrk +2/(N3rrx)™? | 8/3(3Nirrx)™? + 4/3(9N?rky)"/? 8(4/5N%rrk)"/5 /5 + 4(16 /25N 1% )% /5
as| —3/2N? —9/16(Nirri)'/? | —4/3N? —2/3(3N]rx)"/* —6/5N2 — 9(4/5N " rric) /% /25

are in agreement with those displayed in Ref. [7]fox 4. 6 terminate forrrx = 1, beyond which the theory ceases to

Furthermore, fon = 4 (and anym) we obtain be unitarity safe — see below — whereas the- 2 line ap-

proaches an attractor value for amy Form = 0 we reveal

=1 8y 1+ (m+2) fins (27a)  theresults of Ref. [3], i.e. the displayed lines are almasap
(Fe = D frd™ lel for 79.002 > 0.02 and converge at the values in Eq. (3) — for

128rrk 647% 1 (1 +m)(m + 2) n = 4 andé6 this is reached even forzx = 1. Form > 0 the

= m, as = s — 1)2f:;(*1+m) ’ curves move to the right and span more densely thednges

in Eq. (4) for quite naturatzk’s — e.9.0.005 < rgx < 0.1
2 ( 2m (1__m + Mfm*) _ 731(*1+m>) .(2m) form = 1andn = 4. Itis worth mentioning that the re-
T Am 2 m+ 1 quirementrzx < 1 provides a lower bound oy oz, Which
ranges fron0.0032 (for m = 0 andn = 6) to 0.015 (for
m = 4 andn = 4). Note, finally, that our estimations in
Egs. (2&)—(26) are in agreement with the numerical results
forn = 2 andrgx < 1,n = 6 [4] andrgk < 0.002 [0.05].
Form > 0 (andn = 4) our findings in Egs. (22)—(27)

Forn = 4 andm = 1, 2 and4 the outputs of Eqgs. (2§-(27b)
are specified in Table 11 after expanding the relevant foasul
for 1/N, <« 1. We can clearly infer that increasing for
fixed rrk, bothns andr increase. Note that this formulae,
based on Eq. (23), is valid only ferzx > 0 (andm # 0). . . 8

From thein(alyzic results ab>c/)ve sKee Eq( (24) azéd I;qa) 26 (and Table 1l) approximate fairly the numerical outputs for

) . <

— (2M), we deduce that the free parameters of our models(?'003 Srri < L

for fixed n andm, arerrk and /\/cﬁ/4 and notck, cr and

A as naively expected. This fact can be understood by the EEFECTIVE CUT-OFF SCALE

following observation: If we perform a rescaligg= ¢/,/cx,

Eq. (5) preserves its form replaciagnith ¢ and fi with fz' The selectedfx in Eq. (7) not only reconciles non-MClI
wherefz andVc take, respectively, the forms with the 1 ranges in Eq. (4) but also assures that the cor-

“n/2 27n jon/2 n/2 responding effective theories respect perturbative tityitap
fr=1+rrk¢"" and Vor = X°¢" /2"%¢ ", (28)  0p = 1 althoughex may take relatively large values for
o /2 ¢ < 1-eqg. forn = 4,m = 1 andrgx = 0.03 we ob-

which, indeed, depend only ofkk andA?/c; /" tain 140 < cx < 1.4-10° for 3.3-10~* < A < 3.5. This
The conclusions above can be verified and extended to oth; hievement stems from the fact thiat (J)¢ does not co-

ersn’s and m’'s numerically. In particular, confronting the incide — contrary to the pure non-MCI [15, 16] for> 2 —

guantities in Eq. (21) with the observational requireméits with ¢ at the vacuum of the theory, given that) = /e

