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Light-Quark Decays in Heavy Hadrons
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Abstract

We consider weak decays of heavy hadrons (bottom and charmed) where the heavy quark acts as a spectator. Theses
decays are heavily phase-space suppressed but may become experimentally accessible in the near future. These decays
may be interesting as a QCD laboratory to study the behaviourof the light quarks in the colour-background field of the
heavy spectator.
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1. Introduction

Weak decays of heavy hadrons play an important role in shaping our understanding of heavy quark physics, see [1] and
references therein. Aside from the decays where the heavy quark undergoes a weak transition, there is also a class of
decays in which the heavy quark acts as a spectator and the light quark decays in a weak transition. Depending on phase
space, this can be eithers→ u or in one case alsod→ u transitions.

Due to the very small phase space available in this class of decays, for charmed (strange) and bottom (strange) mesons
only semi-electronic decays are possible. While the small phase space substantially suppresses these decay modes, making
them difficult to be observed, the small phase space allows for solid theoretical predictions, since all form factors need to
be known only at the non-recoil point.

For some of the heavy baryons we can have - aside form the semi-electronic and semi-muonic decays - also nonleptonic
(pionic) modes. However, due to the small phase space the pion is quite soft in the rest frame of the decaying baryon,
which will make the observation of these modes quite difficult.

Since thes→ u andd→ u transitions have been investigated in all detail in ordinary beta decays as well as in kaon
and hyperon decays, there are no expectations to become sensitive to any physics effects beyond the standard model in
these heavy-flavour conserving weak processes. On the otherhand, theses decays could serve as an interesting cross check
of our understanding of light quark physics, since the heavyquark in all cases acts as a spectator. Thus the physics case for
an investigation of such processes is to test the behaviour of light-quark systems moving in the (static) colour-background
of a heavy quark.

These decays have not yet attracted a lot of attention. However, the pionic heavy-flavour conserving baryonic decay
modes have been investigated in [2, 3] where the relation of these decays with the hyperon decays are considered. The
same decays have been considered using a model in [4].

In the next section we first gather all the decays which are possible from the viewpoint of phase space and discuss the
hadronic matrix elements for a weak transition of the light quarks. It turns out that the fact that we are basically at zero
recoil (i.e. the velocity of the heavy quark does not change)allows to have on the one hand normalization statements for
the form factors derived from the flavour symmetry of the light quarks, on the other hand the heavy quark spin symmetry
allows us to obtain relations between various decays. We then first discuss the semi-electronic and semi-muonic decays
for which we can get quite accurate predictions; in a second step we look at the pionic decays, which cannot be predicted
that reliably; however, we obtain a few benchmark numbers from applying naive factorization.
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Table 1: List of heavy charm and ground-state baryons [5]. Mass for theΣ0
b baryon taken from Ref. [6] and masses forΞ′−b andΞ∗−b baryons are taken

from the latests LHCb measurement [7]. In the second column we list the total angular momentumJ and parityP of the hadron and in the third column
we give the total spinsℓ of the light degrees of freedom.

Baryon Mass [MeV] JP sℓ Quark Content (I , I3)
Λ+c 2286.46 1/2+ 0 c(ud)0 (0, 0)
Σ++c 2453.98 1/2+ 1 c(uu)1 (1, 1)
Σ+c 2452.9 1/2+ 1 c(ud)1 (1, 0)
Σ0

c 2453.74 1/2+ 1 c(dd)1 (1,−1)
Σ∗++c 2517.9 3/2+ 1 c(uu)1 (1, 1)
Σ∗+c 2517.5 3/2+ 1 c(ud)1 (1, 0)
Σ∗0c 2518.8 3/2+ 1 c(dd)1 (1,−1)
Ξ+c 2467.8 1/2+ 0 c(su)0 (1/2, 1/2)
Ξ0

c 2470.88 1/2+ 0 c(sd)0 (1/2,−1/2)
Ξ′+c 2575.6 1/2+ 1 c(su)1 (1/2, 1/2)
Ξ′0c 2577.9 1/2+ 1 c(sd)1 (1/2,−1/2)
Ξ∗+c 2645.9 3/2+ 1 c(su)1 (1/2, 1/2)
Ξ∗0c 2645.9 3/2+ 1 c(sd)1 (1/2,−1/2)
Ω0

c 2695.2 1/2+ 1 c(ss)1 (0, 0)

Λ0
b 5619.5 1/2+ 0 b(ud)0 (0, 0)
Σ0

b 5810.3 1/2+ 1 b(ud)1 (1, 0)
Σ+b 5811.3 1/2+ 1 b(uu)1 (1, 1)
Σ−b 5815.5 1/2+ 1 b(dd)1 (1,−1)
Σ∗0b 5949.3 3/2+ 1 b(ud)1 (1, 0)
Σ∗+b 5832.1 3/2+ 1 b(uu)1 (1, 1)
Σ∗−b 5835.1 3/2+ 1 b(dd)1 (1,−1)
Ξ0

b 5793.1 1/2+ 0 b(su)0 (1/2, 1/2)
Ξ−b 5794.9 1/2+ 0 b(sd)0 (1/2,−1/2)
Ξ′0b 1/2+ 1 b(su)1 (1/2, 1/2)
Ξ′−b 5935.02 1/2+ 1 b(sd)1 (1/2,−1/2)
Ξ∗0b 5949.3 3/2+ 1 b(su)1 (1/2,−1/2)
Ξ∗−b 5955.33 3/2+ 1 b(sd)1 (1/2,−1/2)
Ω−b 6048.8 1/2+ 1 b(ss)1 (0, 0)

