
Probing CP Violation in h→ Zγ with Background Interference

Marco Farina,1 Yuval Grossman,1 and Dean J. Robinson2, 3

1Department of Physics, LEPP, Cornell University, Ithaca, NY 14853

2Department of Physics, University of California, Berkeley, CA 94720, USA

3Ernest Orlando Lawrence Berkeley National Laboratory,

University of California, Berkeley, CA 94720, USA

Abstract

We show that the parity of the hZγ vertex can be probed by interference between the gluon fusion

Higgs production, gg → h → γZ → γ`+`−, and the background, gg → γZ → γ`+`−, amplitudes.

In the presence of a parity violating hZγ vertex, this interference alters the kinematic distribution

of the leptons and photon compared to Standard Model (SM) expectations. For a Higgs with

SM-sized width and couplings, we find that the size of the effect enters at most at the 10−2 level.

Such a small effect cannot be seen at the LHC, even with futuristic high luminosities. Should there

exist other broader scalar particles with larger production cross-section times branching ratio to

Zγ, then the parity structure of their Zγ couplings can be probed with this technique.
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I. INTRODUCTION

Measurement of the Higgs boson couplings is a primary search channel for New Physics

(NP). The magnitude of the Higgs couplings can be tested against Standard Model (SM)

predictions via measurement of Higgs production cross sections, branching fractions, and

overall decay rate. On the other hand, these couplings may also encode NP in exotic parity

structure, which cannot be probed by Higgs branching fractions, but instead requires a

more sophisticated analysis. For example, angular distributions in the four body final state

processes h→ ZZ∗ → `+`−`+`− or h→ WW ∗ → `+ν`−ν̄ probe the parity structure of the

hZZ and hWW couplings [1–3].

In this work we concentrate on the hZγ vertex. To lowest order this vertex has two

effective couplings: c, which is parity even, and c̃, which is parity odd (see definitions in

eq. (1) below). In the SM, c is generated at one-loop level, while c̃ = 0 to a very good

approximation because it violates parity. Since the leading order SM contribution arises

only at one-loop, this raises the possibility that one-loop NP effects can be comparable to

the SM terms, producing P-violating effects in the h → Zγ decay at the O(1) level. By

contrast, O(1) parity violating effects are already ruled out in the h → ZZ and h → WW

channels, that are dominated by tree level SM contributions.

Several prior studies have suggested several different approaches to probe of the structure

of the hZγ vertex. In Ref. [4] the parity structure is probed through a forward-backward

asymmetry in the h → γZ → γ`+`− decay, exploiting the parity violating coupling of

the Z to leptons. This asymmetry requires the presence of a non-negligible relative strong

phase in the c̃ coupling. This strong phase is generated by on-shell b-quark loops, and

thus the asymmetry is typically suppressed by mb/mt. Another approach is to exploit

the interference between one-loop h → Zγ∗ → `+`−`+`− and the much larger, tree-level

h → ZZ∗ → `+`−`+`− amplitude [5, 6]. The challenge here is to distinguish P-violating

effects arising from P-odd hZγ operator and a P-odd hZZ operator, which is not excluded

from arising at the one-loop level. Similarly, interference of hZγ and hγγ P-even and P-odd

operators in h → `+`−γ may generate a forward-backward asymmetry [7]. Since the Z

is dominantly on-shell but the photon is virtual, this interference is suppressed by ΓZ/mZ .

Moreover, one cannot distinguish contributions of the P-odd h→ Zγ and h→ γγ operators.

Finally, one might use converted photons, in a similar fashion to what was proposed for
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h→ γγ [8–11]. The drawback in this approach is the currently limited experimental ability

to resolve the leptonic angular structure of the conversion.

In this work we explore another option to probe the parity structure of the hZγ ver-

tex: Exploitation of the interference between gg → h → γZ → γ`+`− and its background

gg → γZ → γ`+`−. In particular, we construct, in a general model-independent fashion,

an angular kinematic observable whose oscillatory probability distribution is amplitude-

modulated and phase-shifted by interference effects in the presence of parity violation. SM

Higgs-background interference effects have been previously considered for the h→ γγ chan-

nel [12–14], though not in the context of searches for exotic parity structure.

While in principle our method provides a new handle to unambiguously probe the hZγ

vertex, one may expect that performing the analysis in practice will be challenging. In

the first instance, the gluon fusion process, gg → γZ → γ`+`−, is characteristically sup-

pressed by (αs/4π)2 pdf(gg)/pdf(qq̄) ∼ 0.02 compared to the dominant qq̄ → γZ → γ`+`−

background. The gg and the qq̄ channels albeit add incoherently, so that the background

interference effect is not spoiled in principle. Nevertheless, the observables discussed in this

paper will therefore be buried in this qq̄ background. Moreover, the narrow Higgs width,

Γh ' 4 MeV in the SM, significantly reduces the phase space over which interference effects

with the background can be large.

