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We test the hypothesis that diffractive scattering in the perturbative and non-perturbative domain
is determined by the exchange of a single pomeron with a scale dependent trajectory. Present data
on diffractive vector meson production are well compatible with this model and recent results for
J/ψ photoproduction at LHC strongly support it. The model is inspired by concepts of gauge/string
duality applied to the pomeron.

I. INTRODUCTION

Diffractive processes involving virtual photons show a
remarkable feature: the higher the photon virtuality Q2,
the faster is the increase of the cross sections with en-
ergy. This feature is well understood in perturbative
QCD, where the evolution equations in Q2 [1–3] predict
such behaviour. Microscopically, the rising increase in
energy can be traced back to the increase of the gluon
density with higher resolution. This specific feature of
the energy dependence, however, is less easily explained
in Regge theory. In purely hadronic diffractive processes
the energy dependence of the scattering amplitude is
determined by the pomeron trajectory to be W 2αP (t)

where W is the cm energy, αP (t) = αP (0) + α′
P t is

the pomeron trajectory, and t is the squared momentum
transfer. Based on a large amount of hadronic diffrac-
tive data, Donnachie and Landshoff [4] proposed a gen-
eral description with a hypercritical pomeron intercept
αP (0) ≈ 1.09 and a slope α′

P = 0.25GeV−2.

Electroproduction processes can be related to purely
hadronic interactions through the assumption that the
photon-hadron interaction occurs via the interaction of
the target hadron with a quark-antiquark pair, as il-
lustrated in Fig.1. According to this model, diffrac-
tive electromagnetic processes are described as purely
hadronic processes, with energy dependence governed by
the pomeron trajectory. This approach, commonly called
dipole picture [5], has been tested in many analyses and
applications. Although there are certain limitations to
this approach [6, 7] it is intuitive and phenomenologi-
cally very successful.

On the other hand, by summing up leading log terms in
perturbative QCD, a larger pomeron intercept was found
(BFKL-Pomeron) [8–12]. Donnachie and Landshoff [13]
extended the pomeron concept and assumed that elec-
tromagnetic diffractive processes are determined by two
pomerons, a soft (hypercritical) one with an intercept of
about 1.09 and a hard one with an intercept of about
1.4. This idea has been applied in many electroproduc-
tion processes, where the residues of the pomerons were
essentially determined by the size of the scattered objects

FIG. 1. Electromagnetic diffractive processes in the dipole
model governed by pomeron exchange: a) γ∗ scattering;
b) electroproduction of vector mesons (VM) .

and hence in a given model the energy dependence was
universally fixed by a superposition of the two pomeron
contributions. In this way a comprehensive description of
proton structure functions, vector meson production and
γ∗ − γ∗ scattering could be achieved in the full energy
range accessible at HERA [14–21].

Recent experiments on J/ψ photoproduction at LHC
energies [22, 23], however, show that a single power, cor-
responding to a pomeron intercept at about 1.17, de-
scribes very well the energy dependence in the range from
20 GeV to 1 TeV. This result strongly supports the con-
cept of a single pomeron exchange.

The AdS/CFT correspondence [24–26] has opened in-
teresting new aspects to pomeron physics [27, 28]. In a
very simple model in an ultralocal approximation, dis-
cussed at the beginning of [27] it was shown that the
pomeron trajectory depends on the holographic variable
z

αP (t, z) = αP (0) + α′

P (z) t , (1)

http://arxiv.org/abs/1503.06649v1
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with

α′

P (z) = α′
z2

R2
, (2)

where α′ is a constant relevant for scattering of the
strings in the higher dimensional space and R is the AdS
scale. The holographic variable z used here is related
to the r in [27] by z = R2/r. In this simple model the
intercept value is αP (0) = 2 [29].