2. Heavy flavour conserving weak decays

Looking at the spectroscopy of the ground state mesons of bottom and charm we infer that only semi-electronic decays
are allowed, if we assume that the heavy flavour remains conserved. The mass difference between the charged and neutral
D meson allows for a semi electronic decay through ad → u transition, all other decays we consider will be induced by
ans→ d transition.

Strange mesons with a heavy flavour can decay semi-electronically through ans → u transition; for theBs-meson
decay, the final state can be aB- or aB∗-meson, while for theDs-meson the only possible final state is aD-meson, since
theD∗ is too heavy. In all mesonic cases no hadronic decay is possible since the phase space is too narrow.

Table 1 shows the spectroscopy of heavy flavoured baryonic ground states. From the point of view of the heavy mass
limit, the spin of the heavy quark decouples, making the baryonic ground states particularly simple [8, 9]: They consist
of a heavy quark, acting as a source of a static colour field, and a system of light degrees of freedom having either spin
sℓ = 0 or 1.

Out of these many baryons, only theΞc, theΩc states as well as theΞb, theΩb states can undergo a heavy flavour
conserving weak transition. Unlike for the mesons, the phase space of the baryonic weak decays allows for a semi-muonic
as well as for a hadronic decay with a pion in the final state.

Table 2 lists all possible heavy flavour weak decays for bottom and charm hadrons. The second column in the table
lists the mass differences of the initial and final state heavy hadrons. We note that all mass differences are large compared
to the electron mass, so we can neglect the electron mass in the following, while we have to keep the pion and the muon
mass.
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Table 2: List of heavy flavour conserving weak decays as discussed in the text. The mass difference is∆m =
√

(M −m)2 −m2
µ for the semi-muonic

decays and∆m= M −m for all the other decays.

Decay ∆m [MeV] JP → J′P
′

sℓ → s′ℓ Quark Transition
Semi-electronic decays

D+ → D0e+ν 4.8 0− → 0− 1/2→ 1/2 d→ u
D+s → D0e+ν 103.5 0− → 0− 1/2→ 1/2 s→ u
B0

s→ B−e+ν 87.5 0− → 0− 1/2→ 1/2 s→ u
B0

s→ B∗−e+ν 41.6 0− → 1− 1/2→ 1/2 s→ u
Ξ0

c → Λ+c e−ν̄ 184.4 1/2+ → 1/2+ 0→ 0 s→ u
Ξ0

c → Σ+c e−ν̄ 18.0 1/2+ → 1/2+ 0→ 0 s→ u
Ξ+c → Σ∗++c e−ν̄ 13.8 1/2+ → 3/2+ 0→ 1 s→ u
Ω0

c → Ξ+c e−ν̄ 227.4 1/2+ → 1/2+ 1→ 0 s→ u
Ω0

c → Ξ′+c e−ν̄ 119.7 1/2+ → 1/2+ 1→ 1 s→ u
Ω0

c → Ξ∗+c e−ν̄ 49.3 1/2+ → 3/2+ 1→ 1 s→ u
Ξ−b → Λ0

be−ν̄ 175.4 1/2+ → 1/2+ 0→ 0 s→ u
Ω−b → Ξ0

be−ν̄ 255.7 1/2+ → 1/2+ 1→ 0 s→ u
Ω−b → Ξ′0b e−ν̄ 1/2+ → 1/2+ 1→ 1 s→ u
Ω−b → Ξ∗0b e−ν̄ 99.5 1/2+ → 3/2+ 1→ 1 s→ u

