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1 Introduction

Superstring theory is a good candidate for the unified theory of the gauge and gravitational
interactions, and quark, lepton and Higgs fields. Indeed, there have been several approaches to
derive the realistic string vacua by comparing the theoretical predictions with the data of the
cosmological observations as well as the collider experiments which are known as the subjects
of string cosmology and phenomenology.

Beginning with the work of Ref. [1], there are much progresses to find the standard-like
models from the E8 ×E8 heterotic string theory instead of the SO(32) heterotic string theory.
(See for a review, e.g. [2].) This is because E8 gauge group involves several candidates of the
grand unified groups such as E6, SO(10) and SU(5) as the subgroups of E8 and the E8 adjoint
representation includes matter representations such as 27 of E6, 16 of SO(10) and 10 and 5̄ of
SU(5). However, in SO(32) heterotic string theory, for example, the 16 spinor representation
of SO(10) is not involved in the adjoint representation of SO(32). (In the framework of toroidal
ZN orbifold, there are some possibilities to obtain the spinor representation of SO groups as
discussed in Ref. [3].) Therefore, as one of the procedures to find the realistic string vacua,
we try to derive the (non-)supersymmetric standard-like models from the SO(32) heterotic
string theory without going through the grand unified groups. This approach might be useful
to search for the realistic standard model, because the standard-like model given through the
decomposition of GUT groups have the extra matters which should be decoupled from the
low-energy dynamics in terms of some non-trivial mechanisms.

The standard model is a chiral theory. Thus, the key point to realize the standard model is
how to realize a chiral theory. Toroidal compactification is simple, but it can not realize a chiral
theory unless introducing additional backgrounds. Orbifold and Calabi-Yau compactifications
can lead to a chiral theory. Toroidal compactification with magnetic fluxes can also lead to
a chiral theory. Here, we study such a background. That is, our key ingredients are the
multiple U(1) magnetic fluxes inserted into SO(32) gauge group. These magnetic fluxes are
first discussed in Ref. [1], where the SU(5) grand unified groups can be realized from the SO(32)
heterotic string theory. Furthermore, there are much progresses on the resolved toroidal orbifold
in [4] and on more general Calabi-Yau manifolds for E8 × E8 and/or SO(32) heterotic string
theory via the spectral cover construction [5] and the extension of it [6] ( see e.g., Refs. [7]).1

In this paper, we study SO(32) heterotic string theory on six-dimensional (6D) torus with
magnetic fluxes, which is one of the simplest compactifications leading to a chiral theory. Then,
we search the models, where the unbroken gauge group includes SU(3) × SU(2)× U(1)Y and
massless spectra correspond to three chiral generations of quarks and leptons.

The paper is organized as follows. In Sec. 2, we show our set-up and typical theoretical
constraints which are required from the consistency of heterotic string theory. For example,
in the standard embedding scenario of the Calabi-Yau compacfitication, the internal gauge
backgrounds are set to be equal to spin connections of the Calabi-Yau manifolds. On the other
hand, in the non-standard embedding scenario, the gauge fields are not always identified as
the spin connections of the internal manifold due to the existence of the fluxes. We discuss

1Also the low-energy massless spectra were studied within the ten-dimensional E8×E8 theory on torus with
magnetic fluxes from the field-theoretical viewpoint [8].
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the consistency conditions for such fluxes on 6D torus in Sec. 2.1. In addition, the U(1)Y
gauge boson should be massless, even if the consistent fluxes are inserted into SO(32) gauge
groups in order to derive the standard-like model gauge groups. Generically, U(1) gauge bosons
appeared in the low-energy effective theory couple to the universal and Kähler axions through
the ten-dimensional (10D) Green-Schwarz term [9] which implies that the linear combination
of U(1) gauge bosons may absorb these axions by their Stueckelberg couplings and become
massive. Thus the axionic couplings of U(1)Y gauge boson should be absent, otherwise U(1)Y
gauge boson would become massive as discussed in Sec. 2.2. In addition to the merits of
gauge symmetry breaking, the fluxes are important tools to realize the degenerate zero-modes,
i.e., three generations of the elementary particles. In fact, in Sec. 2.3, the chiral theory with
degenerate zero-modes can be obtained from the considerations of zero-mode wavefunctions on
tori. At the same time, the existence of four-dimensional (4D) N = 1 supersymmetry (SUSY)
depends on the ansatz of U(1) fluxes due to the flux-induced Fayet-Iliopoulos terms.

In Sec. 3.1, we discuss the concrete embeddings of the standard model gauge groups into
SO(32) gauge group in terms of the multiple U(1) fluxes. The correct matter contents of the
standard model are then derived from the adjoint and vector representations of SO(12) given
by the subgroup of SO(32). Since the number of generations corresponds to the number of U(1)
fluxes, we search for the desired matter contents of the standard model satisfying the U(1)Y
massless conditions as well as the SUSY conditions as can be seen in Sec. 3.2. In Sec. 3.3, we
further constrain the models by imposing the so-called K theory constraints. Finally, Sec. 4 is
devoted to the conclusion. The normalization of SO(32) generators and useful trace identities
of SO(32) gauge group are summarized in Appendices A and B, respectively.

2 SO(32) heterotic string theory on tori with U(1) mag-

netic fluxes

2.1 Low-energy description of SO(32) heterotic string theory

We briefly review the SO(32) heterotic string theory on a general complex manifold with
multiple U(1) magnetic fluxes. The notation is based on Refs. [10, 11, 12]. The low-energy
effective action of SO(32) heterotic string theory is given by

Sbos =
1

2κ210

∫

M (10)

e−2φ10

[

R + 4dφ10 ∧ ∗dφ10 −
1

2
H ∧ ∗H

]

− 1

2g210

∫

M (10)

e−2φ10tr(F ∧ ∗F ), (1)

which is the bosonic part of the action at the string frame in the notation of [10]. The gravi-
tational and Yang-Mills couplings are set by 2κ210 = (2π)7(α

′

)4 and g210 = 2(2π)7(α
′

)3 and φ10

denotes the ten-dimensional dilaton. Here the field-strength of SO(32) gauge groups F has
the index of vector-representation. In what follows, “tr” and “Tr” represent for the trace in
the vector and adjoint representation of the SO(32) gauge group, respectively. In addition, H
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denotes the heterotic three-form field strength defined by

H = dB(2) − α
′

4
(wYM − wL), (2)

where wYM and wL are the gauge and gravitational Chern-Simons three-forms, respectively.
From the action given by Eq. (1), the kinetic term of the B-field is extracted as

Skin + SWZ = − 1

4κ210

∫

M (10)

dB(2) ∧ ∗dB(2) −
∑

a

NaT5

∫

Γa

B(6)

= − 1

4κ210

∫

M (10)

dB(2) ∧ ∗dB(2) −
∑

a

NaT5

∫

M (10)

B(6) ∧ δ(Γa), (3)

where we add theWess-Zumino term which describes the magnetic sources for the Kalb-Ramond
field B(6). Such sources correspond to the non-perturbative objects, i.e., the stacks of Na

five-branes which wrap the holomorphic two-cycles Γa and their tensions are given by T5 =
((2π)5(α

