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Abstract

We have studied the contribution of the high-scale SUSY to the KL → π
0
νν̄ and K

+ →
π
+
νν̄ processes by correlating with the CP violating parameter ǫK . Taking account of the

recent LHC results for the Higgs discovery and the SUSY searches, we consider the high-
scale SUSY at the 10−50TeV scale in the framework of the non-minimal squark (slepton)
flavor mixing. The Z penguin mediated the chargino dominates the SUSY contribution
for these decays. At the 10TeV scale of the SUSY, the chargino contribution can enhance
the branching ratio of KL → π

0
νν̄ in eight times compared with the SM predictions

whereas the predicted branching ratio BR(K+ → π
+
νν̄) increases up to three times of

the SM one. The gluino box diagram dominates the SUSY contribution of ǫK up to
30%. If the down-squark mixing is neglected compared with the up-squark mixing, the Z
penguin mediated the chargino dominates both SUSY contributions of BR(KL → π

0
νν̄)

and ǫK . Then, it is found a correlation between them, but the chargino contribution to
ǫK is at most 3%. Even if the SUSY scale is 50TeV, the chargino process still enhances
the branching ratio of KL → π

0
νν̄ from the SM prediction in the factor two, and ǫK is

deviated from the SM prediction in O(10%). We also discuss the chargino contribution
to KL → π

0
e
+
e
− process.
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1 Introduction

The K meson physics have provided important informations in the indirect search for New
Physics (NP). Especially, the rare decay processes K+ → π+νν̄ and KL → π0νν̄ are known
as the clean one theoretically [1, 2]. Therefore, these both processes have been considered to
be one of the powerful probes of NP [3]-[14] whereas these decay widths are bounded by so
called the Grossman-Nir bound for the NP [15, 16].

The KL → π0νν̄ process is the CP violating one and provides the direct measurement
of the CP violating phase in the Cabibbo-Kobayashi-Maskawa (CKM) matrix [17, 18]. In
addition, the CP conserving process K+ → π+νν̄ is also the physical quantity related with
the unitarity triangle (UT). On the other hand, the CP violating parameter ǫK , which is
induced by the K0− K̄0 mixing, also constrains the height of the UT. Hence these measured
variables give us the information of the UT fit as well as the CP violating quantity sin 2φ1

induced by the B0 − B̄0 mixing. Furthermore, the K → πνν̄ processes are expected to open
the NP window in the CP violating flavor structure.

The K+ → π+νν̄ andKL → π0νν̄ decay processes are governed by the Z penguin diagram
in the Standard Model (SM) [19], which predicts

BR(KL → π0νν̄)SM = (2.43+0.40
−0.37 ± 0.06)× 10−11,

BR(K+ → π+νν̄)SM = (7.81+0.80
−0.71 ± 0.29)× 10−11 . (1)

In the estimation of the branching ratio of K → πνν̄, the hadronic matrix elements can be
extracted with the isospin symmetry relation [20, 21]. These processes are theoretically clean
because the long-distance contributions are small [12], and then the theoretical uncertainty
is estimated below several percent. On the other hand, ǫK has the different flavor mixing
structure from these processes since it is induced by the box diagram of K0 − K̄0 mixing.
Therefore, the NP is expected to appear in both K → πνν̄ and ǫK with different magnitudes.

On the experimental side, the upper bound of the branching ratio of KL → π0νν̄ is given
by the KEK E391a experiment [22]. The branching ratio of K+ → π+νν̄ measured by the
BNL E787 and E949 experiments is consistent with the SM prediction [23];

BR(KL → π0νν̄)exp < 2.6× 10−8 (90%C.L.),

BR(K+ → π+νν̄)exp = (1.73+1.15
−1.05)× 10−10. (2)

At present, the J-PARC KOTO experiment is an in-flight measurement of KL → π0νν̄
approaching to the SM predicted precision [24, 25], while the CERN NA62 experiment [26]
studies the K+ → π+νν̄ process.

On the theoretical side, the supersymmetry (SUSY) is one of the most attractive candi-
dates for the NP. However, the SUSY signals have not been observed yet, and then the recent
searches for new particles at the LHC give us important constraints for the SUSY. Since the
lower bounds of masses of the SUSY particles increase gradually, the squark and the gluino
masses are supposed to be at the higher scale than 1 TeV [27, 28, 29]. Moreover, the SUSY
models have been seriously constrained by the Higgs discovery, in which the Higgs mass is
126 GeV [30, 31].

These facts suggest a class of SUSY models with heavy sfermions. If the squark and
slepton masses are expected to be O(10− 100) TeV, the lightest Higgs mass can be pushed
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up to 126 GeV, whereas all SUSY particles can be out of the reach of the LHC experiment.
Therefore, the indirect search of the SUSY particles becomes important in the low energy
flavor physics [32, 33, 34].

So far, the effects of SUSY on the K+ → π+νν̄ and KL → π0νν̄ processes have been
studied in the framework of the Minimal Supersymmetric Standard Model (MSSM) with the
minimal flavor violation (MFV) scenario intensively [8, 10]. Since the SUSY mass scale is
pushed up more than 1 TeV region at present, the effect of the MSSM with MFV is expected
to be very small. These processes are also discusses in the framework of the general SUSY
model [9, 35, 36, 37, 38, 39, 40] at the O(500) GeV scale.

We have studied the SUSY contribution to the CP violation of the B meson and ǫK
induced by the K0 − K̄0 mixing under the relevant SUSY particle spectrum constrained by
the observed Higgs mass [34]. Then, it is found that the SUSY contribution could be up to
40% in the observed ǫK , on the other hand, it is minor in the CP violation of the B meson at
the high scale of 10 − 50 TeV. Therefore, in this paper, we investigate the high-scale SUSY
contribution to K+ → π+νν̄ and KL → π0νν̄ by correlating with ǫK in the framework of the
mass eigenstate of the SUSY particles, which is consistent with the updated experimental
situations like the direct SUSY searches and the Higgs discovery, with the non-minimal squark
(slepton) flavor mixing.

Our paper is organized as follows. Sec.2 gives the basic framework of K+ → π+νν̄,
KL → π0νν̄ and ǫK in the SM and the MSSM. In Sec.3, we present the setup of the high-
scale SUSY. In Sec.4, we discuss our numerical results. Sec.4 is devoted to the summary.
The SUSY mass spectra and the Z penguin amplitude mediated the chargino are given in
Appendices A and B, respectively.