Using numerical simulations we estimate that the background interference effect is present

at the 10−2 to 10−3 level for the amplitude modulation and phase shift respectively. Un-

fortunately, these effects are small enough that they cannot be seen at the LHC, even with

maximal parity violation in the hZγ vertex and a futuristic luminosity of 3 ab−1. If, how-

ever, there is a new scalar with either a larger gluon fusion production cross-section times

branching ratio to Zγ or a larger total width, for instance, a singlet scalar or a heavy Higgs

arising from a two-Higgs doublet model, then the parity structure of this coupling may be

probed by this method.
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II. FRAMEWORK

A. Higgs Effective Theory

Keeping terms up to dimension d = 5, the effective theory of interest for the gluon-fusion

Higgs production channel gg → h→ γZ → γ`+`− is

Lh =
c

v
hFµνZ

µν +
c̃

2v
hFµνZ̃

µν +
cg
v
hGa

µνG
aµν . (1)

Here F , Z, and Ga denote respectively the photon, Z and gluon field strengths, v = 246

GeV is the electroweak vacuum expectation value, and the dual field strength is defined as

usual as X̃µν ≡ εµναβXαβ. We also assume the Higgs is a JPC = 0++ state. The leading

order SM expressions for the couplings are explicitly

cgSM =
αs
4π

∑
q

AH1/2
[

4m2
q

m2
h

,
4m2

q

m2
Z

]
' αs

4π
(−0.344− 0.005i) ,

cSM =
α

4πsW

(
AH1
[

4m2
W

m2
h

,
4m2

W

m2
Z

]
+
∑
f

Nc
Qfvf
cW
AH1/2

[
4m2

f

m2
h

,
4m2

f

m2
Z

])
' α

4πsW
(5.508− 0.004i) ,

c̃SM ' 0 . (2)

Expressions for the functions AH1,1/2 can be found in Ref. [15] (see also [16]).

Provided the digluon invariant mass s < 2mW , rescattering phases in the hZγ vertex

arise only from on-shell b quark loops, and are therefore suppressed by mb/mt. This is the

origin of the small imaginary parts in eqs (2). Consequently, for s ∼ m2
h – the invariant mass

interval of interest in this paper – we may neglect these small strong phases, and assume

that c, c̃, and cg are real.

The parity odd and parity even contributions add incoherently in the h → Zγ rate, so

that Γh→Zγ ∝ c2 + c̃2. We define

µZγ ≡
Γh→Zγ
ΓSM
h→Zγ

=
c2 + c̃2

c2
SM

. (3)

We assume that there are no NP effects in the Higgs-gluon couplings, that is, cg = cgSM and

the only source of P violation is the hFZ̃ operator. It is then convenient to define

ξ ≡ tan−1(c̃/c) , (4)
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and rewrite the hZγ couplings as

c = µZγcSM cos ξ , c̃ = µZγcSM sin ξ . (5)

In the case that the partial width Γh→Zγ is SM-like, i.e. µZγ = 1, then ξ alone encodes

the parity structure: All NP effects manifest in ξ, with ξ = 0 in the SM to a very good

approximation.

B. Amplitude Factorization

Since we are interested in processes with only two external gluons, the color structure in

any amplitude must be proportional to the identity. We therefore drop color indices hence-

forth, treating the gluons formally as photons, and consider only color-stripped amplitudes:

appropriate traces and color factors are kept implicit.

Both the Higgs channel, gg → h → γZ → γ`+`−, and background, gg → γZ → γ`+`−

process, factorize into a 2 → 2 scattering, a Z propagator, and a 1 → 2 Z decay. Close

to the Z mass shell, the propagator is well-approximated by a Breit-Wigner form. With

respect to the effective theory (1), the Higgs channel has the diagrammatic form

[Mh]λ1λ2λτ−τ+
=

k1, λ1

k2, λ2

h
cg

k, λ

Z

p
c, c̃

p+, τ+

p−, τ−
zL,R

≡ gµν − pµpν/m2
Z

p2 −m2
Z + imZΓZ

[M2→2,h]λ1λ2µλ [M1→2]ντ−τ+ . (6)

Similarly, the background amplitude is given by

[Mbg]λ1λ2λτ−τ+
=

gµν − pµpν/m2
Z

p2 −m2
Z + imZΓZ

[M2→2,bg]λ1λ2µλ [M1→2]ντ−τ+ , (7)

Here M1→2 is the Z → `+`− amplitude, while M2→2,h (M2→2,bg) are the 2 → 2 Higgs

channel (background) scattering amplitudes. The momenta and helicities of the gluons

(photon) are respectively denoted by ki and λi (k and λ), p denotes the Z momentum, while

p± are the lepton momenta and τ± = ± are their respective spins. Hereafter we neglect
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the lepton masses, so spins correspond to definite helicity states. The Z chiral couplings to

leptons are denoted by zL,R.