′

)3)−1. Here, δ(Γa) denote the Poincáre dual four-form of the two-cycles Γa.
By employing the ten-dimensional Hodge duality, the Kalb-Ramond two-form B(2) and

six-form B(6) are related as

∗dB(2) = e2φ10dB(6), (4)

and then the kinetic term of Kalb-Ramond field and Wess-Zumino term (3) are rewritten as

Skin + SWZ = − 1

4κ210

∫

M (10)

e2φ10dB(6) ∧ ∗dB(6)

+
α ′

8κ210

∫

M (10)

B(6) ∧
(

trF 2 − trR2 − 4(2π)2
∑

a

Naδ(Γa)

)

, (5)

where Na = ±1 represent for the contributions of heterotic and anti-heterotic five-brane, re-
spectively. The equation of motion of B(6) leads to the following tadpole condition of the NS-NS
fluxes in the presence of five-branes,

d(e2φ10 ∗ dB(6)) = −α
′

4

(

trF̄ 2 − trR̄2 − 4(2π)2
∑

a

Naδ(Γa)

)

= 0, (6)

in cohomology and where F̄ stand for the gauge field strengths of the internal gauge fields
whose gauge groups are embedded in SO(32). When the extra-dimension is compactified on
the flat space such as three 2-tori, (T 2)1 × (T 2)2 × (T 2)3, the tadpole cancellation requires the
following consistency conditions,

∫

(T 2)i×(T 2)j

(

trF̄ 2 − 4(2π)2
∑

a

Naδ(Γa)

)

= 0, (7)
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which should be satisfied on (T 2)i × (T 2)j with i 6= j, i, j = 1, 2, 3. Thus if the nonvanishing
fluxes are not canceled by themselves, the non-perturbative objects would contribute to the
cancellation of anomalies. It suggests that the modular invariance of heterotic string theory is
recovered by the existence of these non-perturbative objects [13, 14] which can be also realized
in the framework of heterotic orbifold [15]. 2

2.2 Generalized Green-Schwarz mechanism

In addition to the consistency condition as discussed in Sec. 2.1, it must be ensured that our
models do not have gauge and gravitational anomalies. In heterotic string theory, it is known
that some gauge and gravitational anomalies are canceled by considering the following one-loop
Green-Schwarz term at the string frame [9],

SGS =
1

24(2π)5α′

∫

B(2) ∧X8, (8)

whose normalization factor is determined by the S-dual type I theory as shown in Appendix of
[18] and the eight-form X8 reads,

X8 =
1

24
TrF 4 − 1

7200
(TrF 2)2 − 1

240
(TrF 2)(trR2) +

1

8
trR4 +

1

32
(trR2)2. (9)

Although the gauge and gravitational anomalies for the non-Abelian gauge groups are can-
celed by the above Green-Schwarz term (8) and the tadpole condition (6) as shown in Ref. [1],
the anomalies relevant to the multiple Abelian gauge groups, which appear in low-energy ef-
fective theory, can be also canceled by same Green-Schwarz mechanism, for more details see
Refs. [11]. In fact, since we derive just the three-generation standard-like models, our phe-
nomenological models do not receive these anomalies. However, as pointed out in Refs. [11],
even if the Abelian gauge symmetries are anomaly-free, the Abelian gauge bosons may become
massive due to the Green-Schwarz coupling given by Eq. (8). In order to ensure that the hy-
percharge gauge boson is massless, they should not couple to the axions which is hodge dual
to the Kalb-Ramond field.

For completeness, we define the hypercharge gauge group as the subgroup of SO(32) as
follows. The decomposition of the SO(32) gauge group can be realized by inserting the multiple
U(1) constant magnetic fluxes as those satisfying

SO(32) → SU(3)C ⊗ SU(2)L ⊗13
a=1 U(1)a. (10)

Totally, SO(32) has 16 Cartan elements, Hi (i = 1, · · · , 16). We take the Cartan elements of
SU(3) along H1 − H2, H1 + H2 − 2H3 and Cartan element of SU(2) as H5 − H6. The other

2Even if the consistency condition is satisfied at the non-perturbative level, we have to care about the
anomaly on heterotic five-branes and the global Witten anomaly is absent if the number of chiral fermions on
the heterotic five branes is even [16, 17].
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Cartan directions of SO(32) are chosen as,

U(1)1 : (0, 0, 0, 0, 1, 1; 0, 0, · · · , 0),
U(1)2 : (1, 1, 1, 1, 0, 0; 0, 0, · · · , 0),
U(1)3 : (1, 1, 1,−3, 0, 0; 0, 0, · · · , 0),
U(1)4 : (0, 0, 0, 0, 0, 0; 1, 0, · · · , 0),
U(1)5 : (0, 0, 0, 0, 0, 0; 0, 1, · · · , 0),

...

U(1)13 : (0, 0, 0, 0, 0, 0; 0, 0, · · · , 1), (11)

in the basis Hi. Then, we use the basis that non-zero roots have charge

(±1,±1, 0, · · · , 0), (12)

under Hi (i = 1, · · · , 16), where the underline means any possible permutations. The nor-
malization of the Abelian gauge groups are discussed in the Appendix A and the concrete
identification of standard model gauge groups and its representations are shown in Sec. 3. Note
that some gauge groups would be enhanced to the larger one if any of U(1) fluxes are absent
or degenerate.

When the U(1) fluxes are inserted along the Cartan direction of SO(32), the field strengths
of U(1)s, f are decomposed into the four-dimensional parts f and extra-dimensional parts f̄ ,

f → f + f̄ , (13)

and then we can dimensionally reduce the one-loop Green-Schwarz term (8) to

SGS =
1

(2π)3l2s

∫

M (10)

B(2) ∧ 1

144
(TrF f̄ 3) (14)

− 1

(2π)3l2s

∫

M (10)

B(2) ∧ 1

2880
(TrF f̄) ∧

(

1

15
Trf̄ 2 + trR̄2

)

(15)

+
1

(2π)3l2s

∫

M (10)

B(2) ∧
[ 1

96
(TrF 2f̄ 2)− 1

43200
(TrF f̄)2

]

(16)

− 1

(2π)3l2s

∫

M (10)

B(2) ∧ 1

5760
(TrF 2) ∧

(

1

15
Trf̄ 2 + trR̄2

)

(17)

+
1

(2π)3l2s

∫

M (10)

B(2) ∧ 1

384
(trR2) ∧

(

trR̄2 − 1

15
Trf̄ 2

)

(18)

where ls = 2π
√
α′, F denote the field strengths of SU(3)C , SU(2)L, U(1)Y . The explicit forms

of traces appeared in Eqs. (14)-(18) are shown in Appendix B.
Before evaluating the mass term of U(1) gauge bosons, for completeness, we show the

definition of three 2-tori (T 2)i ≃ C/Λi with i = 1, 2, 3, where the lattices Λi are generated by
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two vectors ei = 2πRi and ei = 2πRiτi. Here, Ri and τi are the radii and complex structure
moduli of (T 2)i, respectively. The metrics of three 2-tori are then given by

ds26 = gmndx
mdxn = 2hij̄dz

idzj̄ , (19)

gmn =





g(1) 0 0
0 g(2) 0
0 0 g(3)