2 Basic framework

In this section, we present the basic formulae for the K → πνν̄ decay and the CP violating
parameter ǫK , which correspond to |∆S| = 1 and |∆S| = 2 processes, respectively. The
K+ → π+νν̄ and KL → π0νν̄ processes are clean ones theoretically since the hadronic matrix
elements can be extracted including isospin breaking corrections by taking the ratio to the
leading semileptonic decay of K+ → π0e+ν. Moreover, the long-distance contributions to
these rare decays are negligibly small. Therefore, the accurate measurements of these decay
processes provide the crucial tests of the SM. Especially, the KL → π0νν̄ process is purely
the CP violating one, which can reveal the source of the CP violating phase.

On the other hand, the CP violating parameter ǫK is measured with enough accuracy.
The major theoretical ambiguity comes from the hadronic matrix element factor B̂K . The
recent lattice calculations give us the reliable value for B̂K [41, 42]. The more accurate
estimate of the SM contribution enables us to search the NP such a SUSY because we know
the accurate observed value of ǫK . Actually, the non-negligible SUSY contribution has been
expected in ǫK at the scale of O(100) TeV [32, 33, 34]. Consequently, it is required to examine
the high-scale SUSY contribution in K → πνν̄ by correlating with ǫK .

2



2.1 Basic framework : K+ → π+νν̄ and KL → π0νν̄

2.1.1 K+ → π+νν̄ and KL → π0νν̄ in the SM

Let us start with discussing the framework of the K+ → π+νν̄ and KL → π0νν̄ processes in
the SM [1]. The effective Hamiltonian for K → πνν̄ in the SM is given:

HSM
eff =

GF√
2

2α

πsin2θW

∑

i=e,µ,τ

[V ∗
csVcdXc + V ∗

tsVtdXt] (s̄Lγ
µdL)

(

ν̄i
Lγµν

i
L

)

+H.c., (3)

which is induced by the box and the Z penguin mediated the W boson. The dominant
box contrition is derived by the top-quark exchange, on the other hand, the charm-quark
exchange contributes to the Z penguin process as well as the top-quark one. The up-quark
contribution is negligible due to its small mass. So, the loop function Xc denotes the charm-
quark contribution of the Z penguin, and Xt is the sum of the top-quark exchanges of the
box diagram and the Z penguin in Eq.(3).

Let us define the function F as follows:

F = V ∗
csVcdXc + V ∗

tsVtdXt . (4)

The branching ratio of K+ → π+νν̄ is given in terms of F . Taking the ratio of it to the
branching ratio of K+ → π0e+ν̄, which is the tree level process, we obtain a simple form:

BR(K+ → π+νν̄)

BR(K+ → π0e+ν̄)
=

2

|Vus|2
(

α

2πsin2θW

)2
∑

i=e,µ,τ

|F |2. (5)

The K+ → π0e+ν̄ decay is precisely measured as BR(K+ → π0e+ν̄)exp = (5.07±0.04)×10−2

[43], and its hadronic matrix element is related to the one of K+ → π+νν̄ with the isospin
symmetry:

〈π0|
(

d̄Lγ
µsL

)

|K̄0〉 = 〈π0| (s̄LγµuL) |K+〉, (6)

〈π+| (s̄LγµdL) |K+〉 =
√
2〈π0| (s̄LγµuL) |K+〉, (7)

where the coefficients are determined by the Clebsch-Gordan coefficient. By using this rela-
tion, the hadronic matrix element has been removed in Eq.(5).

Now the branching ratio for K+ → π+νν̄ is expressed as follows:

BR(K+ → π+νν̄) = 3κ · rK+|F |2, (8)

κ =
2

|Vus|2
(

α

2πsin2θW

)2

BR(K+ → π0e+ν̄), (9)

where rK+ is the isospin breaking correction between K+ → π0e+ν̄ and K+ → π0e+ν̄ [20, 21],
and the factor 3 comes from the sum of three neutrino flavors. It is noticed that the branching
ratio for K+ → π+νν̄ depends on both the real and imaginary part of F .
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For the KL → π0νν̄ decay, the K0− K̄0 mixing should be taken account, and one obtains

A(KL → π0νν̄) =
GF√
2

2α

πsin2θW

(

ν̄i
Lγµν

i
L

)

〈π0|
[

F (s̄LγµdL) + F ∗(d̄LγµsL)
]

|KL〉

=
GF√
2

2α

πsin2θW

(

ν̄i
Lγµν

i
L

) 1√
2

[

F (1 + ǭ)〈π0|(s̄LγµdL)|K0〉+ F ∗(1− ǭ)〈π0|(d̄LγµsL)|K̄0〉
]

=
GF√
2

2α

πsin2θW

(

ν̄i
Lγµν

i
L

) 1√
2
[F (1 + ǭ)− F ∗(1− ǭ)] 〈π0|(d̄LγµsL)|K0〉

≃ GF√
2

2α

πsin2θW

(

ν̄i
Lγµν

i
L

) 1√
2
2ImF 〈π0|(d̄LγµsL)|K0〉. (10)

In the step of the first line going to the second line in (10) , we use

|KL〉 =
1√
2

[

(1 + ǭ)|K0〉+ (1− ǭ)|K0〉
]

, (11)

and then, after using the CP transition relation in the second line,

CP|K0〉 = −|K̄0〉, C|K0〉 = |K̄0〉, (12)

〈π0|(d̄LγµsL)|K̄0〉 = −〈π0|(s̄LγµdL)|K0〉, (13)

we obtain the equation in the third line. In the final line, we neglect the CP violation in
K0 − K̄0 mixing, ǭ, due to its smallness |ǭ| ∼ 10−3.