With the assumption of a single pomeron the value
of the intercept should be nearly one in order to de-
scribe purely hadronic diffraction processes, whereas ex-
perimentally it is distinctly larger for diffractive processes
with high photon virtuality. Therefore, in a bottom-
up approach to the problem, we are led to extend the
concept of a scale dependent pomeron slope, Eq.(2), to
that of a scale dependent intercept, αP (0, z). In order to
test this assumption quantitatively, we use in the present
work a phenomenologically very successful approach to
AdS/CFT duality, namely light front holographic QCD,
developed by de Téramond and Brodsky [31] (for a re-
view see [32]). One essential point is the discovery that
the AdS bound state equations are identical with the
light front (LF) bound state equations, if one identifies
the holographic variable z with the boost invariant light-
front separation ζ between the quark and the antiquark
inside a hadron (details are given in the next section).
It has been shown that the bound state wave functions
obtained in light-front holographic QCD give a very good
fit to rho-meson electroproduction [33], and it was shown
[20] that the light-front wave functions [34] are indeed
very appropriate for the description of electroproduction
not only of ρ mesons, but also of other vector mesons
as J/ψ and Υ. In the present work we use the coinci-
dence of the holographic variable z with the boost in-
variant light front separation ζ in order to determine the
scale, on which the pomeron intercept is assumed to de-
pend, for different diffractive processes. We proceed in
the following way. First the scale for different processes
is determined and then the dependence of the pomeron
intercept is extracted from an analysis of the energy de-
pendence of the structure functions [35, 36] on the scale.
This intercept determines the energy behaviour of all pro-
cesses with the same scale, and the energy dependence of
different processes, as γ∗ p scattering and vector meson
electroproduction, can be related.

Our paper is organized as follows: In Sect.II we deter-
mine the scale for the different processes and give inter-
polation formulæ which relate the scale to the photon
virtuality; in Sect.III the pomeron intercept as function
of the scale and the photon virtuality is derived from the
energy dependence of the structure functions. In Sect.IV
we present comparison with experiments and finally we
summarize and discuss our results in Sect.V.

II. FIXING THE SCALE FOR DIFFERENT

PROCESSES

Vector meson production and γ∗p scattering are the
best investigated electromagnetic diffractive processes.
In the dipole model, for a fixed cm energy W0 =

√
s0,of

the γ∗ and the target the forward scattering amplitude
is generically given by [5]

T0 = i

∫ ∞

0

dζ

∫ 1

0

du
ζ

uū
σ(u, ζ) ρ(Q2, u, ζ) , (3)

where u and ū = 1 − u are the longitudinal momentum
fractions of the dipole constituents, and

ζ =
√
u ū r⊥ , (4)

r⊥ being their transverse separation.
The quantity σ(u, ζ) is the dipole cross section and

ρ(Q2, u, ζ) the overlap of the wave functions of the virtual
photon and of the diffractively produced particle. Eq. 3
determines the Regge residue and the energy dependence
of the forward amplitude in the Regge model is T =
T0 (s/s0)αP .
The overlap, written generically as

ργ∗,fs(Q
2, u, ζ) = ψ∗

fs(u, ζ) ψγ∗(Q2, u, ζ), (5)

is represented diagrammatically in Fig.1. Here
ψγ∗(Q2, u, ζ) is the hadronic wave function of the inci-
dent photon, and ψfs (u, ζ) is the wave function of the
final state; for vector meson production it is the vector
meson wave function, while for γ∗ scattering it is the
outgoing hadronic photon wave function.
For the overlap functions we present below the simple

and phenomenologically successful forms, which at fixed
cm energy W describe very satisfactorily the Q2 depen-
dence of the different processes [16, 18, 19, 21]. Conser-
vation of s-channel helicity is assumed [37].
For γ∗ p scattering with transverse polarization we

write

ργ∗γ∗±1(Q
2, u, ζ) = ê2f

6α

4π2
(6)

[

(Q2 u(1− u) +m2
f )(u

2 + (1− u)2)K2
1(ǫ̂ζ) +m2

f K
2
0 (ǫ̂ζ)

]

and for longitudinal polarization

ργ∗γ∗0(Q
2, u, ζ) (7)

= ê2f
12α

4π2
Q2 u2(1− u)2K2

0 (ǫ̂ζ) ,

where

ǫ̂ =

√

Q2 +
m2

f

u(1− u)
, (8)

and with mf representing the mass of the quarks forming
the dipole in the LHS of Fig. 1.
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The overlap functions connecting γ∗ and vector mesons
are for transverse polarization

ργ∗,V ;±1(Q
2, u, ζ) = êV

√
6α

2π
(9)

[

4ǫ̂ ζ ω2(u2 + (1− u)2)K1(ǫ̂ζ) +m2
f K0(ǫ̂ζ)

]

φω(u, ζ) ,

and for longitudinal polarization

ργ∗,V ;0(Q
2, u, ζ) (10)

= 16êV

√
3α

2π
ω Qu2(1− u)2K0(ǫ̂ζ) φω(u, ζ) ,

with mass mf for the quarks constituting the vector me-
son. φω(u, ζ) is the Brodsky-Lepage (BL) [34] wave func-
tion parameter ω, written

φω(u, ζ) =
N√
4π

exp

[

−
m2

f (u− 1/2)2

2u(1− u)ω2

]

exp[−2ω2ζ2] .