 , hij̄ =





h(1) 0 0
0 h(2) 0
0 0 h(3)



 , (20)

where xm are the coordinates of T 2 with m,n = 4, 5, 6, 7, 8, 9, zi = x2+2i + τ ix3+2i and the rank
2 diagonal matrices g(i) and h(i) are given by

g(i) = (2πRi)
2

(

1 Re τi
Re τi |τi|2

)

, h(i) = (2πRi)
2

(

0 1/2
1/2 0

)

. (21)

From this expression, we expand the Kalb-Ramond field B(2) and internal U(1)a field
strengths f̄a, (a = 1, · · · , 13) in the basis of Kähler forms, wi = idzi ∧ dz̄i/(2 Imτ (i)) on tori
(T 2)i derived from the metrics (21),

B(2) = b
(2)
S + l2s

3
∑

i=1

b
(0)
i wi,

f̄a = 2π

3
∑

i=1

m(i)
a wi, (22)

where m
(i)
a are the integers or half-integers determined by Dirac quantization condition. Since

Dirac quantization is satisfied in the adjoint representation of SO(32), the factional numbers

of m
(i)
a can be allowed as pointed out in Ref. [1]. From the Eqs. (14) and (15), we can extract

the Stueckelberg couplings,

1

3(2π)3l2s

∫

b
(2)
S ∧

[

trT 4
1 f̄

3
1 f1 +

(

trT 4
2 f̄

3
2 + 3(trT 2

2 T
2
3 )f̄2f̄

2
3 + (trT2T

3
3 )f̄

3
3

)

f2

+
(

trT 4
3 f̄

3
3 + 3(trT2T

3
3 )f̄2f̄

2
3 + 3(trT 2

2 T
2
3 )f̄

2
2 f̄3
)

f3 +
13
∑

c=4

trT 4
c f̄

3
c fc

]

, (23)

where the trace identities are employed as shown in Appendix B. If the U(1) gauge fields

couple to the universal axion b
(0)
S which is the hodge dual of the tensor field b

(2)
S , one of the

multiple U(1) gauge fields absorbs the universal axion and become massive. In our model,
since the hypercharge U(1)Y is identified as the linear combinations of multiple U(1)s, i.e.,
U(1)Y = 1

6
(U(1)3+3

∑

c U(1)c) as shall be discussed in Sec. 3 3, the U(1)Y gauge field becomes
massless under the condition

6tr(T 4
3 )m

(1)
3 m

(2)
3 m

(3)
3 + 3tr(T2T

3
3 )dijkm

(i)
2 m

(j)
3 m

(k)
3 + 3tr(T 2

2 T
2
3 )dijkm

(i)
2 m

(j)
2 m

(k)
3

+ 18
∑

c

tr(T 4
c )m

(1)
c m(2)

c m(3)
c = 0, (24)

3In the definition of U(1)Y , the summation over c depends on the models as shown in Sec. 3
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which means no interaction between U(1)Y and the universal axion b
(0)
S . Here the following

formulas are satisfied
∫

T 2
×T 2

×T 2 f̄
3
a = (2π)3dijkm

(i)
a m

(j)
a m

(k)
a = 6(2π)3m

(1)
a m

(2)
a m

(3)
a with the

non-vanishing intersection numbers of 2-tori, dijk = 1 (i 6= j 6= k).
Except for the universal axion, there are other axions associated with the internal cycles,

that is, Kähler axions which couple to the U(1) gauge bosons originated from the action given
by Eq. (5). Along with the Kalb-Ramond field B(2), we expand the dual field B(6) as

B(6) = l6sb
(0)
0 vol6 + l4s

3
∑

k=1

b
(2)
k ŵk, (25)

where ŵk are the Hodge dual four-forms of the Kähler forms,

ŵk =
dkij
2
i
dzi ∧ dz̄i
2 Imτ (i)

∧ idz
j ∧ dz̄j

2 Imτ (j)
, (26)

which are defined as those satisfying
∫

T 2
×T 2

×T 2 wi ∧ ŵj = δij . After inserting these expressions
into the action given by Eq. (5), we can extract the mass terms of the U(1) gauge bosons,

1

l2s

∫

b
(2)
i ∧

13
∑

a=1

tr(T 2
a )fam

(i)
a . (27)

In the same way as the case of universal axion, the U(1)Y gauge field should not couple to the
Kähler axions, otherwise it becomes massive. Thus the U(1)Y gauge boson is massless under
the following condition,

tr(T 2
3 )m

(i)
3 + 3

13
∑

c=4

tr(T 2
c )m

(i)
c = 0, (28)

with i = 1, 2, 3.
As a step to realize the realistic models, the massless conditions for U(1)Y gauge boson

given by Eqs. (24) and (28) should be satisfied. It is remarkable that these U(1) fluxes are
sensitive to the consistency condition given by Eq. (7) as shown in the Sec. 2.1. When the
heterotic five-branes are absent in our system, the following conditions,

13
∑

a=1

tr(T 2
a )m

(i)
a m

(j)
a = 0, i 6= j, (i, j = 1, 2, 3), (29)

are required from the consistencies of heterotic string theory, otherwise the NS-NS tadpole
could be canceled by the existence of heterotic five-branes.

2.3 The chiral fermions and degenerate zero-modes

The heterotic string theory on three 2-tori has N = 4 supersymmetry in the language of 4D
supercharges which have to be broken to at least N = 1 supersymmetry in the four-dimension,

7



otherwise the chiral matters do not appear in the low-energy effective theory. Although it is
known that there are much progresses in the framework of toroidal orbifold, in this paper, we
focus on the realization of chiral fermions by employing the multiple U(1) fluxes as discussed
in this section. 4

First we define the 10D Majorana-Weyl spinor λ which satisfies the Majorana-Weyl condi-
tion,

Γλ = λ, (30)

where Γ is the 10D chirality matrix. The following analysis is based on Ref. [19]. In order to
discuss the 4D chirality, we decompose the 10D Majorana-Weyl spinor λ into four 4D Weyl
spinors λ0 and λi with i = 1, 2, 3 as the representation of SU(4) ≃ SO(6). The 10D chirality
matrix Γ is also decomposed into the product of three 2D chirality operators , Γi = −iΓ1

iΓ
2
i on

(T 2)i, where

Γ1
i =

(

0 1
1 0

)

, Γ2
i =

(

0 −i
i 0

)

, (31)

satisfying the Clifford algebra. Then the 4D chirality is fixed as

Γiλ0 = λ0, Γiλj =

{

+λj (i = j),
−λj (i 6= j),

(32)

which lead to the following 4D Weyl spinors,

λ0 = λ+++, λ1 = λ+−−, λ2 = λ−+−, λ3 = λ−−+, (33)

where the subscript indexes denote the eigenvalues of Γi with i = 1, 2, 3. When we insert the
magnetic fluxes on three 2-tori, one of the four 4D Weyl spinors would be chosen. In order to
prove the above statements, we show the zero-mode wavefunction of fermions originating from
the 10D gaugino field by solving their Dirac equations.