Taking the ratio between the branching ratio of K+ → π0e+ν̄ and KL → π0νν̄, we have
the simple form:

BR(KL → π0νν̄)

BR(K+ → π0e+ν̄)
=

2

|Vus|2
(

α

2πsin2θW

)2
τ(KL)

τ(K+)

∑

i=e,µ,τ

(ImF )2. (14)

Therefore, the branching ratio of KL → π0νν̄ is given as follows:

BR(KL → π0νν̄) = 3κ · rKL

rK+

τ(KL)

τ(K+)
(ImF )2, (15)

where rKL
and rK+ denote the isospin breaking effect [20, 21]. It is remarked that the

branching ratio of KL → π0νν̄ depends on the imaginary part of F . Since the charm-quark
contribution is negligible due to the small imaginary part of V ∗

csVcd, it is enough to consider
only the top-quark exchange in this decay.

In the SM, K+ → π+νν̄ and KL → π0νν̄ are related to the UT fit. We write down the
branching ratio in terms of the Wolfenstein parameters. Since ReF and ImF are given as

ReF = −λXc − A2λ5(1− ρ)Xt , ImF = A2λ5ηXt , (16)

we can express the branching ratio of these decays as

BR(K+ → π+νν̄) = 3κ · rK+[(ReF )2 + (ImF )2]

= 3κ · rK+ · A4λ10X2
t

[

(

ρ̄− ρ0
)2

+ η̄2
]

, (17)
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where

ρ0 = 1 +
Xc

A2λ4Xt
, (18)

and

BR(KL → π0νν̄) = 3κ · rKL

rK+

τ(KL)

τ(K+)
(ImF )2

= 3κ · rKL

rK+

τ(KL)

τ(K+)
·A4λ10X(xt)

2η2. (19)

It is noticed that BR(K+ → π+νν̄) in Eq(17) is approximately a circle centered at ρ̄ = ρ0 ≃
1.2, η̄ = 0 on the ρ̄-η̄ plane. On the other hand, BR(KL → π0νν̄) in Eq(19) just depends on
η and it can determine the height of the UT directly. In this way, the precise measurements
of K+ → π+νν̄ and KL → π0νν̄ become crucial tests for the SM.

Before going to discuss the SUSY formulation, we present the general bound between
K+ → π+νν̄ and KL → π0νν̄, so called the Grossman-Nir bound [15]. As seen from above
formulations, since the two processes are determined by the imaginary part and the absolute
value of the same coupling, the model independent bound is obtained:

BR(KL → π0νν̄) <
rKL

rK+

τ(KL)

τ(K+)
· BR(K+ → π+νν̄) . 4.4× BR(K+ → π+νν̄) , (20)

where we use the isospin symmetry A(K+ → π+νν̄) =
√
2A(K0 → π0νν̄). This bound must

be satisfied for any NP [15, 16].

2.1.2 K+ → π+νν̄ and KL → π0νν̄ in the MSSM

The effective Hamiltonian in Eq.(3) is modified due to new box diagrams and penguin dia-
grams induced by SUSY particles. Then, the effective Lagrangian is given as

Leff =
∑

i,j=e,µ,τ

[

C ij
VLL (s̄Lγ

µdL) + C ij
VRL (s̄Rγ

µdR)
] (

ν̄i
Lγµν

j
L

)

+H.c. , (21)

where i and j are the index of the flavor of the neutrino final state. Here, C ij
VLL,VRL is the

sum of the box contribution and the Z penguin one:

C ij
VLL = −B21ij

VLL − α2

4π
Q

(ν)
ZLP

21
ZLδ

ij ,

C ij
VRL = −B21ij

VRL − α2

4π
Q

(ν)
ZLP

21
ZRδ

ij , (22)

where the weak neutral-current coupling Q
(ν)
ZL = 1/2, and B21ij

VL(R)L and P 21
ZL(R) denote the box

contribution and the Z penguin contribution, respectively. The V , L and R denote the vector
coupling, the left-handed one and the right-handed one, respectively. In addition to the W
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boson contribution, there are the gluino g̃, the chargino χ± and the neutralino χ0 mediated
ones 1. We write each contribution as follows:

Bsdij
VLL = Bsdij

VLL(W ) +Bsdij
VLL(χ

±) +Bsdij
VLL(χ

0) ,

Bsdij
VRL = Bsdij

VRL(χ
±) +Bsdij

VRL(χ
0) ,

P sd
ZL = P sd

ZL(W ) + P sd
ZL(H

±) + P sd
ZL(g̃) + P sd

ZL(χ
±) + P sd

ZL(χ
0) ,

P sd
ZR = P sd

ZR(g̃) + P sd
ZR(χ

±) + P sd
ZR(χ

0) , (23)

where (i, j) denotes the neutrinos of final state. Explicit expressions are given in Ref.[44].
It is well known that the most dominant contribution comes from the Z penguin mediated
chargino for the K+ → π+νν̄ and KL → π0νν̄ decays [12].

The branching ratio of K+ → π+νν̄ and KL → π0νν̄ are obtained by replacing internal
effect F in Eqs. (8) and (15) to C ij

VLL + C ij
VRL as follows:

BR(K+ → π+νν̄) = κ · rK+

∑

i=e,µ,τ

|C ij
VLL + C ij

VRL|2 , (24)

BR(KL → π0νν̄) = κ · rKL

rK+

τ(KL)

τ(K+)

∑

i=e,µ,τ

|Im(C ij
VLL + C ij

VRL)|2 . (25)

2.2 ǫK in the MSSM

It is well known that the CP violating parameter ǫK induced by the K0−K̄0 oscillation gives
us one of the most serious constraint to the NP. The general expression for ǫK is given as

ǫK = eiφǫ sinφǫ

(

Im(MK
12)

∆MK
+ ξ

)

, ξ =
ImA0

ReA0
, (26)

where A0 is the 0-isospin amplitude in the K → ππ decay, and MK
12 is the dispersive part

of the K0 − K̄0 oscillations, and ∆MK is the mass difference of the neutral K meson. The
effects of ξ 6= 0 and φǫ < π/4 were estimated by Buras and Guadagnoli [45]. In the SM, the
off-diagonal mixing amplitude MK

12 is obtained as

M12
K = 〈K0|H∆S=2|K̄0〉

=
4

3

(

GF

4π

)2

M2
W B̂KF

2
KMK

[

ηcc(VcsV
∗
cd)

2S(xc) + ηtt(VtsV
∗
td)

2S(xt) (27)

+ 2ηct(VcsV
∗
cd)(VtsV

∗
td)S(xc, xt)

]

,

where S(x) denotes the SM one-loop functions [46], and ηcc,tt,ct are the QCD corrections [45].