In the massless lepton limit, the Z → `+`− amplitude, [M1→2]ντ−τ+ , annihilates the

pµpν/m
2
Z piece of the Z propagator via the lepton equations of motion. We may then

make use of the Z polarization completeness relation for any p2 6= 0

− gµν + pµpν/p
2 =

∑
κ

εκ∗µ (p)εκν(p) , (8)

to rewrite eqs. (6) and (7) into the factorized form

[Mh,bg]λ1λ2λτ−τ+
=

1

p2 −m2
Z + imZΓZ

∑
κ=−,0,+

[M2→2h,bg]λ1λ2λκ [M1→2]κτ−τ+ , (9)

where κ is the helicity of the Z, defined in a consistently chosen frame (for instance, the

digluon center-of-mass frame). Hence, the amplitude factorizes into two Lorentz invariant

factors and a Breit-Wigner propagator.

In the ΓZ → 0 limit, the Breit-Wigner denominator in the squared amplitude

1∣∣p2 −m2
Z + imZΓZ

∣∣2 → π
1

mZΓZ
δ(p2 −m2

Z) , (10)

which ensures the Z is on-shell. That is, the full 2→ 3 amplitude is well-approximated with

an internal on-shell Z, up to corrections of order Γ2
Z/m

2
Z � 1. Hereafter we shall therefore

replace the squared Breit-Wigner propagator by the ΓZ → 0 limit δ-function, and enforce

an on-shell Z. It should be emphasized, however, that the helicity amplitude analysis that

follows below relies only on the factorized form (9), which holds typically up to m`/mZ

corrections, and independently from the ΓZ → 0 limit. Off-shell Z effects merely alter the

overall normalization of the square amplitude and the phase space volume, but do not affect

the helicity amplitude structure encoded by eq. (9).

C. Phase space coordinates

In general, a 2 → 3 phase space is described by five variables. One of them is the

dilepton invariant mass (p+ + p−)2 ' m2
Z in the narrow Z limit. Correspondingly to eq. (9),

the remaining four-dimensional phase space may be partitioned into two Lorentz invariant

phase spaces: the phase spaces of the 2→ 2 and the 1→ 2 processes.
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We assume only longitudinal gluon boosts with respect to the beam line. The 2 → 2

phase space is then described conveniently by the digluon invariant mass (k1 +k2)2 = s, and

the photon polar angle, θγ, defined with respect to the beam axis, b, in the gluon center of

mass frame (see Fig. 1). The remaining two variables encode the 1 → 2 phase space, and

are conveniently chosen to be the polar and azimuthal angle of the positively charged lepton

in the Z rest frame, θZ and φZ , defined with respect to the photon momentum and beam

axis in that frame (see Fig. 1). In appendix A we write down the construction of the {s, θγ}

and {θZ , φZ} coordinates in terms of 2→ 2 Mandelstam and other Lorentz invariants.

k1 k2

θγγ

k

Z
b

k
b

p−

p+

θZ

φZ
Z

FIG. 1. Definition of polar angles. Left: photon polar angle, θγ , with respect to beam line in gluon

center of mass frame. Right: Positron polar angles, θZ and φZ , with respect to photon and beam

line, b, in Z rest frame.

Applying eqs. (9) and (10), it follows from these choices that the full differential cross-

section
dσ(s, θγ; θZ , φZ)

d(cos θγ)d(cos θZ)dφZ
=

(s−m2
Z)

211π3s2

∣∣M(s, θγ; θZ , φZ)
∣∣2

mZΓZ
, (11)

where

∣∣M(s, θγ; θZ , φZ)
∣∣2 ≡ ∑

λi,λ,τ±

∣∣∣∣ ∑
κ=−,0,+

[M2→2]λ1λ2λκ (s, θγ)[M1→2]κτ−τ+(θZ , φZ)

∣∣∣∣2 . (12)

III. PARITY OBSERVABLE

A. 1→ 2 Amplitudes

We now construct explicit expressions for the 1 → 2 helicity amplitudes of eq. (12) and

examine their properties under discrete transformations. Amplitudes are computed with

spinor-helicity methods. Our particular choices for the polarizations and reference momenta
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are shown in Appendix B. With these choices, the Z → `+`− amplitudes can be shown to

take the simple form

[M1→2]++−(θZ , φZ) =
√

2mZzLe
iφZ sin2(θZ/2) ,

[M1→2]+−+(θZ , φZ) = −
√

2mZzRe
iφZ cos2(θZ/2) ,

[M1→2]−+−(θZ , φZ) = −
√

2mZzLe
−iφZ cos2(θZ/2) ,

[M1→2]−−+(θZ , φZ) =
√

2mZzRe
−iφZ sin2(θZ/2) ,

[M1→2]0+−(θZ , φZ) = −mZzL sin θZ ,

[M1→2]0−+(θZ , φZ) = −mZzR sin θZ , (13)

and all other amplitudes are zero. Here zL,R are the Z chiral couplings to leptons. Note

that these amplitudes are j = 1 Wigner d-matrix functions. In the massless lepton limit,

the non-zero 1→ 2 amplitudes require τ− = −τ+, so hereafter we shall always write

[M1→2]κτ ≡ [M1→2]κτ,−τ . (14)