The zero-modes of 10D gaugino field λ and gauge field AM are defined through the following
decompositions,

λ(xµ, zi) =
∑

n

χn(x
µ)⊗ ψ(1)

n (z1)⊗ ψ(2)
n (z2)⊗ ψ(3)

n (z3),

AM(xµ, zi) =
∑

n

ϕn,M(xµ)⊗ φ
(1)
n,M(z1)⊗ φ

(2)
n,M(z2)⊗ φ

(3)
n,M(z3), (34)

where M = 0, 1, · · · , 9 and xµ, µ = 0, 1, 2, 3 are the coordinates of the 4D spacetime. The
zero-modes of gaugino fields, ψ

(i)
0 (zi) are expressed as

ψ
(i)
0 (zi) =

(

ψ
(i)
+ (zi)

ψ
(i)
−
(zi)

)

, (35)

4Although the gauge sector still remains 4D N = 4 SUSY, it could be broken to N = 1 SUSY by extending
our system to the toroidal orbifold with trivial gauge embedding. The (anti-) heterotic five-branes would break
(all) partial SUSY. It is then expected that the heterotic five branes compensate the moduli invariance even if
the moduli invariance is violated at the string tree-level.
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where hereafter we omit the subscript 0 of the zero-modes, that is, ψ(i)(zi) = ψ
(i)
0 (zi). On

the other hand, the extra dimensional components of U(1)a gauge backgrounds A
(i)
a (zi) (a =

1, 2, · · · , 13) are given by

A(i)
a (zi) =

πm
(i)
a

Im τi
Im (z̄idzi), (36)

which lead to the magnetic fluxes given by Eq. (22) along the Cartan direction of SO(32). Here

and hereafter, we multiply the U(1)a magnetic fluxes m
(i)
a by their corresponding normalization

factors.
Then the zero-mode equations of fermions ψ(i)(zi) with the U(1)a charge qa are given by

6Diψ
(i)(zi) = (Γzi∇zi + Γz̄i∇z̄i)ψ

(i)(zi) = 0 (37)

where the Gamma matrices and covariant derivatives in terms of the complex coordinates,
(zi, z̄i) are defined as

Γzi =
1

2πRi

(

0 2
0 0

)

, Γz̄i =
1

2πRi

(

0 0
2 0

)

, (38)

which can be derived from the Gamma matrices in flat space (31) and the metric of torus (21)
and

∇zi = ∂zi − iqa(A
(i)
a )zi,

∇z̄i = ∂z̄i − iqa(A
(i)
a )z̄i. (39)

The spin connections are vanishing due to the topology of tori. Thus the Dirac equations on
(T 2)i are rewritten as

(

∂̄z̄i +
πqami

a

2Im τi
zi
)

ψ
(i)
+ (zi, z̄i) = 0,

(

∂zi −
πqami

a

2Im τi
z̄i
)

ψ
(i)
−
(zi, z̄i) = 0. (40)

Then ψ
(i)
+ (zi, z̄i) has zero-modes only ifM i = qam

i
a > 0, whereas ψ

(i)
−
(zi, z̄i) has zero-modes only

if M i < 0. In both cases, the wavefunctions have |M i| independent solutions as the solution
of Dirac equations (40). Hence the number of generations of zero-modes, M is given by the
product of |M i|, that is, M = |M1||M2||M3|. (This result is consistent with that of the index
theorem.) Since the nonvanishing fluxes |M i| select one of the two chiralities on (T 2)i, i.e.,

ψ
(i)
+ or ψ

(i)
−
, non vanishing fluxes on three 2-tori lead to the chiral spectrum as can be seen in

Eq. (33).
However, such magnetic fluxes may break all N = 4 SUSY through the D-terms or Fayet-

Iliopoulos terms in the language of 4D N = 1 SUSY. When N = 1 SUSY is preserved in the
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system, the vanishing D-terms imply that the hermitian Yang-Mills equations for the U(1)a
field strengths should be satisfied at the vacuum,

gij̄(f̄a)ij̄ = 0. (41)

In our set-up, these conditions are equal to

3
∑

i=1

mi
a

Ai

= 0, (42)

where Ai = (2πRi)
2Im τi are the areas of tori, (T

2)i. Indeed, when these conditions are satisfied,
massless scalar fields appear for AM (M = 4, · · · , 9), and they correspond to superpartners of
the above massless fermions. At the perturbative level, the D-term conditions receive at most
one-loop corrections [20] which have the dilaton dependence.

Finally, we comment on the Wilson lines which play a role of breaking the gauge group
into its subgroups without changing the rank of gauge groups. In fact, when we introduce the
Wilson lines ζ

(i)
a , along the U(1)a directions, the internal components of U(1)a gauge fields take

the following shifts compared to Eq. (36),

Aa(z
i) =

πm
(i)
a

Im τi
Im ((z̄i + ζ̄ (i)a )dzi), (43)

which modify the zero-mode wavefunctions determined by the Dirac equations (40), whereas
the number of zero-modes and U(1) fluxes are not modified. When we evaluate the values of
Yukawa couplings, such Wilson lines would give significant effects.

3 Three-generation models in the SO(32) heterotic string

theory

3.1 Matter content

In this section, we show the concrete decomposition of SO(32) gauge group into the standard
model gauge groups and then the parts of adjoint representation of SO(32) are identified as the
matter contents of the standard model. As the first step to obtain the standard model gauge
groups, we consider the decomposition of SO(32) illustrated as

SO(32) → SO(12)⊗ SO(20),

496 → (1, 190)⊕ (12v, 20v)⊕ (66, 1), (44)

where the multiple U(1) fluxes are assumed along the Cartan directions of SO(32).
In order to derive the matter contents of the standard model, we examine whether the

adjoint representation of SO(12) involves the candidates of elementary particles or not. When

10



we put three U(1)1,2,3 fluxes along the Cartan directions of SO(12) gauge group, it is found
that SO(12) involves the candidates of SU(3)C and SU(2)L,

SO(12) → SO(8)⊗ SU(2)L ⊗ U(1)1 → SU(4)⊗ U(1)2 ⊗ SU(2)L ⊗ U(1)1

→ SU(3)C ⊗ U(1)3 ⊗ U(1)2 ⊗ SU(2)L ⊗ U(1)1, (45)

where the Cartan directions of U(1)1,2,3 are given by Eq. (11) . Then the adjoint representation
of SO(12) is decomposed as

66























































































































































(28, 1)0























































(15, 1)0,0















(8, 1)0,0,0
(3, 1)0,0,4
(3̄, 1)0,0,−4

(1, 1)0,0,0

(6, 1)0,2

{

(3, 1)0,2,−2

(3̄, 1)0,2,2

(6̄, 1)0,−2

{

(3, 1)0,−2,−2

(3̄, 1)0,−2,2

(1, 1)0,0,0

(8v, 2)1















(4, 2)1,1

{

(3, 2)1,1,1
(1, 2)1,1,−3

(4̄, 2)1,−1

{

(3̄, 2)1,−1,−1

(1, 2)1,−1,3

(8v, 2)−1















(4, 2)−1,1

{

(3, 2)−1,1,1

(1, 2)−1,1,−3

(4̄, 2)−1,−1

{

(3̄, 2)−1,−1,−1

(1, 2)−1,−1,3

(1, 3)0,0,0
(1, 1)2,0,0
(1, 1)−2,0,0

(1, 1)0,0,0

, (46)

which are singlets of SO(20), where the subscript indices denote the U(1)1,2,3 charge q1,2,3.
The normalization of U(1) generators are given by Appendix A. Thus when we identify the
hypercharge as U(1)Y = U(1)3/6, we can extract the candidates of the quarks, charged leptons
and/or Higgs,