Recent lattice calculations give us the precise determination of the B̂K parameter [41, 42].
Once taking account of the NP effect, the expression of MK

12 is modified. In the case of
the SUSY, new contributions to the box diagrams are given by the gluino g̃, the charged

1The wino-higgsino mixing is tiny in our mass spectrum.
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Higgs H±, the chargino χ± and the neutralino χ0 exchanges:

MK
12 = MK,SM

12 +MK,SUSY
12

= MK
12(W ) +MK

12(H
±) +MK

12(χ
±) +MK

12(χ
0) +MK

12(g̃) +MK
12(χ

0g̃).

The explicit formula has been presented in Ref. [44].

3 Setup of the squark flavor mixing

We present the setup of our calculation in the framework of the high-scale SUSY. Recent
LHC results for the SUSY search may suggest the high-scale SUSY, O(10 − 1000) TeV
[32, 33, 34, 47] since the lower bounds of the gluino mass and squark masses exceed 1 TeV.
Taking account of these recent results, we consider the possibility of the high-scale SUSY at
10, 50 TeV, in which the K → πνν̄ decays and ǫK are discussed..

Another important experimental result should be mentioned is the Higgs discovery. The
Higgs mass mH ≃ 126 GeV gives effect to the SUSY mass spectrum. In general, there are
two possibility to get Higgs mass value, one is the heavy stop around 10 TeV, and the another
is the large Xt = A0 − µ cotβ given by the A-term. In the case that the SUSY scale is 10
to 50 TeV, we have already obtained the SUSY mass spectra which realize the Higgs mass
at the electroweak scale with Renormalization Group Equation (RGE) running in previous
work [34]. We use this numerical result for the SUSY particle mass spectrum. In this study,
the 1st and 2nd squark are almost degenerated due to the assumption of the universal soft
masses. On the other hand, the 3rd squark mass obtains the large contribution from the
RGE running due to the large Yukawa coupling of the top-quark. Therefore, the mixing
between 1st and 2nd is negligible, and it is taken account in the subsequent discussion for
squark flavor mixing. The SUSY spectra at 10 and 50 TeV are given in Appendix A.

Once the SUSY mass spectrum is fixed, we can calculate the left-right mixing angle θq,
which is defined as

θd ≃ mb(A0 − µ tanβ)

m2
b̃L

−m2
b̃R

, θu ≃ mt(A0 − µ cotβ)

m2
t̃L
−m2

t̃R

. (28)

In the case of the SUSY scale to be 10 and 50TeV, the left-right mixing angles of squarks
and sleptons are very small as (θd ∼ 0.0062, θu ∼ 0.0024, θe ∼ 0.014) and (θd ∼ 0.0009,
θu ∼ 0.0007, θe ∼ 0.005), respectively.

The SUSY brings the new flavor mixing through the quark-squark-gaugino couplings and
the lepton-slepton-gaugino ones. The 6× 6 squark mass matrix M2

q̃ in the super-CKM basis

turns to the mass eigenstate basis by diagonalizing with rotation matrix Γ(q) as

m2
q̃ = Γ(q)M2

q̃ Γ
(q)† , (29)

where Γ(q) is the 6 × 6 unitary matrix, and we decompose it into the 3 × 6 matrices as

7



Γ(q) = (Γ
(q)
L , Γ

(q))
R )T in the following expressions:

Γ
(q)
L =







cqL13 0 sqL13 e
−iφqL

13 cθq 0 0 −sqL13 e
−iφqL

13 sθqe
iφq

−sqL23 s
qL
13 e

i(φqL
13

−φqL
23

) cqL23 sqL23 c
qL
13 e

−iφqL
23 cθq 0 0 −sqL23 c

qL
13 e

−iφqL
23 sθqe

iφq

−sqL13 c
qL
23 e

iφqL
13 −sqL23 e

iφqL
23 cqL13 c

qL
23 cθq 0 0 −cqL13 c

qL
23 sθqe

iφq






,

Γ
(q)
R =







0 0 sqR13 sθqe
−iφqR

13 e−iφq

cqR13 0 sqR13 e
−iφqR

13 cθq

0 0 sqR23 c
qR
13 sθqe

−iφqR
23 e−iφq −sqR13 s

qR
23 e

i(φqR
13

−φqR
23

) cqR23 sqR23 c
qR
13 e

−iφqR
23 cθq

0 0 cqR13 c
qR
23 sθqe

−iφq −sqR13 c
qR
23 e

iφqR
13 −sqR23 e

iφqR
23 cqR13 c

qR
23 cθq






,

(30)

where we use abbreviations cqL,qRij = cos θqL,qRij , sqL,qRij = sin θqL,qRij , cθq = cos θq and sθq =

sin θq. It is remarked that we take sqL,qR12 = 0 due to the degenerate squark masses of the
1st and the 2nd families as noted in Appendix A. The angle θq is the left-right mixing angle
between q̃L and q̃R, and they are calculable as mentioned above. Then, there are free mixing
parameters θqL,qRij and φqL,qR

ij . For simplicity, we assume sqLij = sqRij . On the other hand, we

scatter φqL
ij and φqR

ij in the 0 ∼ 2π range independently. It should be noted that the mixing

angles s
qL(R)
ij have not been constrained by the experimental data of B, D and K mesons in

the framework of the high-scale SUSY [34].

For the lepton sector, the mixing matrices Γ
(ℓ)
L(R) have the same structure as the quark

one in the charged-lepton flavors, however, there is only the left-handed Γ
(ν)
L in neutrinos.