(11)
(In the wave functions derived from light front holo-

graphic QCD [31] an additional factor
√

u(1− u) ap-
pears; the influence of this factor, however, on the value
of the scale is negligible). For convenience, the values
of ω in the BL wave function (11), determined by the
electronic decay widths [20, 21] are given in Table I.
Our final results do not depend strongly on the form of

the dipole cross section, since it enters into the calcula-
tion for photon scattering and vector-meson production
in the same way. The simplest choice is the quadratic
form

σ(u, ζ) = c r2⊥ = c
ζ2

uū
. (12)

We also use a form obtained directly from the data by a
deconvolution of experimental data [38, 39]. This dipole
cross section starts to grow with the third power of r⊥
and decreases for r⊥ > 3 GeV−1, as shown in Fig.2. The
value of the scale does not depend on the magnitude of
the dipole cross section but only on its form. In the
following we shall use the quadratic form, unless stated
explicitely.
In order to extract a fixed representative scale ζ̄ for a

specific process and a given Q2 value, we determine the
ζ value where the overlap is maximal, namely find ζ̄max

that gives the maximum of the integrand Y in Eq.(3)

Y (Q2, ζ) =

∫ 1

0

du
ζ

uū
σ(u, ζ) ρ(Q2, u, ζ) . (13)

Typical forms of the function Y (Q2, ζ) for two cho-
sen processes with the quadratic dipole cross section and
selected Q2 values are shown in Fig.3. As we are inter-
ested in showing that both overlap functions have marked
maxima positions, but different shapes, the curves are
presented normalized to 1 at the peak, and two Q2 val-
ues are chosen that show peaks at the same value of ζ̄max.
The values represented in the figure are Q2 = 1.5 GeV2

for ργ∗,γ∗,1 and Q2 = 26 GeV2 for ργ∗ ρ,1 .

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1

r⊥

GeV−2

FIG. 2. Dipole cross sections. The solid line represents the
usual quadratic form (12), and the dashed line plots the form
given in [38].

0 1 2 3 4

0 1 2 3 4

ζ [GeV−1]

ζmax

Y

1

FIG. 3. The function Y , Eq. (13) , for ργ∗,γ∗,1 at Q2 = 1.5
GeV2 (solid curve) and for ργ∗ ρ,1 at Q2 = 26 GeV2 (dashed
curve) for the quadratic dipole cross section (12) as function
of ζ. The displayed Q2 values are chosen to yield the same
ζ̄max values, and the curves are normalized to equal height at
ζ̄max.

In order to obtain some control of the uncertainties of
this choice of a representative scale, we also use another
intuitive criterion. We define ζ̄med as the median value
of ζ, determined by

∫ ζ̄med

0

dζ

∫ 1

0

du
ζ

uū
σ(u, ζ)ρ(Q2, u, ζ) (14)

=

∫ ∞

ζ̄med

dζ

∫ 1

0

du
ζ

uū
σ(u, ζ)ρ(Q2, u, ζ) .

The cross sections of longitudinal and transverse pho-
tons are added incoherently, and we therefore have fitted
independently the scales for both polarizations and for
their weighted average, for the different processes and
interesting Q2 values.
The overlap functions ρ(Q2, u, ζ) depend on the quark

masses. For diffractive production of heavy vector
mesons we use the MS masses [40]: mc = 1.28 GeV
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FIG. 4. Plots of functions ζ̄max(Q
2) and ζ̄med(Q

2) that
convert Q2 into the scale variables that are used to describe
different diffractive processes of ρ and J/ψ vector meson pro-
duction and photon scattering. The solid line represents their
average ζ̄ given in Eq.20.

and mb = 4.18 GeV. For Q2 = 0 the overlap diverges
logarithmically with vanishing quark mass and therefore
special constituent mass values have to be assumed. In
order to reduce model dependence, we have for light me-
son production determined the scale only for Q2 ≥ 1,
where the dependence on quark masses is weak and the
current quark masses, mu ≈ md ≈ 0, ms = 0.1 GeV can
safely be chosen. For hadronic processes involving light
quarks, the scale at Q2 = 0 is fixed by the confinement
scale and therefore we have there the purely hadronic
pomeron intercept αP ≈ 1.09.