Let us now examine the discrete P, C and CP transformations of [M1→2]κτ . The index κ

is defined by the choices (B1) to be the Z helicity in the digluon center-of-mass frame. κ

changes sign under parity, P, as does the lepton helicity τ . This is equivalent to zL ↔ zR

and φZ → −φZ , the latter arising because the sense of the azimuthal twist of the lepton

momenta around their parent changes sign under parity. In other words, φZ acts like a weak

phase under parity conjugation. From eqs. (13), one may explicitly check that

[PM1→2]κτ (θZ , φZ) = [M1→2]−κ−τ (θZ , φZ) = [M1→2]κτ (θZ ,−φZ)
∣∣∣
zL↔zR

. (15)

Charge conjugation C switches τ+ and τ−, and hence sends τ → −τ . Equivalently zL ↔ zR,

θZ → π − θZ , and φZ → π + φZ . That is,

[CM1→2]κτ (θZ , φZ) = [M1→2]κ−τ (θZ , φZ) = [M1→2]κτ (π − θZ , π + φZ)
∣∣∣
zL↔zR

, (16)

which can similarly be explicitly checked from eqs. (13). Finally, combining eqs. (15) and

(16), under CP

[CPM1→2]κτ (θZ , φZ) = [M1→2]−κτ (θZ , φZ) = [M1→2]κτ (π − θZ , π − φZ)

= (−1)κ[M1→2]κτ (π − θZ ,−φZ) , (17)

where the second line here follows from the special explicit form of the 1→ 2 amplitudes (13).
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B. 2→ 2 Amplitudes

With reference to the effective theories (1) and to eqs. (6), the Higgs channel 2 → 2

amplitude factorizes into gg → h and h→ Zγ amplitudes, connected by a propagator. One

finds that

[M2→2,h]λ1=λ2
λ=κ (s, θγ) =

s(s−m2
Z)

v2

iµZγ cgSM cSM

s−m2
h + imhΓh

eiκξ , (18)

and all other amplitudes are zero. Note that the amplitude does not depend on θγ since the

Higgs is a scalar. This amplitude carries a phase arising from the Higgs propagator, which

acts as a strong phase under parity conjugation. On the other hand, ξ is a weak phase.

That is, the parity relation for the non-zero amplitudes is

[PM2→2,h]λ1λ2λκ (s) = [M2→2,h]−λ1−λ2−λ−κ (s) = [M2→2,h]λ1λ2λκ (s)
∣∣∣
ξ↔−ξ

. (19)

Computation of the background 2 → 2 helicity amplitudes requires evaluation of box

diagrams with light internal quarks. Note that these amplitudes may contain non-negligible

strong phases, arising from on-shell internal degrees of freedom, relative to c, c̃ and cg. Ex-

plicit results for the helicity amplitudes as functions of Mandelstam variables are available in

Ref. [17]. However, the Z polarization basis chosen therein is not necessarily commensurate

with the choices (B1) that lead to the especially simple results in eqs. (13). Instead, for the

purposes of this general analysis, we leave the background amplitudes in the abstract form

[M2→2,bg]λ1λ2λκ (s, θγ), and note only that all phases contained in these amplitudes are strong

phases under parity conjugation. In Appendix C, by taking the heavy quark limit, we show

that their parity transformation is

[PM2→2,bg]λ1λ2λκ (s, θγ) = [M2→2,bg]−λ1−λ2−λ−κ (s, θγ) = −(−1)κ[M2→2,bg]λ1λ2λκ (s, θγ) . (20)

Comparing to (19), the parity transformation for the Higgs channel amplitudes also has

parity −(−1)κ, since those amplitudes are trivially zero in the case κ = 0. Eq. (20) implies

that the κ = 0 background channel is odd under parity, while the κ = ±1 Z channels are

even. Note finally that the C transformation on all M2→2 amplitudes is trivial.
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C. Discrete Symmetries of the Differential Cross-section

Combining the CP transformations (17), (19) and (20), the full amplitude has a CP

transformation

[CPM]λ1λ2λτ (s, θγ; θZ , φZ) = [M]−λ1−λ2−λτ (s, θγ; θZ , φZ) = −[M]λ1λ2λτ (s, θγ; π − θZ ,−φZ)

∣∣∣∣
ξ→−ξ

.

(21)

The corresponding polarized differential cross-sections (11), after marginalizing over θZ phase

space, therefore obey

d[σ]−λ1−λ2−λτ (s, θγ;φZ)

d cos θγdφZ
=
d[σ]λ1λ2λτ (s, θγ;−φZ)

d cos θγdφZ

∣∣∣∣
ξ→−ξ

, (22)

because
∫ 1

−1
f(π − θZ)d cos θZ =

∫ 1

−1
f(θZ)d cos θZ for any integrable f . It follows that the

unpolarized differential cross-section

dσ(s, θγ;φZ)

d cos θγdφZ
=
dσ(s, θγ;−φZ)

d cos θγdφZ

∣∣∣∣
ξ→−ξ

. (23)

I.e. it is invariant under the simultaneous weak phase transformations ξ → −ξ and φZ →

−φZ . Similar application of the C transformation

[CM]λ1λ2λτ (s, θγ; θZ , φZ) = [M]λ1λ2λ−τ (s, θγ; θZ , φZ) = [M]λ1λ2λτ (s, θγ; π−θZ , π+φZ)

∣∣∣∣
zL↔zR

, (24)

yields
dσ(s, θγ;φZ)

d cos θγdφZ
=
dσ(s, θγ; π + φZ)

d cos θγdφZ

∣∣∣∣
zL↔zR

. (25)

I.e. the unpolarized differential cross-section is invariant under the simultaneous transfor-

mation φZ → π + φZ and zL ↔ zR.