Q :

{

Q1 = (3, 2)1,1,1
Q2 = (3, 2)−1,1,1

, L :

{

L1 = (1, 2)1,1,−3

L2 = (1, 2)−1,1,−3
, ucR :

{

ucR1
= (3̄, 1)0,0,−4 ,

dcR :

{

dcR1
= (3̄, 1)0,2,2

dcR2
= (3̄, 1)0,−2,2

, n1 = (1, 1)2,0,0.
(47)

As shown in the above analysis, the adjoint representation of SO(12), 66 does not involve the
candidate of right-handed leptons. Therefore, we further decompose the SO(20) gauge group
into U(1)4,5,··· ,13 gauge groups,

SO(20) → U(1)4 ⊗ · · · ⊗ U(1)13, (48)
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where the nonvanishing U(1) fluxes along all U(1)4,··· ,13 directions are inserted shown in Eq. (11).
Now SO(2) is identified as U(1). The vector representation and the singlet of SO(12), 12v and 1
give the suitable matter contents, i.e., right-handed quarks and leptons, charged-leptons and/or
Higgs,

(12v, 20v) →



































La
3 = (1, 2)1,0,0;−1,0,··· ,0

La
4 = (1, 2)−1,0,0;−1,0,··· ,0

uc a
R2

= (3̄, 1)0,−1,−1;−1,0,··· ,0

dc a
R3

= (3̄, 1)0,−1,−1;1,0,··· ,0

ec a
R1

= (1, 1)0,−1,3;1,0,··· ,0

nc a
2 = (1, 1)0,−1,3;−1,0,··· ,0

, (a = 4, 5, · · · , 13),

(1, 190) →
{

ec ab
R2

= (1, 1)0,0,0;1,1,0,··· ,0
nc ab
3 = (1, 1)0,0,0;1,−1,0,··· ,0

, (a, b = 4, 5, · · · , 13, a 6= b), (49)

where the underlines for U(1)4,5,··· ,13 charge q4,5,··· ,13 denote all the possible permutations. It is
remarkable that the correct U(1)Y charge can be also realized as

U(1)Y =
1

6

(

U(1)3 + 3
13
∑

c=4

U(1)c

)

. (50)

3.2 Three-generation models

Since the matter contents of the standard model are correctly identified in the previous section,
we show the number of generations for each representation in this section.

As discussed in Sec. 2.3, the U(1) fluxes generate the degenerate zero-modes if these zero-
modes have U(1) charges. It implies that the number of generations for the representations
embedded in the adjoint and vector representations of SO(12), 66 and 12v are determined by
the following formulas,

mQ1 =
∏3

i=1m
i
Q1

=
∏3

i=1(m
i
1 +mi

2 +mi
3), mQ2 =

∏3
i=1m

i
Q2

=
∏3

i=1(−mi
1 +mi

2 +mi
3),

mL1 =
∏3

i=1m
i
L1

=
∏3

i=1(m
i
1 +mi

2 − 3mi
3), mL2 =

∏3
i=1m

i
L2

=
∏3

i=1(−mi
1 +mi

2 − 3mi
3),

muc
R1

=
∏3

i=1m
i
uc
R1

=
∏3

i=1(−4mi
3), mn1 =

∏3
i=1m

i
n1

=
∏3

i=1(2m
i
1),

mdc
R1

=
∏3

i=1m
i
dc
R1

=
∏3

i=1(2m
i
2 + 2mi

3), mdc
R2

=
∏3

i=1m
i
dc
R2

=
∏3

i=1(−2mi
2 + 2mi

3),

(51)
and

mLa
3
=
∏3

i=1m
i
La
3
=
∏3

i=1(m
i
1 −mi

a), mLa
4
=
∏3

i=1m
i
La
4
=
∏3

i=1(−mi
1 −mi

a),

muc a
R2

=
∏3

i=1m
i
uc a
R2

=
∏3

i=1(−mi
2 −mi

3 −mi
a), mdc a

R3
=
∏3

i=1m
i
dc a
R3

=
∏3

i=1(−mi
2 −mi

3 +mi
a),

mec a
R1

=
∏3

i=1m
i
ec a
R1

=
∏3

i=1(−mi
2 + 3mi

3 +mi
a), mna

2
=
∏3

i=1m
i
na
2
=
∏3

i=1(−mi
2 + 3mi

3 −mi
a),

(52)
respectively.

Now we are ready to search for the realistic three-generation models in the framework of
SO(32) heterotic string theory. In the light of U(1)Y massless conditions given by Eqs. (24)

12



and (28), the nonvanishing U(1)3 fluxes seem to violate these massless conditions. Therefore,
in this paper, we restrict ourselves to the case that U(1)3 fluxes are absent in our system, which
lead to no chiral generations of right-handed quarks, ucR and dcR from the adjoint representation
of SO(12) as can be seen in Eq. (51). Only left-handed quarks Q and charged-leptons L are
then generated from the adjoint representation of SO(12). As for the left-handed quarks, Q,
there are two possibilities to reproduce the three generations of Q,

TypeA : (mQ1 , mQ2) = (2, 1), TypeB : (mQ1, mQ2) = (3, 0), (53)

without loss of generality, because we can exchange mQ1 and mQ2 under flipping the sign of
mi

1 with i = 1, 2, 3. In both cases, the possible U(1) fluxes are summarized in Tables 1 and
2 and in the case of Type B, it is restricted within the range of −2 ≤ mi

Q2
≤ 2, i = 1, 2, 3,

for simplicity. In both tables, possible permutations among the first, second and third 2-tori
are omitted. Also, when we flip signs of magnetic fluxes in two of three 2-tori, we obtain
the same generation number. For example the magnetic fluxes, (m1

1, m
2
1, m

3
1) = (−3/2, 0, 1)

(m1
2, m

2
2, m

3
2) = (−1/2,−1, 0), are obtained by flipping the signs of magnetic fluxes in the first

and second 2-tori from ones in Table 1 and they lead to the same generation numbers. We omit
such possibilities in both tables.