Fig.4 shows the functions ζ̄max(Q
2) and ζ̄med(Q

2) and
their average ζ̄(Q2) for ρ and J/ψ vector meson produc-
tion and for photon scattering.

Transverse Longitudinal

ω N ω N

(GeV) (GeV)

ρ(770) 0.2809 2.0820 0.3500 1.8366

ω(782) 0.2618 2.0470 0.3088 1.8605

φ(1020) 0.3119 1.9201 0.3654 1.9191

J/ψ(1S) 0.6452 1.4752 0.7140 2.2769

Υ(1S) 1.3333 1.1816 1.3851 2.7694

TABLE I. Parameters of the Brodsky-Lepage (BL) vector
meson wave functions (11), taken from [20, 21].

III. SCALE DEPENDENT POMERON

INTERCEPT

The best investigated electromagnetic diffractive pro-
cess is γ∗ p scattering. It is usually presented as the DIS
proton structure function F2(x,Q

2), which is related to
the γ∗ p total cross section by

F2(x,Q
2) =

Q2

4π2 α
σγ∗p , (15)

with

x =
Q2

W 2 +Q2 −m2
p

. (16)

Due to the optical theorem the total γ∗ p cross section is
proportional to the γ∗ p forward scattering amplitude and
its energy behaviour is given by the pomeron intercept
at t = 0, with the form W 2[αP(0)−1].
The structure function has been fitted [41] with the

power behaviour

F2(x,Q
2) = c Q2 x−λ(Q2) , (17)

with λ(Q2) = 0.0481 log
[

Q2/0.0853
]

for Q2 ≥ 3.5 GeV2,
related to the pomeron intercept by λ = αP(0)− 1 . We
use the modification

αP(0)− 1 = 0.0481 log

[

Q2 + 0.554

0.0853

]

, (18)

that is adjusted to give the intercept 1.09 at hadronic
scales, that is at Q2 = 0.
In order to relate the pomeron intercept with the scale

ζ̄ one inverts the scale function ζ̄γ(Q
2), obtained for γ∗ p

scattering according to the methods explained in the pre-
ceding section; this yields the inverse function Q2

γ

(

ζ̄
)

.
One can then calculate the value of the intercept of vec-
tor meson production as function of Q2 from (18) by

inserting for Q2 the value Q2(ζ̄V M ), where ζ̄V M is the
value ζ̄VM(Q2) obtained for the vector meson at photon
virtuality Q2. We thus obtain for the production of the
vector meson VM the relation

αP(0)−1 = 0.0481 log

[

Q2
γ

(

ζ̄VM(Q2)
)

+ 0.554

0.0853

]

. (19)

It turns out that the intercept calculated for a specific
process at fixed Q2 depends only weakly on the method
of its extraction, the deviation of αP (0)− 1 obtained for
both procedures ζ̄max and ζ̄med deviates at most ±5%
from the mean value ζ̄. We therefore present in the fol-
lowing only the averaged results

ζ̄(Q2) =
1

2
[ζ̄max(Q

2) + ζ̄med(Q
2)] . (20)

The extreme choice of the dipole cross section of [38]
leads to an increase of αP (0)− 1 by less than 15 %.
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The results of the numerical analysis show that for
each process γ∗ p → fs p with final state fs and given
polarization ”pol”, the average scale ζ̄(Q2) can be very
well fitted by a function of the simple form

ζ̄fs (Q
2) =

afs,pol
√

Q2 + bfs,pol
. (21)

The coefficients a and b for the different processes are
displayed in Table II.
From this fit and Eq.(19) we can obtain the pomeron

intercept from γ∗ scattering as a function of the scale ζ̄.
We then have

αP(0)− 1 = 0.0481 log

[

a2γ∗,pol/ζ̄
2 − bγ∗,pol + 0.554

0.0853

]