Semi-muonic decays
Ξ0

c → Λ+cµ−ν̄ 151.2 1/2+ → 1/2+ 0→ 0 s→ u
Ω0

c → Ξ+cµ−ν̄ 201.4 1/2+ → 1/2+ 1→ 0 s→ u
Ω0

c → Ξ′+c e−ν̄ 56.1 1/2+ → 1/2+ 1→ 1 s→ u
Ξ−b → Λ0

bµ
−ν̄ 140.0 1/2+ → 1/2+ 0→ 0 s→ u

Ω−b → Ξ0
bµ
−ν̄ 232.8 1/2+ → 1/2+ 1→ 0 s→ u

Pionic decays
Ξ0

c → Λ+cπ− 184.4 1/2+ → 1/2+ 0→ 0 s→ u
Ξ+c → Λ+cπ0 181.3 1/2+ → 1/2+ 0→ 0 s→ u
Ω0

c → Ξ+cπ− 227.4 1/2+ → 1/2+ 1→ 0 s→ u
Ω0

c → Ξ0
cπ

0 224.3 1/2+ → 1/2+ 1→ 0 s→ u
Ξ−b → Λ0

bπ
− 175.4 1/2+ → 1/2+ 0→ 0 s→ u

Ξ0
b → Λ0

bπ
0 173.6 1/2+ → 1/2+ 0→ 0 s→ u

Ω−b → Ξ0
bπ
− 255.7 1/2+ → 1/2+ 1→ 0 s→ u

Ω−b → Ξ−bπ0 253.9 1/2+ → 1/2+ 1→ 0 s→ u

2.1. Form factors for light-quark currents

To describe the decays shown in Table 2 we need matrix elements of light-quark currents with heavy hadron states. The
heavy quark is in these decays only a spectator and acts in theinfinite-mass limit as a static source of colour. In other
words, we need to look at the transition in light-quark system in the colour background created by the (static) heavy quark.
This picture allows us to obtain information on the form factors.

The four-momenta of the initialHi and finalH f heavy hadrons arepµ = Mvµ and p′µ = mv′µ, respectively, and
q2 = (p − p′)2 is the momentum transfer squared from the hadronic to the leptonic systems. Instead of the momentum
transfer squared we use the variablew = v · v′,

w =
M2 +m2 − q2

2Mm
, (1)

where the kinematic boundaries are given by

1 ≤ w ≤ wmax =
M2 +m2

2Mm
= 1+

(M −m)2

2Mm
∼ 1 , (2)

showing that the range ofw is tiny for all decays listed in Table 2, since in all cases (M − m) ≪ M. Assuming that the
form factors are slowly varying functions of the kinematic variables, we may replace all form factors by their values at
w = 1. Thus in the following we only need to obtain some insight into the form factor in the regionv ∼ v′.

3



For the mesonic decays we define the relevant form factors as (q, q′ = u, d, s)

〈H f (p′)|q̄′γµq|Hi(p)〉
√

Mm
= (v+ v′)µΦ+(w) + . . . , (3)

〈H∗f (p′, ǫ)|q̄′γµγ5q|Hi(p)〉
√

Mm
= i(w+ 1)ǫ∗µΦA1(w) + . . . , (4)

where we only show the form factors relevant for the leading contribution in the limitv → v′. In Eq. (4), ǫµ is the
polarization vector of the excited final state mesonH∗(p′, ǫ). Taking the heavy quark as static, we need to look at the
transition of a light state with the quantum number of the light quark in the mesonHi into the corresponding final light
state inH f via the vector and axial-vector (light quark) current.

Furthermore, despite of the heavy quark’s colour field, the light quark system has anS U(3)L×S U(3)R chiral symmetry,
which is generated by the currents in (3) and (4). However, this symmetry is spontaneously broken to the usualS U(3)L+R

flavour symmetry of the light quarks. Assuming that this symmetry is exact, we derive from the conservation of the vector
current the normalization statement

Φ+(1) = 1 , (5)

while the light-quark flavour symmetry does not tell us anything aboutΦA(1).
The case of the baryonic decays is more interesting, since the light-quark systems are composed of two valence quarks.

For the case of a transition between two “Λ-like” heavy baryons (i.e. baryons in ah(qq′)0 configuration) the light quark
current mediates a transition between two spinless states.Furthermore, in the heavy mass limit the spin of the baryons
is the spin of the heavy quark, which in the infinite mass limitremains unchanged; consequently, the relevant matrix
elements in the regionv ∼ v′ can be written in terms of a form factorB(w) as

〈

ΞH(v, s)
∣

∣

∣s̄γµu
∣

∣

∣ΛH(v′, s′)
〉

= ūΞ(v, s)uΛ(v′, s′)B(w)(v+ v′)µ + . . . , (6)
〈

ΞH(v, s)
∣

∣

∣s̄γµγ5u
∣

∣

∣ΛH(v′, s′)
〉

= 0+ . . . , (7)

where the ellipses denote subleading contributions in the limit v→ v′.
The light degrees of freedomsℓ in the “Λ-like” heavy baryons form a colour anti-triplet as well as ananti-triplet with

respect to the flavour symmetryS U(3)L+R of the light quarks. By the same argument as for the mesonic case, one obtains
a normalization statement for the form factorB(w),

B(1)= 1 . (8)

With the same reasoning we can obtain some insight into the form factors for the transition from a “Λ-like” heavy
baryon to a “Σ-like” heavy baryon, i.e. baryons in ah(qq′)1 configuration. In the heavy mass limit, the heavy quark spin
remains unchanged, and the amplitude is determined by the transition of the 0+ state of the light degrees of freedom into
a 1+ state. In this way we get forv ∼ v′,

〈

ΞH(v, s)
∣

∣

∣s̄γµγ5u
∣

∣

∣ΣH(v′, s′)
〉

= ūi(v, s)uf (v′, s′)ǫµA(w) + . . . , (9)
〈

ΞH(v, s)
∣

∣

∣s̄γµu
∣

∣

∣ΣH(v′, s′)
〉

= 0+ . . . , (10)

whereui (uf ) is the spinor of the heavy quark in the initial (final) state,A(w) is an unknown form factor, and the ellipse
again denote subleading terms.