As well known, the charged Higgs and the chargino contributions dominate the K → πνν̄
processes [12]. Since the SUSY scale is high in our scheme, the charged Higgs are heavy,
O(10TeV), so the charged Higgs contribution is suppressed in our framework. On the other
hand, the dominant SUSY contribution to ǫK comes from the gluino box diagram if the
flavor mixing angles of the down-squark and the up-squark are comparable. In addition, the
chargino box diagram is also non-negligible. Consequently, we will discuss the both cases in
which the down-squark mixing angles s

dL(R)
ij are negligible small and are comparable to the

up-squark mixing angles s
uL(R)
ij . We scan the phases of Eq.(30) for up-squarks, down-squarks,

charged-sleptons and sneutrinos in the region of 0 ∼ 2π independently.
In our framework, the K → πνν̄ processes are dominated by the Z penguin mediated

the chargino exchange, P sd
ZL(χ

±) in Eq.(23) , which are occurred through the t̃LsL(dL)χ
± and

t̃RsL(dL)χ
± interactions, respectively. In our basis, the relevant mixing is given by

(Γ
(d)
CL)

αq
I ≡ (Γ

(u)
L VCKM)

q
I(U+)

α
1 +

1

g2
(Γ

(u)
R f̂UVCKM)

q
I(U+)

α
2 , (31)

where q = s, d, I = 1 − 6 for up-squarks, and α = 1, 2 for charginos. The VCKM is
the CKM matrix, and U+ is the 2 × 2 unitary matrix which diagonalize M †

CMC , where

MC is the 2 × 2 chargino mass matrix. The f̂U denotes the yukawa coupling defined by
f̂Uv sin β = diag(mu, mc, mt). Therefore, the combinations of mixing angles and phases in

Eq.(30), cqL13 s
qL
13 s

qL
23 e

i(φqL
13

−φqL
23

) and cqR13 s
qR
13 s

qR
23 e

i(φqR
13

−φqR
23

) are important for our numerical analy-
ses in the next section. We show the formula for P sd

ZL(χ
±) in Appendix B.
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Figure 1: The predicted BR(KL → π0νν̄) versus BR(K+ → π+νν̄) at the SUSY scale of 10
TeV with the mixing angle of su = sd = 0.1. The pink cross denotes the SM predictions. The
red dashed lines are the 1σ experimental bounds for BR(K+ → π+νν̄). The green slanting
line shows the Grossman-Nir bound.

4 Numerical analysis

Let us discuss the high-scale SUSY contribution to the K → πνν̄ processes by correlating
with ǫK [13]. At present, we cannot confirm whether the SM prediction ǫSMK is in agreement
with the experimental value ǫexpK because there remains the theoretical uncertainty with an
order of a few ten percent. However, the theoretical uncertainties of ǫK are expected to
be reduced significantly in the near future. Actually, the lattice calculations of B̂K will be
improved significantly [41, 42], whereas |Vcb| and the CKM phase γ will be measured more
precisely in Belle-II. Therefore, we will be able to test the correlation between K → πνν̄ and
ǫK .

In our previous work, we have examined the sensitivity of the high-scale SUSY with 10
and 50 TeV to ǫK . It is found that the SUSY contribution to ǫK is allowed up to 40%. We
begin to discuss the SUSY contribution at the 10 TeV scale. The present uncertainties in
the SM prediction for ǫK are due to the CKM elements Vcb, ρ̄ and η̄, and the B̂K parameter.
We take the CKM parameters Vcb, ρ̄ and η̄ at the 90 % C.L. of the experimental data:

|Vcb| = (41.1± 1.3)× 10−3, ρ̄ = 0.117± 0.021, η̄ = 0.353± 0.013. (32)

For the B̂K parameter, the recent result of the lattice calculations is given as [41, 42];

B̂K = 0.766± 0.010 , (33)

which is used with the error-bar of 90% C.L. in our calculation.
In the beginning, we show the numerical results at the SUSY scale of 10 TeV. Fig.1 shows

the predictions on the BR(KL → π0νν̄) vs. BR(K+ → π+νν̄) plane, where phase parameters
are constrained by the observed |ǫK | with the experimental error-bar of 90%C.L. Here, we fix
the mixing parameters in Eq.(30) by taking the common value suLi3 = suRi3 = su = 0.1 (i = 1, 2)
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Figure 2: The predicted BR(KL → π0νν̄) versus the SUSY contribution ratio of ǫK at the
SUSY scale of 10 TeV in the case of (a) su = sd = 0.1 and (b) su = 0.1, sd = 0. The pink
short line denotes the SM prediction with the error-bar of 90%C.L.
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Figure 3: The predicted su dependence of (a) BR(KL → π0νν̄) and (b) BR(K+ → π+νν̄)
at the SUSY scale of 10 TeV, where sd is scanned in the region of 0 ∼ 0.3 independent of su.
The red dashed lines denote the 1σ experimental bounds for BR(K+ → π+νν̄). The black
line corresponds to the Grossman-Nir bound together with the experimental upper bound of
BR(K+ → π+νν̄) with 3σ.

and sdLi3 = sdRi3 = sd = 0.1 (i = 1, 2) for the up-quark and the down-quark sectors, respectively.
The Z penguin mediated chargino dominates the SUSY contribution to these branching ratios.

The SUSY contributions can enhance the branching ratio of KL → π0νν̄ in eight times
compared with the SM predictions in Eq.(1), 1.8 × 10−10 although it is much smaller than
the Grossman-Nir bound. On the other hand, the predicted BR(K+ → π+νν̄) increases up
to three times, 2.1 × 10−10. It is also noticed that the predicted region of BR(KL → π0νν̄)
is reduced to much smaller than 10−11 due to the cancellation between the SM and SUSY
contributions. The BR(K+ → π+νν̄) could be reduced to 1.3× 10−11.

We discuss the correlation between ǫK and BR(KL → π0νν̄) in Fig. 2, in which (a)
su = sd = 0.1 and (b) su = 0.1, sd = 0. The transverse axis denotes the SUSY contribution
in |ǫK |. If the down-squark mixing sd is comparable to the up-squark mixing su, there is
no correlation between them as seen in Fig. 2(a), where the Z penguin mediated chargino
dominates the SUSY contribution of KL → π0νν̄, and the gluino box diagram dominates the
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Figure 4: The predicted BR(KL → π0νν̄) versus BR(K+ → π+νν̄) at the SUSY scale of 50
TeV with the mixing angle of su = sd = 0.3. The pink cross denotes the SM predictions. The
red dashed lines are the 1σ experimental values for BR(K+ → π+νν̄). The green slanting
line shows the Grossman-Nir bound [15].

SUSY contribution of ǫK . The gluino contribution of 30% is possible in ǫK .
On the other hand, if the down-squark mixing sd is tiny compared with the up-squark

mixing su, the Z penguin mediated chargino dominates both SUSY contributions of KL →
π0νν̄ and ǫK . Then, it is found a correlation between them as seen in Fig. 2(b), where the
chargino contribution to ǫK is at most 3%. This correlation is due to the difference of the
phase structure between the penguin diagram and the box diagram of the chargino.