D. CP sensitive observable

We now proceed to show that the parity violating parameter ξ manifests as a phase in the

probability distribution of the kinematic observable φZ . First, eqs. (13) and (18) together

imply that the Z helicity, κ, encodes the weak phase structure of the amplitude. That is,

we can rewrite the amplitude into the form

Mλ1λ2
λτ (θZ , φZ) = zτ

[∑
κ=±

[Ah
κ]
λ1λ2
λτ (θZ)eiκ(ξ+φZ) +

∑
κ=0,±

[Abg
κ ]λ1λ2λτ (θZ)eiκφZ

]
. (26)
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where the s, θγ arguments have been omitted for brevity, and we have explicitly extracted

the chiral coupling zτ=± = zL,R as well as weak phase φZ , ξ dependence from the 1 → 2

amplitudes (13). We may further rewrite (26) more compactly as

Mλ1λ2
λτ (θZ , φZ) = zτ

∑
k=h±,0,±

[Ak]λ1λ2λτ (θZ) exp
{
iηk
}
, (27)

where the Ah± terms arise from the Higgs channel (18) – note that [Ah± ]λ1λ2λτ = 0 for λ = ∓

respectively – and the A0,± terms are the background amplitude contributions. The ηk are

the corresponding weak phases: ηh±,0,± = ±(ξ + φZ), 0, and ±φZ respectively. Comparing

eq. (27) with the parity relations (15), (19) and (20), one deduces that the Ak transform

under parity as

[P(Ak)]λ1λ2λτ = −(−1)k[Ak]λ1λ2λτ , (28)

with the notational understanding that (−1)k=±,h± = −1 and (−1)k=0 = 1.

The CP relation (23) implies that the differential cross-section dσ/d cos θγdφZ is the

average of itself and its weak phase conjugation,

dσ/d cos θγdφZ =
[
dσ/d cos θγdφZ + dσ/d cos θγdφZ

∣∣
ηk→−ηk

]
/2 . (29)

Applying this result to the explicit form (26), one may then show that

dσ(s, θγ;φZ)

d cos θγdφZ
=

(s−m2
Z)

s2mZΓZ

{∑
k

Bkk(s, θγ) +
∑
k 6=l

Bkl(s, θγ) cos
[
ηk − ηl

]}
, (30)

wherein

Bkl(s, θγ) =
2−δkl

211π3

∑
λi,λ,τ

z2
τ

∫ 1

−1

d cos θZRe
{

[AkA∗l ]
λ1λ2
λτ (s, θγ; θZ)

}
. (31)

One then further deduces from the C relation (25) that the unpolarized marginal differential

cross-section, integrated over an interval s ∈ I containing the Higgs peak s = m2
h, must have

the form

dσI

dφZ
=

1

mZΓZ

{
(z2
L + z2

R)

[ ∑
k=h±,0,±

CIkk + [CIh++ + CIh−−] cos(ξ)

+ [CI+− + CI−+] cos(2φZ) + [CIh+− + CIh−+] cos(ξ + 2φZ)

]
+(z2

L − z2
R)

[
[CI0− + CI0+] cos(φZ) + [CIh+0 + CIh−0] cos(ξ + φZ)

]}
, (32)
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in which dσI/dφZ ≡
∫
I
(dσ/dφZ)ds, and

CIkl = 2−δkl
∫
I

ds
s−m2

Z

211π3s2

∑
λi,λ

∫ 1

−1

∫ 1

−1

d cos θZd cos θγRe
{

[AkA∗l ]
λ1λ2
λ+ (s, θγ; θZ)

}
. (33)

Note that the ξ dependent terms arise manifestly from Higgs and background interference

terms. The terms proportional to z2
L− z2

R arise from the combination of the parity violating

Z-lepton chiral couplings and interference between the κ = 0 and κ = ±1 background

channels. The parity relations (28) for the A0,± imply that these terms are parity odd, so

that they vanish under the d cos θγ integral. This is to be expected, as the background QCD

process is not parity violating. Hence, in summary

dσI

dφZ
=

1

mZΓZ

{
(z2
L + z2

R)

[ ∑
k=h±,0,±

CIkk + [CIh++ + CIh−−] cos(ξ)

+ [CI+− + CI−+] cos(2φZ) + [CIh+− + CIh−+] cos(ξ + 2φZ)

]
. (34)

Eq. (34) is the main analytical result of this paper. In the presence of background interference

the parity structure of h → Zγ can be probed through the phase structure of dσI/dφZ . In

particular, the differential cross-section is asymmetric about φZ = 0 if and only if ξ 6= 0. If

CIkl are known, then fitting this function permits in principle extraction or bounding of ξ.