We have not yet specified the spin of the “Σ-like” heavy baryon which can be either 1/2 or 3/2. Projecting out the
relevant components by combining the polarization vector of the light degrees of freedomǫ′ν with the heavy quark spin
[8, 9],

ψ(3/2)
µ = ǫ′ν

[

δνµ −
1
3

(γµ + v′µ)γ
ν

]

uf (v′, s′) = RΣ,3/2µ (v′, s′) , (11)

ψ(1/2)
µ = ǫ′ν

[

1
3

(γµ + v′µ)γ
ν

]

uf (v′, s′) =
1
√

3
(γµ + v′µ)γ5uΣ,1/2(v′, s′) , (12)

we get for the relevant matrix elements from Eq. (9),
〈

ΞH(v, s)
∣

∣

∣s̄γµγ5u
∣

∣

∣Σ
(3/2)
H (v′, s′)

〉

= ūΞ(v, s)RΣ,3/2µ (v′, s′)A(w) + . . . , (13)
〈

ΞH(v, s)
∣

∣

∣s̄γµγ5u
∣

∣

∣Σ
(1/2)
H (v′, s′)

〉

=
1
√

3
ūΞ(v, s)(γµ + v′µ)γ5uΣ,1/2(v′, s′)A(w) + . . . , (14)
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whereRΣ,3/2µ is the Rarita-Schwinger field for the spin 3/2 baryon anduΣ,1/2 is the spinor for the spin 1/2 baryon. Note
also that we have replaced the heavy quark spin of the initialstate with the one of the “Λ-like” heavy baryon of the initial
state.

Close tow = 1 we can replaceA(w) by A(1) however, in this case we do not have a normalization statement, since
the axial current generates a broken symmetry. However, dueto the heavy quark’s spin symmetry we get the same factor
A(1) for both the spin 1/2 and the spin 3/2 case.

Finally, the heavyΩ-baryons also decay weakly, so we also have the case of a colour-antitriplet 1+ state decaying into
a heavyΞ orΞ′ baryon. For the case of a 1+ → 0+ transition we get the same structure as for the 0+ → 1+ (up to complex
conjugation), while the case 1+ → 1+ needs a new discussion.

For this we start again form the heavy mass limit and note thatthe heavy quark spin remind unchanged. The underlying
1+ → 1+ transition via a vector current is usually described in terms of six form factors out of which five vanish asv→ v′.
The transition amplitudes via the axial vector has to have a Levi-Civita-tensor and hence will vanish forv→ v′. To this
end we get in terms of a form factorC(w)

〈

ΩH(v, s)
∣

∣

∣s̄γµu
∣

∣

∣Ξ
(′,∗)
H (v′, s′)

〉

= ūi(v, s)uf (v′, s′)(ǫ∗ · ǫ′)(vµ + v′µ)C(w) + . . . , (15)
〈

ΩH(v, s)
∣

∣

∣s̄γµγ5u
∣

∣

∣Ξ
(′,∗)
H (v′, s′)

〉

= 0+ . . . . (16)

Again we have not yet specified the total spin of the baryons. While the initialΩH will have total spin 1/2, the final states
can either be spin 1/2 or 3/2. Using Eqs. (11) and (12), we can project out the relevant components and obtain

〈

ΩH(v, s)
∣

∣

∣s̄γµu
∣

∣

∣Ξ
(3/2)
H (v′, s′)

〉

= − 1
√

3
ūΩ(v, s)γ5 (γα + vα) RΞ,3/2α (v′, s′)

(

v+ v′
)

µ C(w) + . . . , (17)

〈

ΩH(v, s)
∣

∣

∣s̄γµu
∣

∣

∣Ξ
(1/2)
H (v′, s′)

〉

= −1
3

ūΩ(v, s)γ5 (γα + vα)
(

γα + v′α
)

γ5uΞ(v′, s′)
(

v+ v′
)

µ C(w) + . . . . (18)

With the same arguments as above, we can replaceC(w) by C(1) in the limitw→ 1. Since the transition proceeds through
the vector current, and the light quark states in the initialand final state belong to the sameS U(3)L+R multiplet, we infer

C(1) = 1 . (19)

2.2. Semi-electronic decays with conserved heavy flavour

In this section we will calculate the decay rates of heavy-flavour conserving semi-leptonic decays. Table 2 lists all the
possible semi-electronic decays of bottom and charm hadrons. The differential decay rates for exclusive semileptonic
decays are in general given by

dΓ
dw
=

G2
F M5

192π3
|VCKM |2

√
w2 − 1 P(w) , (20)

where
P(w) = Hµν(v, v

′)Lµν(v, v′) , (21)

with Hµν andLµν are the hadronic and leptonic tensors, respectively.
The integration overw can be performed when settingw = 1 in the hadronic form factors. To this end, it is useful to

expand in the small velocity difference
v′ = v− ∆ , ∆ = v− v′ .

The leptonic tensor becomes forq = Mv−mv′ = (M −m)v+m∆, neglecting the electron mass

Lµν = gµνq
2 − qµqν (22)

= (M −m)2(gµν − vµvν) − 2Mm gµν(w− 1)

−m(M −m)(∆µvν + vµ∆ν) −m2∆µ∆ν .