N, ~55 and A2 ~ 4.627-1075, (29) O {J) = ek +3ck/2for (¢) = 0andn > 2 0rn = 2
° — see Eq. (8). It is notable that this by-product of our pro-

we can restricv\/c’é/‘l and ¢, and compute the model pre- posal forn > 2 arises without invoking largé¢)’s as in
dictions via Egs. (2&) and (2%), for any selectedn,n and Ref. [10, _13- 17]. ] ] i
rzx. The outputs, encoded as lines in the— 7.2 plane, To clarify further this point we analyze the small-field be-
for m = 0,1,2, and4 andn = 2 (dashed lines)p = 4  in the right-hand side of Eq. & or (%) for . = v = 0 and
(solid lines), andv = 6 (dot-dashed lines). The variation of We expand it aboup) = 0 in terms of¢ — see Eq. (6). Our
rrk is shown along each line. To obtain an accurate comparesult form = 0 andn = 2, 4, and6 can be written as
ison, we compute g2 = 16€(¢o.002) Wheregg ooz is the _ R 32 R R .2
value of¢ when the scalé = 0.002/Mpc, which undergoes J2? = <1 —rRKPZ + ?r%’mgb”*z’ + rEgd" > b .
No.ooz = (N, +3.22) e-foldings during non-MClI, crosses the
horizon of non-MCI. Similar expressions can be obtained for the oth&rtoo. Ex-

From the plots in Fig. 1 we observe that, for low enoughpanding similarlyl-1, see Eq. (8), in terms af we have
rr’S — i.e. rrx = 1077,107%, and0.001 for n = 6,4, \23
and2 —, the various lines converge to tlies, r9.002)’s ob- Vi — " (1 s SRR S R R T )
tained within MCI. At the other end, the lines for= 4and 201/ RKY Ric Ric0 ’
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FiG. 1: Allowed curves in thews — ro.002 plane form = 0, 1,2 and4, n = 2 (dashed lines)y = 4 (solid lines),n = 6 (dot-dashed lines)
and various-rx s indicated on the curves. The marginalized jaig% [95%] regions fromPlanck Bicer2/Keck Arrayand BAO data are
depicted by the dark [light] shaded contours.

independently ofn. From the expressions above we concludeProminent in this realization is the role of a shift-symneetr
that our models do not face any problem with the perturbativejuadratic functionFi in Eq. (14) which remains invisible
unitarity forrrkx < 1. Forn = 2 this statement is also valid in the SUGRA scalar potential while dominates the canoni-
even forrrk > 1 as shown in Ref. [2, 16]. In the latter case, cal normalization of the inflaton. Using > 0 and confining
though, the naturalness argument mentioned below Eg) (15 rzk to the rangé2.5-10~* — 1), where the upper bound does
is invalidated. not apply to then = 2 case, we achieved observational pre-
dictions which may be tested in the near future and converge
towards the “sweet” spot of the present data — its compati-
CONCLUSIONS bility with the m = 1 case, especially for = 4 and6, is
really impressive — see Fig. 1. These solutions can be attain
Prompted by the recent joint analysis Bicer2/Keck Ar-  even with subplanckian values of the inflaton requiring éarg
ray and Planckwhich, although does not exclude inflation- cx’s and without causing any problem with the perturbative
ary models with negligible’s, seems to favor those withls  unitarity. It is gratifying, finally, that a sizable fractioof the
of order0.01 we proposed a variant of non-MCI which can allowed parameter space of our models (with= 4) can be
safely accommodate’s of this level. The main novelty of studied analytically and rather accurately.
our proposal is the consideration of the non-canonicaltiine
mixing in EQ. (7) — involving the parametensandck — apart ACKNOWLEDGMENTS The author acknowledges useful dis-
from the non-minimal coupling to gravity in Eq. (1) which is cussions with G. Lazarides, A. Racioppi, and G. Trevisan.is Th
associated with the potential in Eq. (2). This setting can beesearch was supported from the MEC and FEDER (EC) grants
elegantly implemented in SUGRA too, employing the super+PA2011-23596 and the Generalitat Valenciana under giRONR
and Kahler potentials given in Egs. (12) and{)Lbr (1%). ETEOII/2013/017.
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