,

(22)
where aγ∗,pol is the coefficient in Eq.(21) for γ∗ p scatter-
ing, with the label pol indicating transverse (T), longi-
tudinal(L) or total (tot) cross sections (row γ∗ in Table
II).
From this equation we obtain the intercept for vector

meson production as function of Q2 by expressing the
scale ζ̄ through Eq.(21) for the specified meson VM

δ(Q2) = 4(αP(0)− 1) = 0.472 + 0.1924× (23)

log

[

a2γ∗,pol

a2VM,pol

(Q2 − bγ∗,pol + bVM,pol) + 0.554

]

.

final state afs,pol bfs,pol [GeV2]

fs trans long total trans long total

γ∗ 0.945 1.228 0.968 -0.004 -0.003 -0.004

ρ 3.602 2.767 2.925 2.724 2.092 2.357

φ 3.651 2.800 3.022 3.308 2.581 2.351

J/ψ 3.386 2.790 2.856 20.63 17.12 14.98

Υ 3.186 2.765 2.658 123.2 109.6 86.93

TABLE II. Coefficients of the numerical fits of the average
scale ζ̄fs(Q

2), (20), for the processes γ∗p→ fs p with Eq.(21),
for use in longitudinal, transverse and total (incoherent sum
of the two cases) cross sections. fs = γ∗ refers to γ∗p total
cross section. The accuracy of the fit is better than 1% in the
Q2 range from 1 to 60 GeV2 for photon scattering and ρ, φ
production and from 0 to 60 GeV2 for J/ψ and Υ production.
Remark: For Q2 = 0 in ρ and φ production, the relevant scale
is the hadronic scale, chosen as ζ̄ = 2GeV−1, with a soft
pomeron intercept 1.09.

The intercept at t = 0 determines the energy behaviour
of the forward scattering amplitude (and therefore also
of the total γ∗ p cross section). For integrated elastic
production cross sections one also has to take into ac-
count the t dependence of the trajectory, which leads to
a shrinkage of the diffraction peak. For unpolarized elas-
tic diffractive vector meson production, γ∗ p → p [VM],
the differential elastic cross section in the Regge model
is given by

dσ

dt
=

(

s

s0

)2[αP(t)−1]

β2(t) . (24)

For fixed W and Q2 the t dependence is well approxi-
mated by an exponential, and we thus assume the residue
β(t) = β0e

B t/2 and αP(t) = αP(0) + α′
P
t. We then ob-

tain for the integrated cross section

σint =

∫ 0

−∞

dt
dσ

dt
(25)

=
β2
0

B + 2α′
P
log(s/s0)

(

s

s0

)2[αP(0)−1]
(

1 +O(s−2)
)

.

The slopes observed in dσ/dt in vector meson electropro-
duction [20] are in the range of 5 to 10 GeV−2. With
2α′

P
/B ≪ 1, the energy dependence of the total cross

section can be approximated by

σint ≈
β2
0

B

(

s

s0

)2[αP(0)−α′

P
/B−1]

. (26)

Although the present data on α′
P
do not allow firm con-

clusions [36], it is certain that the effective powers δVM

that fits experiments should be smaller than the value
4[αP(0)−1] obtained from the structure function. In the
simplified model of Eq.(2) [27] discussed in the introduc-
tion, the slope of the pomeron trajectory decreases with
decreasing scale

α′

P = α′
ζ̄2

ζ̄2conf
, (27)

where ζ̄conf is the scale set by confinement, at which α′
P ≈

0.25 GeV−2. Choosing realistic values ζ̄conf = 2 GeV−1,
B = 5 GeV−2 we obtain a shrinking correction

α′
P

B
= 0.0125 ζ̄2 = 0.0125

a2VM,pol

Q2 + bVM,pol
, (28)

and for the power δint, applicable to integrated elastic
diffractive cross sections we have

δint(Q
2) = δ − 4α′

P/B = 0.472 (29)

+0.1924 log
[ a2γ∗,pol

a2VM,pol

(Q2 − bγ∗,pol + bVM,pol) + 0.554
]

−0.05
a2VM,pol

Q2 + bVM,pol
.