In conclusion, ǫK could be deviated from the SM prediction in O(10%) due to the gluino
box diagram, whereas the Z penguin mediated chargino could enhance the branching ratio
of KL → π0νν̄ from the SM prediction.

Next, in order to see the mixing angle su dependence of the branching ratios, we plot the
predicted regions on BR(KL → π0νν̄) vs. su and BR(K+ → π+νν̄) vs. su planes taking
su = 0 ∼ 0.3 in Fig.3 (a) and (b). We scan sd in the region of 0 ∼ 0.3 independent of su

although the gluino contribution is much suppressed compared with the chargino one. In
this plot, the SUSY contribution to ǫK is free (0− 40%), but the experimental constraint of
|ǫK | with the error-bar of 90%C.L. is taken account. We show the upper bound given by the
Grossman-Nir bound together with the experimental upper bound of BR(K+ → π+νν̄) with
3σ by the black line, at which the predicted BR(KL → π0νν̄) should be cut. Namely, the
observed upper bound of BR(K+ → π+νν̄) gives the constraint for the predicted BR(KL →
π0νν̄) at su larger than 0.2. The precise experimental measurement of BR(K+ → π+νν̄) will
lower the predicted upper bound of BR(KL → π0νν̄).

Let us discuss the case of the SUSY scale of 50 TeV. Fig. 4 shows the predictions on
the BR(KL → π0νν̄) and BR(K+ → π+νν̄) plane at the SUSY scale of 50 TeV, where the
mixing angle is fixed at su = sd = 0.3. Although the predicted region is reduced considerably
comparing to the case of the 10 TeV scale in Fig. 1, the predicted branching ratio of KL →
π0νν̄ is enhanced in two times from the SM prediction, and the branching ratio ofK+ → π+νν̄
could be enhanced from the SM prediction in three times.
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Figure 5: The predicted BR(KL → π0νν̄) versus the SUSY contribution ratio of ǫK at the
SUSY scale of 50 TeV in the case of (a) su = sd = 0.3 and (b) su = 0.3, sd = 0. The pink
short line denotes the SM prediction with the error-bar of 90%C.L.
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Figure 6: The predicted su dependence of (a) BR(KL → π0νν̄) and (b) BR(K+ → π+νν̄)
at the SUSY scale of 50 TeV, where sd is scanned in the region of 0 ∼ 0.3 independent of su.

To see the correlation between ǫK and the predicted KL → π0νν̄ branching ratio, we show
the branching ratio of KL → π0νν̄ versus the SUSY contribution of ǫK in Fig. 5, in which
(a) su = sd = 0.3 and (b) su = 0.3, sd = 0. We do not find any correlation between them
in the Fig. 5(a), where the gluino contribution to ǫK is still possible up to 10%. However,
it is found a correlation between them as seen in Fig. 5(b), where the Z penguin mediated
chargino dominates both SUSY contributions of KL → π0νν̄ and ǫK since the down-squark
mixing sd vanishes with keeping su = 0.3. The chargino contribution to ǫK is at most 2%.
This correlation is understandable from the difference of the phase structure between the
penguin diagram and the box diagram of the chargino.

Thus, even if the SUSY scale is 50 TeV, ǫK could be deviated from the SM prediction in
O(10%) due to the gluino box diagram, whereas the chargino process deviates the branching
ratio of KL → π0νν̄ from the SM prediction in the factor two.

Fig.6 shows the su dependence of BR(KL → π0νν̄) and BR(K+ → π+νν̄) taking su =
0 ∼ 0.5 in Fig.6 (a) and (b). We also scan sd in the region of 0 ∼ 0.3 independent of su. In
this plot, the SUSY contribution to ǫK is free (0− 40%), but the experimental constraint of
ǫK with the error-bar of 90%C.L. is taken account. The predicted BR(KL → π0νν̄) could be
large up to 8 × 10−11, and BR(K+ → π+νν̄) is up to 1.5 × 10−10. Thus, the enhancement
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Figure 7: The predicted BR(KL → π0e+e−) versus BR(KL → π0νν̄) with su = 0 ∼ 0.3 and
sd = 0 ∼ 0.3 at the SUSY scale of 10 TeV. The red solid line denotes the upper-bound of the
branching ratio BR(KL → π0e+e−).

from the SM prediction could be detectable even if the SUSY scale is 50TeV.
Before closing our numerical study, we would like to discuss correlations to other quantities

which are sensitive to the NP. They are KL → π0e+e− process and the neutron electric
dipole moment dn. The KL → π0e+e− process is induced in similar way to KL → π0νν̄.
The distinguish feature of KL → π0e+e− mode is the contribution of the photon penguin.
Moreover, one cannot neglect the long-distance effect from the photon exchange process
[48]. Thus, the decay amplitude of KL → π0e+e− has both the short-distance effect and
the long-distance effect, and the SM prediction of the branching ratio is around 3 × 10−11,
which is comparable to the SM prediction of KL → π0νν̄. Since our interest here is to check
whether the SUSY effect does not exceed the experimental bound of KL → π0e+e−, we only
consider the short distance contribution in our analysis. The experimental bound of the
branching ratio KL → π0e+e− is BR(KL → π0e+e−)exp < 2.8 × 10−10 [43]. In the Fig.7, the
predicted BR(KL → π0e+e−) vs. BR(KL → π0νν̄) plane are plotted with su = 0 ∼ 0.3
and sd = 0 ∼ 0.3 at the 10TeV scale of the SUSY. There are two predicted lines in this
figure. Because the decay amplitude A(KL → π0e+e−) is described by the sum of the SM
and the SUSY contributions, there are two ways of taking the relative phase of ± such
as A(KL → π0e+e−) = A(KL → π0e+e− : SM) ± A(KL → π0e+e− : SUSY), which has
two solutions giving the same absolute value of the decay amplitude. Then, we have two
predicted values of BR(KL → π0e+e−) for the certain BR(KL → π0νν̄). The both decay
processes are dominated by the Z penguin mediated charginos, then, the branching ratios
are determined by the final state couplings of Zνν̄ and Ze+e−, that is, the weak charges
Q

(ν)
ZL and Q

(e)
ZL. Moreover, three flavors of neutrinos are summed for KL → π0νν̄. Therefore,

BR(KL → π0νν̄) is significantly larger than BR(KL → π0e+e−). On the other hand, in the
SM, there are some contributions to KL → π0e+e− such as the photon exchange processes.
So, BR(KL → π0e+e−) is comparable to BR(KL → π0νν̄) in the SM. In conclusion, the
experimental upper bound of BR(KL → π0e+e−) excludes the region larger than BR(KL →
π0νν̄) = 1.7 × 10−9. However, if the long-distance effect is properly included [48], this
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constraint becomes somewhat tight or loose depending on the relative sign between the
SUSY contribution and the long-distance one.