(m1
1, m

2
1, m

3
1) (m1

2, m
2
2, m

3
2)

(1
2
, 0, 0) (3

2
, 1, 1)

(1, 1, 1
2
) (0, 0, 3

2
)

(3
2
, 1, 0) (1

2
, 0, 1)

Table 1: The possible magnetic fluxes in Type A. Possible permutations among the three 2-tori
are omitted. Certain types of sign flipping are also omitted.
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(m1
1, m

2
1, m

3
1) (m1

2, m
2
2, m

3
2)

(1
2
, 1
2
,−1

2
) (5

2
, 1
2
, 3
2
)

(1
2
, 1
2
, 0) (5

2
, 1
2
, 1)

(1
2
, 1
2
, 1
2
) (5

2
, 1
2
, 1
2
)

(1, 1
2
,−1

2
) (2, 1

2
, 3
2
)

(1, 1
2
, 0) (2, 1

2
, 1)

(1, 1
2
, 1
2
) (0, 5

2
, 1
2
)

(1, 1
2
, 1
2
) (2, 1

2
, 1
2
)

(1, 1, 1
2
) (2, 0, 1

2
)

(3
2
, 0,−1

2
) (3

2
, 1, 3

2
)

(3
2
, 0, 0) (3

2
, 1, 1)

(3
2
, 1
2
,−1

2
) (3

2
, 1
2
, 3
2
)

(3
2
, 1
2
, 0) (3

2
, 1
2
, 1)

(3
2
, 1
2
, 1
2
) (−1

2
, 5
2
, 1
2
)

(3
2
, 1
2
, 1
2
) (3

2
,−3

2
,−3

2
)

(3
2
, 1
2
, 1
2
) (3

2
, 1
2
, 1
2
)

(3
2
, 1,−1

2
) (3

2
, 0, 3

2
)

(3
2
, 1, 0) (3

2
, 0, 1)

(3
2
, 1, 1

2
) (−1

2
, 2, 1

2
)

(3
2
, 1, 1

2
) (3

2
, 0, 1

2
)

(3
2
, 1, 1) (3

2
, 0, 0)

(3
2
, 3
2
,−1

2
) (3

2
,−1

2
, 3
2
)

(3
2
, 3
2
, 0) (3

2
,−1

2
, 1)

(3
2
, 3
2
, 1
2
) (3

2
,−1

2
, 1
2
)

(3
2
, 3
2
, 1) (3

2
,−1

2
, 0)

(3
2
, 3
2
, 3
2
) (3

2
,−1

2
,−1

2
)

(2, 1
2
,−1

2
) (1, 1

2
, 3
2
)

(2, 1
2
, 0) (1, 1

2
, 1)

(2, 1
2
, 1
2
) (1, 1

2
, 1
2
)

(2, 1, 1
2
) (1, 0, 1

2
)

(2, 3
2
, 1
2
) (1,−1

2
, 1
2
)

(5
2
, 1
2
,−1

2
) (1

2
, 1
2
, 3
2
)

(5
2
, 1
2
, 0) (1

2
, 1
2
, 1)

(5
2
, 1
2
, 1
2
) (1

2
, 1
2
, 1
2
)

(5
2
, 1, 1

2
) (1

2
, 0, 1

2
)

(5
2
, 3
2
, 1
2
) (1

2
,−1

2
, 1
2
)

Table 2: The possible magnetic fluxes in Type B within the range of −2 ≤ mi
Q2

≤ 2, i = 1, 2, 3.
Possible permutations among the three 2-tori are omitted. Certain types of sign flipping are
also omitted.
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(m1
1, m

2
1, m

3
1) (m1

2, m
2
2, m

3
2) (m1

3, m
2
3, m

3
3) (m1

4, m
2
4, m

3
4) (m1

10, m
2
10, m

3
10)

(3
2
, 0, 1) (1

2
, 1, 0) (0, 0, 0) (1

2
,−2, 1) (1

2
, 1, 0)

Table 3: The typical values of U(1) fluxes in the model of type A and “Case I” given by
Eqs. (53) and (54).

Under the constrained magnetic fluxes in Tables 1 and 2, we further search for the realistic
three generations of ucR, d

c
R and ecR satisfying the U(1)Y massless conditions (24), (28) as well

as the SUSY conditions (42). 5 As a result, within the range of −10 ≤ mi
uc a
R2

≤ 10, there are

three choices for the U(1) fluxes as follows,

Case I mi
4 = mi

5 = mi
6 = −mi

7 = −mi
8 = −mi

9,
mi

10 = mi
11 = −mi

12 = −mi
13,

(muc a
R2
, mdc a

R3
, mec a

R
, mna

2
) = (1, 0, 0, 1), (a = 4, 5, 6),

(muc b
R2
, mdc b

R3
, mec b

R
, mnb

2
) = (0, 1, 1, 0), (b = 7, 8, 9),

(muc d
R2
, mdc d

R3
, mec d

R
, mnd

2
) = (0, 0, 0, 0), (d = 10, 11, 12, 13),

(54)

,
Case II mi

4 = −mi
5,

mi
6 = mi

7 = mi
8 = mi

9 = −mi
10 = −mi

11 = −mi
12 = −mi

13,
(muc 4

R2
, mdc 4

R3
, mec 4

R
, mn4

2
) = (3, 0, 0, 3),

(muc 5
R2
, mdc 5

R3
, mec 5

R
, mn5

2
) = (0, 3, 3, 0),

(muc a
R2
, mdc a

R3
, mec a

R
, mna

2
) = (0, 0, 0, 0), (a = 6, 7, 8, 9, 10, 11, 12, 13).

(55)

and
Case III mi

4 = −mi
5, mi

6 = −mi
7,

mi
8 = mi

9 = mi
10 = −mi

11 = −mi
12 = −mi

13,
(muc 4

R2
, mdc 4

R3
, mec 4

R
, mn4

2
) = (2, 0, 0, 2),

(muc 5
R2
, mdc 5

R3
, mec 5

R
, mn5

2
) = (0, 2, 2, 0),

(muc 6
R2
, mdc 6

R3
, mec 6

R
, mn6

2
) = (1, 0, 0, 1),

(muc 7
R2
, mdc 7

R3
, mec 7

R
, mn7

2
) = (0, 1, 1, 0),

(muc a
R2
, mdc a

R3
, mec a

R
, mna

2
) = (0, 0, 0, 0), (a = 8, 9, 10, 11, 12, 13).

(56)

In the case of Type A, only “Case I” is allowed as the realistic three-generation models. The
typical U(1) fluxes and the number of generations of matters are given by Tables 3 and 4.
Under the U(1) gauge symmetries, the following Yukawa couplings of quarks and leptons are

5Here we do not constrain the number of charged-leptons, L, because some of them may be identified as
higgsino fields.
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(Q1, Q2, L1, L2, u
c
R1
, dcR1

, dcR2
, n1) (2, 1, 2, 1, 0, 0, 0, 0)