IV. DESCRIPTION AND PREDICTION OF

DIFFRACTIVE DATA

In Fig.5 experimentally determined values of the power
δ = 4

(

αP(0) − 1
)

for different reactions are displayed

against the scale ζ̄. The values for photon scattering
are deduced from measurements of the proton struc-
ture function and the total γ∗ p cross section [41, 42].
The experimental δ values for vector meson produc-
tion are taken from: a) ρ-production [36, 43–46]; b) φ-
production [36, 47]; c) J/ψ-production [48, 50, 51, 57]; d)
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FIG. 5. Experimental values of δ = 4(αP(0) − 1) vs. the
scale ζ̄ for different processes. The dashed line represents the
interpolation formula (18). The solid curve takes into account
the effects of the shrinking in Eq.(27). The stars are obtained
from measurements of the proton structure function and total
γ∗ p cross section [41, 42]. References for the data on vector
meson production are given in detail in Fig.6.

Υ-production [52]. They are given for fixed Q2, and the
corresponding scale ζ̄ has been determined by Eq.(21)
with the constants from Table II. The dashed line cor-
responds to the fit Eq.(18) to the photon data with
Q2 = 0.9682/ζ̄2 + 0.004. The solid line includes the
shrinkage correction Eq.(27),(28),(29) to be applied for
the integrated cross sections of diffractive vector meson
production.

The errors for vector meson production and corre-
spondingly the fluctuations are generally quite large, but
the figure shows that the data are well compatible with a
common power behaviour, only dependent on the ζ̄ scale,
but not on the process. Future data in the TeV region
with reduced errors may provide decisive tests for the
conjecture of a single pomeron with a scale dependent
intercept governing the energy behaviour universally for
all diffractive processes.

In Fig.6 we show theoretical predictions and experi-
mental results for the powers δ and δint, that is without
and with shrinkage correction, as a function of the photon
virtualityQ2 for unpolarized elastic production of all vec-
tor mesons in the ground state, the theoretical results for
ω meson production are not distinguishable from those of
ρ production. The long-dashed curves represent the un-
corrected power δ(Q2), obtained from Eq.(23), and the
solid line is δint, Eq.(29) that includes shrinkage correc-
tions. We also show with dotted lines results based on a
scale determination with the rather extreme dipole cross

section [38] shown in Fig.2. The theoretical predictions
are well compatible with the experiments. The observed
sharp increase of the power delta with Q2 near Q2 = 0
indicates that the rapidly varying shrinkage correction
given by Eq.(28) is quite realistic.
In in Fig.7 data and the theoretically predicted en-

ergy dependence of ρ and J/ψ cross section are displayed.
According to the model the energy dependence is repre-
sented by a single power cW η in the full energy range .
The constant c is fitted to the data, and the values for
the power η are given by the model, either η = δ(Q2)
or η = δint(Q

2). For ρ production (left hand side) we
show both the results with shrinkage correction, Eq.(29),
in solid lines, and without shrinkage correction, Eq.(23),
in dashed lines. At Q2 = 0 we have used δ(0) = 0.36
corresponding to the soft pomeron intercept 1.09. The
shrinkage correction reduces this vcalue to δint = 0.18.
The data are clearly compatible with experiment, and
it is expected that further data at LHC energies will be
bring decisive test for the single power behaviour.
The plot of J/ψ photoproduction on the right hand

side includes the most recent LHC data. Here the influ-
ence of the shrinking correction is small and δ(0) = 0.63,
δshrink(0) = 0.61 (solid line). To exhibit the stability of
the predictions of the universality conjecture, the dotted
line gives the prediction from the extreme dipole model
of [38], displayed in Fig. 2.
Parameters of the curves CW η for J/ψ photoproduc-

tion in some cases are as follows:
theory with shrinkage correction Eq.(29): η =

δint(0) = 0.61, C = 4.99, χ2 = 1.35 ;
theory without shrinkage correction (23): η = δ(0) =

0.63, C = 4.46, χ2 = 1.042;
theory with dipole model of [38] without shrinkage cor-

rection: η = δint(0) = 0.69, C = 3.37, χ2 = 0.84 ;
free fit with open power: η = 0.68, C = 3.61, χ2 =

0.81.
The transverse and longitudinal wave functions are dif-

ferent and therefore we obtain different scales for the
respective cross sections. This leads to different en-
ergy behaviour for the two polarizations and the ratio
R = σL/σT has the power behaviour