We shall compute the total rate, including only the leading term in the mass difference (M −m). The integration over

5



Table 3: Branching ratios for semileptonic meson decays as discussed in the text.

Mode Decay Rate [GeV] Branching Ratio
D+ → D0e+ν 1.72× 10−25 2.71× 10−13

D+s → D0e+ν 4.40× 10−20 3.34× 10−8

B0
s→ B−e+ν 1.90× 10−20 4.37× 10−8

B0
s→ B∗−e+ν 1.38× 10−21 3.17× 10−9

w yields the expressions

wmax
∫

1

dw
√

w2 − 1 =
(M −m)3

3M3
+ O

(

(M −m)4

M4

)

, (23)

wmax
∫

1

dw (w− 1)
√

w2 − 1 =
(M −m)5

10M5
+ O

(

(M −m)6

M6

)

, (24)

wmax
∫

1

dw (w− 1)2
√

w2 − 1 =
(M −m)7

28M7
+ O

(

(M −m)8

M8

)

, (25)

wmax
∫

1

dw (w− 1)n
√

w2 − 1 = O
(

(M −m)2n+3

M2n+3

)

, (26)

which show that a one power of (w− 1) in the differential rate counts as two powers of (M −m) in the total rate. Hence,
looking at the expansion (22) of the leptonic tensor we note that the leading terms ofLµν are already of order (M −m)2.
Note that, depending on the hadronic tensor, even the last term involving ∆µ∆ν needs to be kept, since∆2 = 2v · ∆ =
2(1− w) ∼ (M −m)2.

For the hadronic tensor this means that we need to include only the leading term with∆ = 0, which is in all cases of
order (M −m)0. The simplest process is the decay 0− → 0− between ground states, where we have a light quark transition
in the background field of the heavy quark. Using the discussion from the previous section, we insert for the hadronic
tensor Eq. (3)

Hµν = 4M2vµvν . (27)

Inserting the integral (24), we get

Γ0−→0− =
G2

F

60π3
|VCKM |2(M −m)5 . (28)

For the transition 0− → 1− mesons we obtain for the hadronic tensor from (4)

Hµν = 4M2|ΦA(1)|2
∑

Pol

ǫµǫν

= 4M2|ΦA(1)|2(gµν − vµvν) . (29)

Using the integrals (23) and (24), and keeping only the leading order, we get using (4) for the total decay rate

Γ0−→1− =
G2

F

20π3
|VCKM |2(M −m)5|ΦA(1)|2 . (30)

For our numerical estimates shown in Table 3 we shall setΦA(1) = 1. Note that the result forΦA(1) = 1 just reflects
spin counting, furthermore, the sum of the two rates is just the total, spin-summed decay rate for the spin 1/2 light system
decaying in the colour background of the heavy quark.

Table 3 lists the rates and the branching ratios (B) for the mesonic semileptonic decays. Note that theD+ → D0 decay
is ad→ u transitions, while all other decays ares→ u.

With the same method we can discuss the semi-electronic decays of heavy baryons. As discussed above the light
degrees of freedom are more complicated in this case. For this reason we introduce the notation, where the superscript
denotes the spin-parity of the baryon transitions, while the subscripts denote the spin-parity of the corresponding transition
of the light degrees of freedom.
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Table 4: Decay rates and branching ratios for semi-electronic baryon decays as explained in the text.

Mode Decay Rate [GeV] Branching Ratio
Ξ0

c → Λ+c e−ν̄ 7.91× 10−19 1.35× 10−7

Ξ0
c → Σ+c e−ν̄ 6.97× 10−24 1.19× 10−12

Ξ+c → Σ++c e−ν̄ 3.74× 10−24 1.26× 10−12

Ω0
c → Ξ+c e−ν̄ 2.26× 10−18 2.36× 10−7

Ω0
c → Ξ′+c e−ν̄ 3.63× 10−19 3.81× 10−8

Ω0
c → Ξ∗+c e−ν̄ 1.49× 10−29 1.57× 10−18

Ξ−b → Λ0
be−ν̄ 6.16× 10−19 1.46× 10−6

Ω−b → Ξ0
be−ν̄ 4.05× 10−18 6.78× 10−6

Ω−b → Ξ∗0b e−ν̄ 3.27× 10−28 5.47× 10−16

For the decays of the typeΞ→ Λeν̄ where the light degrees of freedom are in a spineless state, we obtain using (6)

Γ
1/2+→1/2+

0+→0+ =
G2

F |VCKM |2

60π3
(M −m)5 , (31)

where we have used the form factors obtained in the previous subsection. Note that this is the same result as for the
mesonic 0− → 0− transition, which is not surprising, since this is just a spinless system of light degrees of freedom
decaying in the colour-background of the heavy quark.