(L4
3, L

4
4, u

c 4
R2
, dc4R3

, ec 4R1
, n4

2) (0, 8, 1, 0, 0, 1)
(L5

3, L
5
4, u

c 5
R2
, dc5R3

, ec 5R1
, n5

2) (0, 8, 1, 0, 0, 1)
(L6

3, L
6
4, u

c 6
R2
, dc6R3

, ec 6R1
, n6

2) (0, 8, 1, 0, 0, 1)
(L7

3, L
7
4, u

c 7
R2
, dc7R3

, ec 7R1
, n7

2) (−8, 0, 0, 1, 1, 0)
(L8

3, L
8
4, u

c 8
R2
, dc8R3

, ec 8R1
, n8

2) (−8, 0, 0, 1, 1, 0)
(L9

3, L
9
4, u

c 9
R2
, dc9R3

, ec 9R1
, n9

2) (−8, 0, 0, 1, 1, 0)
(L10

3 , L
10
4 , u

c 10
R2
, dc10R3

, ec 10R1
, n10

2 ) (−1,−2, 0, 0, 0, 0)
(L11

3 , L
11
4 , u

c 11
R2
, dc11R3

, ec 11R1
, n11

2 ) (−1,−2, 0, 0, 0, 0)
(L12

3 , L
12
4 , u

c 12
R2
, dc12R3

, ec 12R1
, n12

2 ) (2, 1, 0, 0, 0, 0)
(L13

3 , L
13
4 , u

c 13
R2
, dc13R3

, ec 13R1
, n13

2 ) (2, 1, 0, 0, 0, 0)

Table 4: The number of generations for the representations defined in the model of type A and
“Case I” given by Eqs. (53) and (54).

allowed in terms of the renormalizable operators,

(Q1, L̄
4
3, u

c4
R2
), (Q2, L̄

4
4, u

c4
R2
), (L1, L̄

4
3, n

4
2), (L2, L̄

4
4, n

4
2),

(Q1, L̄
5
3, u

c5
R2
), (Q2, L̄

5
4, u

c5
R2
), (L1, L̄

5
3, n

5
2), (L2, L̄

5
4, n

5
2),

(Q1, L̄
6
3, u

c6
R2
), (Q2, L̄

6
4, u

c6
R2
), (L1, L̄

6
3, n

6
2), (L2, L̄

6
4, n

6
2),

(Q1, L
7
4, d

c7
R3
), (Q2, L

7
3, d

c 7
R3
), (L1, L

7
4, e

c 7
R1
), (L2, L

7
3, e

c 7
R1
),

(Q1, L
8
4, d

c8
R3
), (Q2, L

8
3, d

c 8
R3
), (L1, L

8
4, e

c 8
R1
), (L2, L

8
3, e

c 8
R1
),

(Q1, L
9
4, d

c9
R3
), (Q2, L

9
3, d

c 9
R3
), (L1, L

9
4, e

c 9
R1
), (L2, L

9
3, e

c 9
R1
).

(57)

These include useful Yukawa couplings to give all of the quarks and leptons masses when
L̄a
3, L̄

a
4, L

b
3, L

b
4 with a = 4, 5, 6 and b = 7, 8, 9 are identified as Higgs doublets and L̄a

3,4 denote
conjugate representations of La

3,4.
Next, we consider the case of Type B. As the supersymmetric three-generation models, both

“Case I” and “Case II” are allowed and they are then categorized as the four types of models,

BI : “CaseI” in type B,
BII : “CaseII” in type B with mn1 = 0,
BIII : “CaseII” in type B with mn1 6= 0,
BIV : “CaseIII” in type B.

(58)

For each model, the typical U(1) fluxes and the number of generations of matters are summa-
rized in Tables 5, 6, 7, 8, 9 and 10. In the type BI model summarized in Tables 5 and 6, the
following Yukawa couplings of quarks and leptons are allowed in terms of the renormalizable
operators,

(Q1, L̄
4
3, u

c4
R2
), (Q1, L̄

5
3, u

c 5
R2
), (Q1, L̄

6
3, u

c6
R2
), (L1, L̄

4
3, n

4
2), (L1, L̄

5
3, n

5
2), (L1, L̄

6
3, n

6
2),

(Q1, L
7
4, d

c 7
R3
), (Q1, L

8
4, d

c 8
R3
), (Q1, L

9
4, d

c9
R3
), (L1, L

7
4, e

c 7
R1
), (L1, L

8
4, e

c 8
R1
), (L1, L

9
4, e

c 9
R1
).
(59)
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(m1
1, m

2
1, m

3
1) (m1

2, m
2
2, m

3
2) (m1

3, m
2
3, m

3
3) (m1

4, m
2
4, m

3
4) (m1

10, m
2
10, m

3
10)

(1, 0, 1
2
) (2, 1, 1

2
) (0, 0, 0) (−1,−2, 1

2
) (0, 1,−1

2
)

Table 5: The typical values of U(1) fluxes in the type BI model given by Eq. (58).

(Q1, Q2, L1, L2, u
c
R1
, dcR1

, dcR2
, n1) (3, 0, 3, 0, 0, 8,−8, 0)

(L4
3, L

4
4, u

c4
R2
, dc 4R3

, ec 4R1
, n4

2) (0, 0, 1, 0, 0, 1)
(L5

3, L
5
4, u

c5
R2
, dc 5R3

, ec 5R1
, n5

2) (0, 0, 1, 0, 0, 1)
(L6

3, L
6
4, u

c6
R2
, dc 6R3

, ec 6R1
, n6

2) (0, 0, 1, 0, 0, 1)
(L7

3, L
7
4, u

c7
R2
, dc 7R3

, ec 7R1
, n7

2) (0, 0, 0, 1, 1, 0)
(L8

3, L
8
4, u

c8
R2
, dc 8R3

, ec 8R1
, n8

2) (0, 0, 0, 1, 1, 0)
(L9

3, L
9
4, u

c9
R2
, dc 9R3

, ec 9R1
, n9

2) (0, 0, 0, 1, 1, 0)
(L10

3 , L
10
4 , u

c10
R2
, dc 10R3

, ec 10R1
, n10

2 ) (−1, 0, 0, 0, 0, 0)
(L11

3 , L
11
4 , u

c11
R2
, dc 11R3

, ec 11R1
, n11

2 ) (−1, 0, 0, 0, 0, 0)
(L12

3 , L
12
4 , u

c12
R2
, dc 12R3

, ec 12R1
, n12

2 ) (0, 1, 0, 0, 0, 0)
(L13

3 , L
13
4 , u

c13
R2
, dc 13R3

, ec 13R1
, n13

2 ) (0, 1, 0, 0, 0, 0)

Table 6: The number of generations for the representations in the type BI model given by
Eq. (58).

These also include useful Yukawa couplings when L̄a
3, L

b
4 with a = 4, 5, 6 and b = 7, 8, 9 are

identified as Higgs doublets. In both type BII and type BIII models summarized in Tables 7,
8, 9 and 10, the useful Yukawa couplings of quarks and leptons are allowed in terms of the
renormalizable operators,

(Q1, L̄
4
3, u

c4
R2
), (Q1, L

5
4, d

c 5
R3
), (L1, L̄

4
3, n

4
2), (L1, L

5
4, e

c 5
R1
), (60)

where L̄4
3, L

5
4 are identified as Higgs doublets. Finally, in type BIV model summarized in

Tables 11 and 12, the useful Yukawa couplings of quarks and leptons are allowed in terms of
the renormalizable operators,

(Q1, L̄
4
3, u

c 4
R2
), (Q1, L̄

6
3, u

c6
R2
), (L1, L̄

4
3, n

4
2), (L1, L̄

6
3, n

6
2),

(Q1, L
5
4, d

c 5
R3
), (Q1, L

7
4, d

c7
R3
), (L1, L

5
4, e

c 5
R1
), (L1, L

,
4e

c 7
R1
),

(61)

where L̄4,6
3 , L5,7

4 are identified as Higgs doublets.