R =
σL
σT

= AW δR , (30)

with

δR = δL − δT . (31)

The values of δL and δT are determined by Eq.(23) with
the constants aVM,long, aVM,trans, bVM,long, bVM,trans of
Table II. The experimental errors for the ratio R are quite
large and also the theoretical uncertainties in the small
differences between δL and δT are large.
In Fig. 8 a) - c) we show data [36, 45, 58] for the en-

ergy dependence of the polarization ratios R = σL/σT
for three values of Q2. The solid line are the theoretical
predictions according to Eqs. 23,30,31. The multiplica-
tive constant A in Eq. (30) is fitted freely. We also show
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FIG. 6. Predictions for the power δ and δint as function of Q2 for vector meson electroproduction and experimental values
for this quantity: a) ρ-production [36, 43–46]; b) φ-production [36, 47] ; c) J/ψ-production [48, 50, 51, 57]; d) Υ-production
[52]. The solid line is δint, Eq.(29), including the shrinkage correction, and the dashed line is δ, Eq. (23), as obtained with the
quadratic dipole cross section. The power δ for the special dipole model [38] shown in Fig.2 is represented by the dotted line,
without shrinkage corrections.

in dashed lines the results of free fits to the data with un-
constrained A and δR. At Q2 = 7.5 and 22.5 GeV2 the
model gives good agreement for the energy dependence
of the ratio R. In the last plot of the set, the data and
the theoretical predictions for the power coefficients as
functions of Q2 are compared directly.
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V. SUMMARY AND CONCLUSIONS

We present a simple phenomenological model assum-
ing that single pomeron exchange determines electromag-
netically induced diffractive processes. The main conse-
quence of this approach is that the high energy behaviour
of each process is determined by a single power W η. Re-
cent results for J/ψ photoproduction from LHC [22, 23]
indicate such a behaviour, which will be tested with more
measurements of diffractive electromagnetic processes at
LHC.

We furthermore assume that the intercept is deter-
mined by the scale of the reaction , which is related to
the extension of the dipole wave functions, as illustrated
in Fig. 1. This assumption is inspired by a holographic
model which predicts a scale dependence of the pomeron
slope [27], and is here extended to a model where also
the intercept is scale dependent. This assumption is nec-
essary if one assumes a single pomeron exchange, since
in photon-induced electromagnetic diffraction processes
the energy behaviour depends strongly on the photon
virtuality. The scale for vector meson production is in
our approach determined by the extension parameter ζ
of light cone wave functions [34] and we determine the
scale dependence of the pomeron intercept by the energy
dependence of the structure function F2 at fixed Q2. We
have tested two methods for the extraction of this scale
and also two extremely different dipole cross sections, il-
lustrated in Fig. 2. It turns out that the uncertainties
induced by the different methods of definition of the scale
are smaller than present experimental errors.

The assumption of a universal scale, determined essen-
tially by the effective dipole size of the virtual photon, is
well compatible with the present data. Specifically the
energy dependences of J/ψ and Υ production are suc-
cessfully predicted. A decisive test of the additional hy-
pothesis of an intercept dependence on a universal scale
will also be possible as data for more reactions in the
LHC energy range become available.

Also the concept of a scale dependent slope of the
pomeron trajectory [27] is well compatible with the data
[36], as shown in Fig. 7. A possible scenario for tra-
jectories for J/ψ and Υ photoproduction together with
the conventional soft pomeron trajectory is displayed in
Fig. 9. The intercept αP (0) and the slope for t < 0 are
fixed by the model, see Eqs.(23), (28). For t ≫ 0 where
glueball states may be on the trajectory, the hadronic
confinement scale becomes relevant and there it should
coincide with the soft pomeron, that is the pomeron tra-
jectory relevant for hadronic scattering.

The model is inspired by AdS/CFT type models which
yield a scale dependent slope of the pomeron trajectory
and, in a typical bottom-up approach, it is based on the
phenomenological input of a scale dependent intercept.
A real challenge would be to show, at least qualitatively,
how a scale dependent intercept can emerge from more
fundamental principles.
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FIG. 9. Scenario for scale dependent pomeron trajectories:
the solid line is the trajectory relevant at hadronic scales (soft
pomeron), and the dashed and dotted lines represent the tra-
jectories for J/ψ and and Υ photoproduction, respectively.
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