For the final states with a “Σ-like” baryon we obtain from Eqs. (14) and (13),

Γ
1/2+→3/2+

0+→1+ =
G2

F |VCKM |2

30π3
(M −m)5|A(1)|2 , (32)

Γ
1/2+→1/2+

0+→1+ =
1
2
Γ

1/2+→3/2+

0+→1+ , (33)

where we again note that the sum of the two rates is just the result we obtained for the mesonic 0− → 1− transition. Again
this is due to spin counting, since in both decays we observe atransition of a light 0+ state into a light 1+ state, however,
with different spin combinations with the heavy quark.

Finally, utilizing (17) and (18) we find for final states with a“Ξ-like” baryon,

Γ
1/2+→1/2+

1+→1+ =
G2

F |VCKM |2

15π3
(M −m)5 , (34)

Γ
1/2+→3/2+

1+→1+ = O([M −m]7) . (35)

where the last line means that this transition has an additional suppression factor (M − m)2/M2 compared to the other
decays, the rates of which are all of the orderG2

F(M −m)5. Since we only considered the leading terms of the form factors
for v ∼ v′, we cannot obtain a result for these decay on the basis of the discussion in section 2.1.

For our numerical estimates we shall set|A(1)|2 = 1; in Table 4 we list the branching ratios for possible semi-electronic
baryon decays with conserved heavy flavour.

2.3. Semi-Muonic Decays

For a few of the baryonic decays phase space is large enough toallow for semi-muonic decay. In this case we have to take
into account the massmµ of the muon in the leptonic tensor

Lµν =
(q2 −m2

µ)
2(2q2 +m2

µ)

2q2
gµν −

(q2)3 − 3m4
µq

2 + 2m6
µ

(q2)3
qµqν , (36)

with q = Mv−mv′.
The muon mass is of the same order as the mass difference (M −m) between the initial and the final state baryon, and

thus an expansion in (M −m) as in the massless case is spoiled by the presence of the ratio mµ/(M −m) ∼ O(1). Hence
we perform the integration over the phase space after contracting the leptonic tensor (36) with the hadronic tensors taken
at v = v′ without the expansions (23) and (24) performed in the massless case. The results for the rates and branching
fractions are shown in Table 5. It is interesting to note thatthe branching ratios for the semi-muonic channels are not that
much smaller as it is suggested by phase space; this effect is due to the presence of the muon mass in the leptonic tensor.
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2.4. Non-leptonic (pionic) decays

The non-leptonic decays with conserved heavy flavour are an interesting QCD laboratory for light quarks and gluons
moving in the background field of the heavy quark; for this reason they have been studied already to some extend in [2, 3]
and we mainly update these analyses.

The relevant effective Hamiltonian is the usual∆S = ±1 weak-transition Hamiltonian, which reads

H (l)
eff =

4GF√
2

VusV
∗
ud

∑

i

CiOi (37)

=
4GF√

2
VusV

∗
ud

[

C+(s̄LγµuL)(ūLγ
µdL) +C−(s̄LγµdL)(ūLγ

µuL)

]

+ · · · ,

whereC+ ≈ 1.3 andC− ≈ −0.6, and where we omitted all contributions with very small Wilson coefficientsCi .
This part of the effective Hamiltonian is sufficient for the heavy-flavour conserving decays of bottom baryons; however,

as has been pointed out by Voloshin [2] there is another relevant contribution for charmed baryons

H (c)
eff =

4GF√
2

VcsV
∗
cd

[

C+(s̄LγµcL)(c̄Lγ
µdL) +C−(s̄LγµdL)(c̄Lγ

µcL)

]

(38)

generating a difference in the decay amplitudes for the heavy-flavour conserving decays of charm baryons compared to
the corresponding amplitudes for bottom baryons.

Since the phase space of the pion is rather small, one may use the soft pion limit to gain some further insight [2]. The
soft pion theorem allows us to write

〈

Bi |Heff | Bfπ
a(~pπ = 0)

〉

=

√
2

fπ

〈

Bi

∣

∣

∣

∣

[

Heff , Qa
5

]

∣

∣

∣

∣
Bf

〉

, (39)

whereQa
5 is the axial charge corresponding to the pion

Q+5 =

∫

d3~xū(x)γ0γ5d(x) , Q−5 = (Q+5 )† , (40)

Q0
5 =

1
√

2

∫

d3~x
(

ū(x)γ0γ5u(x) − d̄(x)γ0γ5d(x)
)

, (41)

and fπ ∼ 130 MeV is the pion decay constant.
It has been shown in Ref. [2] that in this limit the transitions are dominated by theS wave and are purely∆I = 1/2.

Thus to a very good approximation one has

〈

Ξ+c |Heff |Λ+cπ0
〉

=
1
√

2

〈

Ξ0
c |Heff |Λ+cπ−

〉

, (42)

〈

Ξ0
b |Heff |Λ0

bπ
0
〉

=
1
√

2

〈

Ξ−b |Heff |Λ0
bπ
−
〉

, (43)

and

〈

Ω0
c |Heff |Ξ0

cπ
0
〉

=
1
√

2

〈

Ω0
c |Heff |Ξ+cπ−

〉

, (44)

〈

Ω−b |Heff |Ξ−cπ0
〉

=
1
√

2

〈

Ω0
b |Heff |Ξ0

bπ
−
〉

. (45)

Table 5: Decay rates and branching ratios for semi-muonic baryon decays as explained in the text.