The cos(ξ + 2φZ) term in eq. (34) further implies that a quadrant-type asymmetry can

be generated by integrating over the φZ quadrants

I = [0, π/2] , II = [π/2, π] , III = [π, 3π/2] , and IV = [3π/2, 2π] , (35)

and taking their alternating sum. In particular,

ΣφZ ≡
1

σ

∫
−I+II−III+IV

(
dσI

dφZ

)
dφZ =

2

π

[CIh+− + CIh−+] sin(ξ)∑
k CIkk + [CIh++ + CIh−−] cos(ξ)

, (36)

is non-zero if and only if ξ 6= 0.

E. Simulations

It remains to estimate the CIkl coefficients of eq. (34). This is achieved with a privately

modified version of the gg → γZ → γ`+`− process found in MCFM-6.8 (process #300) [18],

customized to include an interfering set of gg → h→ γZ → γ`+`− helicity amplitudes. The

12



relative strong phase between the extant MCFM background amplitudes and the Higgs channel

couplings (2) is hard to extract from Refs. [15] and [18]. We have checked, however, that any

potential mismatch of conventions, leading to an extra strong phase, is of small numerical

significance for the purposes of estimating the CIkl coefficients: It introduces at most an

extra signed O(1) factor. We choose the Higgs peak region I = {
√
s ∈ (124, 128) GeV}. All

simulations are generated for a pp collider running at 14 TeV, with photon transverse cuts

pT > 20 GeV and |η| < 2.5, and dilepton invariant mass m`` ∈ (66, 116) GeV.

For the sake of brevity, let us rewrite the integrated version of eq. (34) in a compact form

dσI

dφZ
(φZ ; ξ) = a0 + a2 cos(2φZ) + b0 cos(ξ) + b2 cos(2φZ + ξ) . (37)

This may be further rewritten into an SM-normalized form

dσI

dφZ
=
σISM

2π

1

1 + b0/a0

[
1 + a2/a0 cos(2φZ) + b0/a0 cos(ξ) + b2/a0 cos(2φZ + ξ)

]
, (38)

where σISM is the SM (ξ = 0) gg → γZ → γ`+`− cross-section on the interval I, including

Higgs interference effects. We may now in principle extract the relative coefficients a2/a0,

b0/a0 and b2/a0 by generating φZ distributions over I for various values of ξ and φZ ∈

{−π, π}, and fitting a0,2 and b0,2 to eq. (37). However, very high statistics are required to

sufficiently sample over the narrow SM Higgs width, Γh ' 4 MeV, in order to extract the

b0,2 coefficients with satisfactory precision.

Instead, let us apply the Higgs coupling and width rescalings

c→ ζc , c̃→ ζc̃ , and Γh → ζ2Γh . (39)

The pure Higgs Ch±h± terms, which exclusively arise in a0, are dominated by on-shell Higgs

contributions ∼ (c2 + c̃2)/Γh, and therefore are invariant under this rescaling. The pure

background C±± and C00 terms are invariant by definition. Hence a2 and a0 are unchanged by

the transformation (39). However, the Higgs-background interference terms Ch±± – the b0,2

coefficients – are enhanced by a ζ factor. The larger Higgs width and enhanced interference

effects together admit faster numerical convergence of the coefficients of eq. (37): The b0,2

coefficients extracted for ζ � 1 may then be rescaled by ζ−1 to determine their SM values.

While we shall use the ζ rescaling (39) as a numerical tool, it should be noted that ζ

itself can be measured or bounded: Constraints on interference effects far off the Higgs

mass shell may also be used to bound the total Higgs width, and hence ζ (see e.g. [19–

23]). Currently, bounds from the h → 4` channel imply ζ . 3 [24, 25]. The h → Zγ

13



partial width itself is invariant under the rescaling (39), but the current upper bound on

σ × Br[gg → h → γZ → γ`+`−] is approximately an order of magnitude above the SM

value [26, 27]. There is, therefore, still some room for NP enhancements of the h → Zγ

rate itself. Collectively, possible NP effects in the Higgs total and partial Zγ width can be

encapsulated by the rescalings (3) and (39), viz.

c→ µ
1/2
Zγ ζ c , c̃→ µ

1/2
Zγ ζ c̃ , and Γh → ζ2 Γh . (40)

with ζ . 3 and µZγ . 10.

Under this rescaling approach, we generate φZ distributions for ζ = 10, and ξ = 0, π/4,

π/3, π/2 and π. After rescaling the b0,2 coefficients to their SM values, one finds in this

manner

a2/a0 ≡
CI+− + CI−+∑

k CIkk
= 0.143± 0.001

b0/a0 ≡
CIh++ + CIh−−∑

k CIkk
= (6.61± 0.08)× 10−3

b2/a0 ≡
CIh+− + CIh−+∑

k CIkk
= −(0.92± 0.08)× 10−3 . (41)

with cross-section σISM ' 2.33 fb. The errors here are purely statistical in origin. The

cos(2φZ + ξ) and cos(ξ) coefficients are non-zero at high statistical confidence. A typical

MCFM φZ distribution, for ζ2 = 103 and µZγ = 3, together with its best fit curve are shown

in Fig. 2, in which the expected shifted cosine can be seen.