The neutron electric dipole moment (EDM) dn is well known as the sensitive probe for
the NP, and so we have studied the correlation between the neutron EDM and the K → π0νν̄
branching ratio. It is found that our predicted K → π0νν̄ does not correlate with dn. Suppose
the SUSY contribution to the chromo-EDM of quarks through the gluon penguin mediated
gluino [49]-[53], where the left-right mixing term of the down-squark is dominant. In our
SUSY mass spectra, the left-right mixing is suppressed as discussed in section 3. Moreover,
the CP violating phase dependence of dn comes from the down-squark mixing matrix whereas
the phase of K → π0νν̄ comes from the up-squark mixing matrix. Namely, those phase
dependences are completely different each other. Therefore, we do not take account of the
constraint from the experimental upper bound of the neutron EDM in our analyses.

5 Summary

We have studied the contribution of the high-scale SUSY to the KL → π0νν̄ and K+ →
π+νν̄ processes by correlating with the CP violating parameter ǫK . These rare decays have
important role of the decision of the CP phase in the CKM matrix, furthermore, they are
also sensitive to the flavor structure of the NP.

Taking account of the recent LHC results for the Higgs discovery and the SUSY searches,
we consider the hight-scale SUSY at the 10 − 50TeV scale. Then, we have discussed the
SUSY effects to K+ → π+νν̄, KL → π0νν̄ and ǫK in the framework of the mass eigenstate
basis of the SUSY particles assuming the non-minimal squark (slepton) flavor mixing.

We have calculated the SUSY contribution to the branching ratios of KL → π0νν̄ and
K+ → π+νν̄, where phase parameters are constrained by the observed ǫK . The Z penguin
mediated chargino dominates the SUSY contribution for these decays. At the 10 TeV scale
of the SUSY, its contribution can enhance the branching ratio of KL → π0νν̄ in eight times
compared with the SM predictions whereas the predicted branching ratio BR(K+ → π+νν̄)
increases up to three times of the SM prediction in the case of the up-squark mixing su = 0.1.

We have investigated the correlation between ǫK and the KL → π0νν̄ branching ratio.
Since the gluino box diagram dominates the SUSY contribution of ǫK up to 30%, there is no
correlation between them. However, if the down-squark mixing is neglected compared with
the up-squark mixing, the chargino process dominates both SUSY contributions of KL →
π0νν̄ and ǫK . Then, it is found a correlation between them, but the chargino contribution
to ǫK is at most 3%. It is concluded that ǫK could be deviated significantly from the SM
prediction in O(10%) due to the gluino box process, whereas the chargino process could
enhance the branching ratio of KL → π0νν̄ in several times from the SM prediction.

Our predicted branching ratios depend on the mixing angle su significantly. The observed
upper bound of BR(K+ → π+νν̄) gives the constraint for the predicted BR(KL → π0νν̄) at
su larger than 0.2.

Even if the SUSY scale is 50 TeV, the chargino process still enhances the branching ratio
of KL → π0νν̄ from the SM prediction in the factor two, and the ǫK is deviated from the SM
prediction in O(10%) unless the down-squark mixing sd is suppressed.
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We also discuss correlations to the KL → π0e+e− process and the neutron electric dipole
moment dn which are sensitive to the NP.

We expect the measurement of these processes will be improved by the J-PARC KOTO
experiment and CERN NA62 experiment in the near future.
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Appendix A : SUSY Spectrum

In the framework of the MSSM, one obtains the SUSY particle spectrum which is consistent
with the observed Higgs mass. The numerical analyses have been given in Refs. [54, 55]. At
the SUSY breaking scale Λ, the quadratic terms in the MSSM potential is given as

V2 = m2
1|H1|2 +m2

2|H2|2 +m2
3(H1 ·H2 + h.c.) . (34)

The mass eigenvalues at the H1 and H̃2 ≡ ǫH∗
2 system are given

m2
∓ =

m2
1 +m2

2

2
∓

√

(

m2
1 −m2

2

2

)2

+m4
3 . (35)

Suppose that the MSSM matches with the SM at the SUSY mass scale Q0 ≡ m0. Then, the
smaller one m2

− is identified to be the mass squared of the SM Higgs H with the tachyonic
mass. The larger one m2

+ is the mass squared of the orthogonal combination H, which is
decoupled from the SM at Q0, that is, mH ≃ Q0 . Therefore, we have

m2
− = −m2(Q0) , m2

+ = m2
H(Q0) = m2

1 +m2
2 +m2 , (36)

with

m4
3 = (m2

1 +m2)(m2
2 +m2) , (37)

which leads to the mixing angle between H1 and H̃2, β as follows:

tan2 β =
m2

1 +m2

m2
2 +m2

, H = cos βH1 + sin βH̃2 , H = − sin βH1 + cos βH̃2 . (38)

Thus, the Higgs mass parameter m2 is expressed in terms of m2
1, m

2
2 and tan β:

m2 =
m2

1 −m2
2 tan

2 β

tan2 β − 1
. (39)

Below the Q0 scale, in which the SM emerges, the scalar potential is the SM one as follows:

VSM = −m2|H|2 + λ

2
|H|4 . (40)

Here, the Higgs coupling λ is given in terms of the SUSY parameters at the leading order as

λ(Q0) =
1

4
(g2 + g′2) cos2 2β +

3h2
t

8π2
X2

t

(

1− X2
t

12

)

, Xt =
At(Q0)− µ(Q0) cot β

Q0

, (41)

and ht is the top Yukawa coupling of the SM. The parameters m2 and λ run with the SM
Renormalization Group Equation down to the electroweak scale QEW = mH , and then give

m2
H = 2m2(mH) = λ(mH)v

2 . (42)
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It is easily seen that the VEV of Higgs, 〈H〉 is v, and 〈H〉 = 0, taking account of 〈H1〉 = v cos β
and 〈H2〉 = v sin β, where v = 246GeV.