Mode Decay Rate [GeV] Branching Ratio
Ξ0

c → Λ+cµ−ν̄ 1.3× 10−19 2.3× 10−8

Ω0
c → Ξ+cµ−ν̄ 7.1× 10−19 7.4× 10−8

Ω0
c → Ξ+′c µ

−ν̄ 1.0× 10−21 1.1× 10−10

Ξ−b → Λ0
bµ
−ν̄ 9.1× 10−20 2.2× 10−7

Ω−b → Ξ0
bµ
−ν̄ 1.7× 10−18 2.8× 10−6
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We first consider the decays of the bottom baryons for which wedo not need to take into accountH (c)
eff . Clearly

the matrix element of the weak Hamiltonian is difficult to estimate, and we will be able to make only rather qualitative
statements. We shall approach this problem from the point ofview of the head quark limit: the heavy quark completely
decouples from the process, leaving a weak decay of a di-quark system in the background field of the heavy quark. To
this end, the amplitude for theΞ−b → Λ0

bπ
− transitions may be written as

〈

Ξ−b |Heff |Λ0
bπ
−
〉

= ūΞ(v)uΛ(v′)
〈

(sd)0 |Heff | (ud)0π
−〉

ext

≡ ūΞ(v)uΛ(v′)A((sd)0→ (ud)0π
−) , (46)

where the subscript “ext” means that the transition is taking place in the color-background field of the heavy quark, and
(qq′)sℓ denotes a di-quark with total spinsℓ. Using this notation, the decay rate forΞ−b → Λ0

bπ
− becomes

Γ(Ξ−b → Λ0
bπ
−) =

√

[M2 − (m−mπ)2][ M2 − (m+mπ)2]
16πM3

∣

∣

∣A((sd)0→ (ud)0π
−)

∣

∣

∣

2
. (47)

Unfortunately nothing is known about the matrix element forthe di-quark decay, so we only can set this into a relation
with with the typical amplitudes for a weak transition. If weconsider the weak decays of a pseudo scalar meson into a
final state of two pseudo scalar mesonsM → M1 + M2, we get

〈M |Heff |M1 M2〉 = 2M VCKM aweak , (48)

whereM is the mass of the initial state and the usual relativistic normalization is used. The value for|aweak| covers only a
limited range when scanning over the weak decays ofB, D andK mesons

|aweak| ∼ (1 · · ·2)× 10−6 . (49)

If the amplitude for the di-quark transition is of the same order of magnitude, we estimate

A((sd)0→ (ud)0π
−) ∼ 2M VusV

∗
ud aweak , (50)

where the spinors in (46) are assumed to be normalized non-relativistically. Inserting the numbers, we obtain the estimates
given in Table 6.

In the same spirit we can deal with the decayΩ−b → Ξ0
bπ
−. However, here the di-quark of the initial state has spin one,

so we get
〈

Ω−b |Heff |Ξ0
bπ
−
〉

=
1
√

3

∑

λ

ūΩ(v)γ5/ǫ(λ) uΞ(v
′)

〈

(ss)1, λ |Heff | (us)0π
−〉

ext , (51)

whereλ = ±, 0 are the polarizations of the vector di-quark in the initialstate. The matrix element will have the form

〈

(ss)1, λ |Heff | (us)0π
−〉

ext = (ǫ∗(λ) · v′)A (

(ss)1→ (us)0π
−) , (52)

so we obtain, assuming equal amplitudes of all helicities

〈

Ω−b |Heff |Ξ0
bπ
−
〉

=
1
√

3
(1+ vv′)ūΩ(v)γ5uΞ(v′)A

(

(ss)1 → (us)0π
−) . (53)

From this we obtain for the rate

Γ(Ω−b → Ξ0
bπ
−) =

([M2 − (m−mπ)2][ M2 − (m+mπ)2])3/2

192πM7
|A (

(ss)1 → (us)0π
−) |2 . (54)

Assuming agin that the corresponding amplitude is of the order

A (

(ss)1→ (us)0π
−) ∼ 2M VusV

∗
ud aweak , (55)

we obtain the numbers of in Table 6.
The pionic heavy flavour conserving of charmed hadrons involve also the partH (c)

eff of the effective weak Hamiltonian.
We first consider the decayΞ0

c → Λ+cπ−. Making use of the soft-pion theorem (39), we obtain

〈

Ξ0
c

∣

∣

∣H (c)
eff

∣

∣

∣Λ+cπ
−
〉

= −
√

2
fπ

〈

Ξ0
c

∣

∣

∣

∣

[

H (c)
eff , Q−5

]

∣

∣

∣

∣
Λ+c

〉

. (56)
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In the infinite mass limit, only the vector current contributes, so we get
〈

Ξ0
c

∣

∣

∣H (c)
eff

∣

∣

∣Λ+cπ
−
〉

= −GF

fπ
VcsV

∗
cd

〈

Ξ0
c

∣

∣

∣(c̄γµc)(s̄γµd)
∣

∣

∣Λ+c

〉

. (57)