The asymmetry, ΣφZ , for the same set of ξ values is also computed, and shown in Fig. 3.

Fitting to the expected dependence (2/π)b2 sin(ξ)/(a0 + b0 cos(ξ)) in eq. (36) with the as-

sumption b0/a0 � 1, one finds that the best fit

b2/a0 ≡
CIh+− + CIh−+∑

k CIkk
= −(0.84± 0.07)× 10−3 , (42)

which is consistent with the fit from the φZ distributions.

We see from the results (41) that the cos(ξ) coefficient in eq. (38) dominates the cos(2φZ+

ξ) coefficient by an order of magnitude, ∼ 1% and ∼ 0.1% respectively in the SM. In

Fig. 4 we show the best-fit dσ/dφZ function for the zero and maximal parity violating cases

ξ = 0 and ξ = π/2, with ζ = 1. For comparison we also show dσ/dφZ for a ζ = 30

scenario, which could correspond to a hypothetical Higgs-like particle with larger width and
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−π −π/2 0 π/2 π

(1
/σ

)(
d
σ

/d
φ

Z
)

φZ

FIG. 2. The φZ distribution and best-fit curve (red) in the gluon fusion channel for
√
s ∈

(124, 128) GeV, for ξ = π/2 and rescaling factor ζ2 = 103. The Higgs couplings have been in-

creased by a further factor of three in order to enhance the visibility of the shift due to ξ 6= 0. This

shift can be seen in the displacement of the best fit curve with respect to the cosine ∼ cos(2φZ)

(dashed line).

−10−3

0

10−3

0 π/4 π/2 3π/4 π

(π
/2

)Σ
φ

Z

ξ

FIG. 3. The integrated asymmetry ΣφZ for
√
s ∈ (124, 128) GeV and SM Higgs width and coupling

magnitudes (ζ = 1). The best fit curve of form ∼ sin(ξ) is also shown (red).

couplings. We see there that the cos(ξ) term manifests for ξ 6= 0 as a modulation of the

oscillation amplitude of dσ/dφZ compared to SM expectations. It also rescales the overall

cross-section from the expected SM value. Extracting or bounding ξ by searching for these

cos ξ term effects therefore requires computation of these SM expectations to sub-percent

level, at which higher order QCD corrections likely become important. Hence this approach
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FIG. 4. Left: The φZ best-fit SM distribution in the gluon fusion channel for
√
s ∈ [124, 128] GeV,

for ξ = π/2 (gold) and ξ = 0 (blue) normalized to their respective cross-sections. Right: The

same distribution, but for a width and coupling rescaling ζ = 30. Compared to the SM result, the

ξ = π/2 curve is shifted to the right, and has a larger oscillation amplitude.

is susceptible to large theory errors.

In contrast, for ξ 6= 0 we see in Fig. 4 that the cos(2φZ+ξ) term manifests as a phase shift

in dσ/dφZ with respect to the SM cosine. Equivalently ΣφZ 6= 0. The SM expectation that

such a phase shift is zero, or ΣφZ = 0, holds to high loop order. Hence, even though searching

for phase-shift or quadrant asymmetries is more difficult experimentally than searching for

cos(ξ) term effects – b2/a0 � b0/a0 and hence more statistics are required – it is theoretically

much cleaner.

Including the incoherent qq̄ background, neglected so far in this discussion, this phase

shift effect is expected to be further suppressed to the O(10−5) level, requiring exquisite

measurement of the pp → Zγ differential cross-section. Since σgg/σqq̄ ∼ 0.02, then from

eqs. (41) we expect σSM ∼ 100 fb on the interval I. A simple estimate of the required

luminosity to detect ΣφZ 6= 0 can be obtained by noting that measurement of ΣφZ is a

counting experiment on the four φZ quadrants. For a large number of total events, N , the

statistical error in ΣφZ is at leading order 1/
√
N . In order to reject the SM hypothesis

(ξ = 0) at 95% confidence, the required precision is then 2/
√
N ' 10−5, implying a required

integrated luminosity & 108 fb−1. Note further that we have neglected possible systematic

errors, which renders this estimate to be an optimistic one. Consequently, even in the

proposed high luminosity future of LHC runs, with luminosity ∼ 3 ab−1, there will be

16



insufficient statistics to achieve sensitivity to O(10−5) effects, and hence there is no plausible

sensitivity to ξ 6= 0 for a Higgs with SM-sized couplings.

IV. CONCLUSIONS

In this work we have shown that interference of the gluon fusion Higgs production channel

gg → h → γZ → γ`+`− with the background 2 → 3 process gg → γZ → γ`+`− gives rise

to an observable that is unambiguously sensitive to the parity structure of the hZγ vertex.