Let us fix mH = 126GeV, which gives λ(Q0) and m2(Q0). This experimental input
constrains the SUSY mass spectrum of the MSSM. We consider the some universal soft
breaking parameters at the SUSY breaking scale Λ as follows:

mQ̃i
(Λ) = mŨc

i
(Λ) = mD̃c

i
(Λ) = mL̃i

(Λ) = mẼc
i
(Λ) = m2

0 (i = 1, 2, 3) ,

M1(Λ) = M2(Λ) = M3(Λ) = m1/2 , m2
1(Λ) = m2

2(Λ) = m2
0 ,

AU(Λ) = A0yU(Λ) , AD(Λ) = A0yD(Λ) , AE(Λ) = A0yE(Λ) . (43)

Therefore, there is no flavor mixing at Λ in the MSSM. However, in order to consider the
non-minimal flavor mixing framework, we allow the off diagonal components of the squark
mass matrices at the 10% level, which leads to the flavor mixing of order 0.1. We take these
flavor mixing angles as free parameters at low energies.

Now, we have the SUSY five parameters, Λ, tanβ, m0, m1/2, A0, where Q0 = m0. In
addition to these parameters, we take µ = Q0. By fixing Λ, Q0 and tan β, we tune m1/2 and
A0 in order to obtain m2(Q0) and λH(Q0) which realize the correct electroweak vacuum with
mH = 126GeV. Then, we obtain the SUSY particle spectrum. We consider the two case of
Q0 = 10 TeV and 50 TeV. The input parameter set and the obtained SUSY mass spectra at
Q0 are summarized in Table 1, where we use mt(mt) = 163.5± 2 GeV [43, 56].

Input at Λ and Q0 Output at Q0

at Λ = 1017 GeV, mg̃ = 12.8 TeV, mW̃ = 5.2 TeV, mB̃ = 2.9 TeV
m0 = 10 TeV, mb̃L

= mt̃L = 12.2 TeV
m1/2 = 6.2 TeV, mb̃R

= 14.1 TeV, mt̃R = 8.4 TeV
A0 = 25.803 TeV; ms̃L,d̃L

= mc̃L,ũL
= 15.1 TeV

at Q0 = 10 TeV, ms̃R,d̃R
≃ mc̃R,ũR

= 14.6 TeV, mH = 13.7 TeV

µ = 10 TeV, mτ̃L = mν̃τL
= 10.4 TeV, mτ̃R = 9.3 TeV

tan β = 10 mµ̃L,ẽL = mν̃µL,ν̃eL
= 10.8 TeV, mµ̃R,ẽR = 10.3 TeV

Xt = −0.22, λH = 0.126
m2

1 = 1.84857× 108GeV2, m2
2 = 1.83996× 106GeV2, m2 = 8691GeV2

at Λ = 1016 GeV, mg̃ = 115.6 TeV, mW̃ = 55.4 TeV, mB̃ = 33.45 TeV
m0 = 50 TeV, mb̃L

= mt̃L = 100.9 TeV
m1/2 = 63.5 TeV, mb̃R

= 104.0 TeV, mt̃R = 83.2 TeV
A0 = 109.993 TeV; ms̃L,d̃L

= mc̃L,ũL
= 110.7 TeV, ms̃R,d̃R

= 110.7 TeV

at Q0 = 50 TeV, mc̃R,ũR
= 105.0 TeV, mH = 83.1 TeV

µ = 50 TeV, mτ̃L = mν̃τL
= 63.6 TeV, mτ̃R = 54.6 TeV

tan β = 4 mµ̃L,ẽL = mν̃µL,ν̃eL
= 63.8 TeV, mµ̃R,ẽR = 55.0 TeV

Xt = −0.65, λH = 0.1007
m2

1 = 6.49990× 109GeV2, m2
2 = 4.06235× 108GeV2, m2 = 8840GeV2

Table 1: Input parameters at Λ and the obtained SUSY spectra at Q0 = 10 and 50TeV.
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Appendix B : Z penguin amplitude mediated charginos

We present the expression for the Z penguin amplitude mediated the chargino, P sd
ZL(χ

±) in
our basis [44] as follows:

P sd
ZL(χ

±) =
g22

4m2
W

∑

α,β.I,J

(Γ
(d)†
CL )Iαd(Γ

(d)
CL)

βs
J

{

δJI (U
†
+)

1
β(U+)

α
1 [log xµ0

I + f2(x
I
α, x

I
β)] (44)

− 2δJI (U
†
−)

1
β(U−)

α
1

√

xI
αx

I
βf1(x

I
α, x

I
β)− δαβ

(

Γ̃
(u)
L

)J

I
f2(x

α
I , x

α
J )
}

, (45)

where

(Γ
(d)
CL)

αq
I ≡ (Γ

(u)
L VCKM)

q
I(U+)

α
1 +

1

g2
(Γ

(u)
R f̂UVCKM)

q
I(U+)

α
2 , (46)

and
(

Γ̃
(u)
L

) J

I
≡

(

Γ
(u)
L Γ

(u)†
L

) J

I
, (47)

with q = s, d, I = 1 − 6 for up-squarks, and α = 1, 2 for charginos. The VCKM is the CKM
matrix, and U± are the 2 × 2 unitary matrices which diagonalize the chargino mass matrix
MC :

U †
−MCU+ = −diagMα

C , (α = 1, 2) . (48)

The f̂U denotes the yukawa coupling defined by f̂Uv sin β = diag(mu, mc, mt). The loop
integral functions are given as:

fn(x, y) =
1

x− y

(

xnlogx

x− 1
− ynlogy

y − 1

)

, (49)

with

xI
α =

m2
χα

m̃2
I

, xµ0

I =
m̃2

I

µ2
0

, (50)

where µ0 = Q0 is taken in our framework.
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