It has been shown in [2] that one may obtain information on these matrix elements from the lifetime differences of charmed
baryons, assuming light-quark flavour symmetry. The numberfound in [2] is

〈

Ξ0
c

∣

∣

∣H (c)
eff

∣

∣

∣Λ+cπ
−
〉

∼ −2M ×
(

5.4× 10−7
)

, (58)

with an uncertainty of about 50%.
Here we shall try to understand the the anatomy of these matrix elements a bit further in order to also include an

estimate for the pionic decays of theΩc. To this end we note that in the infinite mass limit we have to match (57) on static
heavy quarks moving with the same velocityv, since in the soft-pion limit the heavy quark velocity does not change. As
a consequence we get

〈

Ξ0
c

∣

∣

∣H (c)
eff

∣

∣

∣Λ+cπ
−
〉

= 2M ūΞ(v)uΛ(v′)

(

GF

fπ
VcsV

∗
cd µ

3

)

, (59)

whereµ is a nonperturbative hadronic scale of the order of a few hundred MeV, which is related to the wave functions of
the constituents at the origin. In fact, from the result of [2] we inferµ ∼ 300 MeV.

The full amplitude forΞ0
c → Λ+cπ− consists of the two contributions fromH (l)

eff andH (c)
eff . However, nothing is known

about the relative phaseφ of these two contributions, so one gets

〈

Ξ0
c |Heff |Λ+cπ−

〉

= 2M ūΞ(v)uΛ(v)

(

VusV
∗
ud eiφaweak+

GF

fπ
VcsV

∗
cdµ

3

)

. (60)

Assuming constructive inference we get an upper limit for the decay rates and branching fractions for these decays, which
is shown in Table 6.

When considering the decaysΩc → Ξcπ we need to take into account that the the light degrees of freedom in theΩc

are in a spin-1 state. To this end, the relevant matrix element takes the form
〈

Ω0
c

∣

∣

∣H (c)
eff

∣

∣

∣Ξ+cπ
−
〉

= 2M
1
√

3
ūΩ(v)γ5(γα + vα)uΛ(v′) Wα , (61)

whereWα describes the decay of the vector di-quark into a scalar di-quark under the emission of a pion. Note that we
have not yet setv = v′, since the vector-spinor object for theΩc is transverse and the amplitude would vanish forv = v′.
In our estimates, we assume for the quantityWα

Wα = v′α

(

GF

fπ
VcsV

∗
cd µ

3

)

, (62)

with the same hadronic parameterµ. This yields

〈

Ω0
c

∣

∣

∣H (c)
eff

∣

∣

∣Ξ+cπ
−
〉

=
2M
√

3
(1+ vv′) ūΩ(v)γ5uΛ(v′)

(

GF

fπ
VcsV

∗
cd µ

3

)

. (63)

Inserting numbers we can estimate the contribution fromH (c)
eff . As above, the relative phases of the contributions from

H (c)
eff andH (l)

eff are to known, we end up with a large uncertainty in our prediction.

3. Summary

Heavy flavour conserving weak decays will very likely not advance our insight into weak interactions; however, they
may be an interesting QCD laboratory for the study of light-quark systems in the colour-background field of a heavy
quark. While for heavy mesons this mainly is the decay of a light quark in such a background field, the situation for a
heavy baryon may be more interesting in this respect, since the light degrees of freedom form a more complicated system.

The semi-electronic modes are under reasonable theoretical control and thus may serve as a benchmark test for the
pionic modes. Like in non-leptonic kaon processes, naive factorization will probably not work, but the numbers obtained
in this way may give a hint of the size of the branching fractions. Here it will be interesting to see, if some patterns
observed in the kaon system also appear, if the light-quark systems decay in a colour background field.

One obvious disadvantage of these decays is their suppression through the small phase space. Relative to the major
decay modes, these decays suffer from a suppression factor (M − m)5/M5 for the semi-electronic modes, and the phase
space suppression for the pionic modes is numerically aboutthe same. This leaves branching fractions of the oder of
10−6 in the best cases, typically 10−7 to 10−8. This makes the investigation of these decays a challenge for theB physics
experiments.
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Table 6: Branching ratios for pionic baryon decays as explained in the text.

Mode Decay Rate [GeV] Branching Ratio
Ξ−b → Λ0

bπ
− (0.8 · · ·3.2)× 10−15 (1.9 · · ·7.6)× 10−3

Ξ0
b → Λ0

bπ
0 (0.4 · · ·1.7)× 10−15 (0.9 · · ·3.7)× 10−3

Ω−b → Ξ0
bπ
− (0.7 · · ·2.6)× 10−18 (1.1 · · ·4.3)× 10−6

Ω−b → Ξ−bπ0 (0.3 · · ·1.3)× 10−18 (0.6 · · ·2.2)× 10−6

Ξ0
c → Λ+cπ− < 1.7× 10−14 < 3× 10−3

Ξ+c → Λ+cπ0 < 8.8× 10−15 < 6× 10−3

Ω0
c → Ξ+cπ− < 3.5× 10−17 < 3.7× 10−6

Ω0
c → Ξ0

cπ
0 < 1.8× 10−17 < 1.1× 10−6
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