This observable manifests as an amplitude modulation and phase shift of the oscillatory

angular probability distribution (34) with respect to the azimuthal angle, φZ . Equivalently,

the parity violation manifests respectively as a rescaling of the cross-section and a parity

asymmetry on φZ quadrants. However, only the phase shift and its associated quadrant

asymmetry are theoretically clean observables.

Numerical simulations with MCFM, privately modified to include Higgs-background in-

terference in the gg → γZ → γ`+`− channel, estimate that for the SM Higgs, the quadrant

asymmetry (cross-section rescaling) enters at the 10−3 (10−2) level for ξ ∼ 1. Unfortunately,

the large qq̄ incoherent background, combined with the very narrow Higgs width, renders

this background interference effect too small to be seen at the LHC, even for a future high

luminosity of 3 ab−1.

The analysis in this paper, however, generically holds for any scalar that may be produced

by gluon fusion and has a decay channel to Zγ. If there exists a new scalar with either a

larger gluon fusion production cross–section times Zγ branching ratio or a larger total width,

then the parity structure of this coupling may be probed or constrained by searches for a

φZ phase shift or quadrant asymmetry.
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Appendix A: Phase Space Construction

Here we provide explicit expressions for the phase space coordinates {s, θγ; θZ , φZ} in

terms of kinematic observables. First, with respect to the digluon invariant mass (k1+k2)2 =

s and θγ, the other two 2→ 2 Mandelstam variables

t = (k1 − k)2 = (m2
Z − s) sin2(θγ/2) , and u = (k2 − k)2 = (m2

Z − s) cos2(θγ/2) . (A1)

Hence t− u = (s−m2
Z) cos(θγ), i.e.

θγ = cos−1

[
t− u
s−m2

Z

]
, (A2)

on the branch θγ ∈ [0, π]. Note that since s+ t+ u = m2
Z in the on-shell Z limit, the 2→ 2

amplitudes may always be expressed as functions of s and t − u = (s −m2
Z) cos(θγ) alone.

That is, we see explicitly here that the 2→ 2 phase space is fully specified by s and θγ.

The polar angle θZ is similarly extracted by noting that 2(p+− p−) · k = (s−m2
Z) cos θγ,

i.e.

θZ = cos−1

[
2(p+ − p−) · k

s−m2
Z

]
. (A3)

Finally, the Levi-Civita contraction

εµνρσk1µk2νkρp+σ =
1

8
mZ

√
s(s−m2

Z) sin(θγ) sin(θZ) sin(φZ) , (A4)

and

2(k1 − k2) · (p+ − p−) = (s+m2
Z) cos(θγ) cos(θZ)− 2

√
smZ sin(θγ) sin(θZ) cos(φZ) . (A5)

Assuming only longitudinal gluon boosts, so that the gluons are oriented along the beam

line, then the kµ1,2 lab frame components may be extracted from s and the total energy of the

outgoing states. Then, the relations (A4) and (A5) permit extraction of sinφZ and cosφZ ,

and hence φZ ∈ [0, 2π] without any ambiguities.

Appendix B: Conventions

Our choices for polarizations and reference momenta are

ε±µ (ki) = ±〈k
∓|σµ|k∓i 〉√
2〈k∓|k±i 〉

, ε±µ (k) = ±〈p̃
∓|σµ|k∓〉√
2〈p̃∓|k±〉

ε±µ (p) = ±〈k
∓|σµ|p̃∓〉√
2〈k∓|p̃±〉

, ε0µ(p) =
p̃µ
mZ

− mZkµ
2k · p̃

, (B1)
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where p is the Z momentum, and p̃µ = pµ −m2
Zk

µ/(2k · p) is a null associated momentum,

such that p̃ and k form a light-cone decomposition of p. We assume the leptons are massless,

and make the spinor phase choices

λaq =


(√

q0 + q3, (q1 − iq2)/
√
q0 + q3

)
, q = p±, p̃, k1 ,(

(q1 + iq2)/
√
q0 − q3,

√
q0 − q3

)
, q = k, k2 .

(B2)

Appendix C: Parity of 2→ 2 amplitudes

To deduce the parity of [M2→2,bg]λ1λ2λκ , we may consider the heavy quark limit. In this

case, the external spin states determine the total angular momentum, such that the θγ

dependence of each helicity amplitude is encoded by Wigner d-matrix functions, viz.

M2→2,bg(s, θγ) = f(s)〈j;m′|e−iθγJy |j;m〉 ≡ f(s)djm,m′(θγ) , (C1)

for some f , where m and m′ are spin projections. It follows that

[M2→2,bg]λ1λ2λκ (θγ) ∼ djλ1−λ2,λ−κ(θγ) , (C2)

where 2 ≤ j ≤ max{λ1 − λ2, λ− κ}. The parity structure of the Wigner d-matrix functions

immediately implies that the parity of these amplitudes is −(−1)κ, since λi, λ = ±1 only.

That is,

[PM2→2,bg]λ1λ2λκ (s, θγ) = −(−1)κ[M2→2,bg]λ1λ2λκ (s, θγ) . (C3)

This matches the Higgs channel result (19), which are similarly generated by local effective

operators, and also the massless quark results in Ref. [17].
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