(m1
1, m

2
1, m

3
1) (m1

2, m
2
2, m

3
2) (m1

3, m
2
3, m

3
3) (m1

4, m
2
4, m

3
4) (m1

6, m
2
6, m

3
6)

(5
2
, 0, 1

2
) (1

2
, 1, 1

2
) (0, 0, 0) (−3

2
, 2, 1

2
) (9

2
,−1, 1

2
)

Table 7: The typical values of U(1) fluxes in the type BII model given by Eq. (58).
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(Q1, Q2, L1, L2, u
c
R1
, dcR1

, dcR2
, n1) (3, 0, 3, 0, 0, 2,−2, 0)

(L4
3, L

4
4, u

c4
R2
, dc 4R3

, ec 4R1
, n4

2) (0,−2, 3, 0, 0, 3)
(L5

3, L
5
4, u

c5
R2
, dc 5R3

, ec 5R1
, n5

2) (2, 0, 0, 3, 3, 0)
(L6

3, L
6
4, u

c6
R2
, dc 6R3

, ec 6R1
, n6

2) (0, 7, 0, 0, 0, 0)
(L7

3, L
7
4, u

c7
R2
, dc 7R3

, ec 7R1
, n7

2) (0, 7, 0, 0, 0, 0)
(L8

3, L
8
4, u

c8
R2
, dc 8R3

, ec 8R1
, n8

2) (0, 7, 0, 0, 0, 0)
(L9

3, L
9
4, u

c9
R2
, dc 9R3

, ec 9R1
, n9

2) (0, 7, 0, 0, 0, 0)
(L10

3 , L
10
4 , u

c10
R2
, dc 10R3

, ec 10R1
, n10

2 ) (−7, 0, 0, 0, 0, 0)
(L11

3 , L
11
4 , u

c11
R2
, dc 11R3

, ec 11R1
, n11

2 ) (−7, 0, 0, 0, 0, 0)
(L12

3 , L
12
4 , u

c12
R2
, dc 12R3

, ec 12R1
, n12

2 ) (−7, 0, 0, 0, 0, 0)
(L13

3 , L
13
4 , u

c13
R2
, dc 13R3

, ec 13R1
, n13

2 ) (−7, 0, 0, 0, 0, 0)

Table 8: The number of generations for the representations in the type BII model given by
Eq. (58).

(m1
1, m

2
1, m

3
1) (m1

2, m
2
2, m

3
2) (m1

3, m
2
3, m

3
3) (m1

4, m
2
4, m

3
4) (m1

6, m
2
6, m

3
6)

(1,−1
2
, 1
2
) (2, 3

2
, 1
2
) (0, 0, 0) (−1,−9

2
, 1
2
) (2, 13

2
,−1

2
)

Table 9: The typical values of U(1) fluxes in the type BIII model given by Eq. (58).

(Q1, Q2, L1, L2, u
c
R1
, dcR1

, dcR2
, n1) (3, 0, 3, 0, 0, 12,−12, 2)

(L4
3, L

4
4, u

c4
R2
, dc 4R3

, ec 4R1
, n4

2) (0, 0, 3, 0, 0, 3)
(L5

3, L
5
4, u

c5
R2
, dc 5R3

, ec 5R1
, n5

2) (0, 0, 0, 3, 3, 0)
(L6

3, L
6
4, u

c6
R2
, dc 6R3

, ec 6R1
, n6

2) (7, 0, 0, 0, 0, 0)
...

...
(L9

3, L
9
4, u

c9
R2
, dc 9R3

, ec 9R1
, n9

2) (7, 0, 0, 0, 0, 0)
(L10

3 , L
10
4 , u

c10
R2
, dc 10R3

, ec 10R1
, n10

2 ) (0,−7, 0, 0, 0, 0)
...

...
(L13

3 , L
13
4 , u

c13
R2
, dc 13R3

, ec 13R1
, n13

2 ) (0,−7, 0, 0, 0, 0)

Table 10: The number of generations for the representations in the type BIII model given by
Eq. (58).
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(m1
1, m

2
1, m

3
1) (m1

2, m
2
2, m

3
2) (m1

3, m
2
3, m

3
3) (m1

4, m
2
4, m

3
4) (m1

6, m
2
6, m

3
6) (m1

8, m
2
8, m

3
8)

(5
2
, 1
2
, 1
2
) (1

2
, 1
2
, 1
2
) (0, 0, 0) (−5

2
, 1
2
, 1
2
) (−3

2
, 1
2
, 1
2
) (−1

2
, 1
2
, 1
2
)

Table 11: The typical values of U(1) fluxes in the type BIV model given by Eq. (58).

(Q1, Q2, L1, L2, u
c
R1
, dcR1

, dcR2
, n1) (3, 0, 3, 0, 0, 1,−1, 5)

(L4
3, L

4
4, u

c4
R2
, dc 4R3

, ec 4R1
, n4

2) (0, 0, 2, 0, 0, 2)
(L5

3, L
5
4, u

c5
R2
, dc 5R3

, ec 5R1
, n5

2) (0, 0, 0, 2, 2, 0)
(L6

3, L
6
4, u

c6
R2
, dc 6R3

, ec 6R1
, n6

2) (0,−1, 1, 0, 0, 1)
(L7

3, L
7
4, u

c7
R2
, dc 7R3

, ec 7R1
, n7

2) (0,−1, 1, 0, 0, 1)
(L8

3, L
8
4, u

c8
R2
, dc 8R3

, ec 8R1
, n8

2) (0,−2, 0, 0, 0, 0)
(L9

3, L
9
4, u

c9
R2
, dc 9R3

, ec 9R1
, n9

2) (0,−2, 0, 0, 0, 0)
(L10

3 , L
10
4 , u

c10
R2
, dc 10R3

, ec 10R1
, n10

2 ) (0,−2, 0, 0, 0, 0)
(L11

3 , L
11
4 , u

c11
R2
, dc 11R3

, ec 11R1
, n11

2 ) (2, 0, 0, 0, 0, 0)
(L12

3 , L
12
4 , u

c12
R2
, dc 12R3

, ec 12R1
, n12

2 ) (2, 0, 0, 0, 0, 0)
(L13

3 , L
13
4 , u

c13
R2
, dc 13R3

, ec 13R1
, n13

2 ) (2, 0, 0, 0, 0, 0)

Table 12: The number of generations for the representations in the type BIV model given by
Eq. (58).

Note that in our models, the consistency conditions given by Eq. (7) are not satisfied
without introducing the heterotic five-branes. In this case, we have to take care of the Witten
anomaly [16, 17] on the heterotic five-branes with Sp(2N) gauge groups which is the case that
the number of heterotic five-branes is N . In order to avoid the Witten anomaly, the number
of chiral fermions under the fundamental representations of Sp(2N) are even [16, 17]. These
fundamental representations of (32, 2N) under SO(32) ⊗ Sp(2N) can be read in the type I
string with D5-and D9-brane system which is expected as the S-dual of the SO(32) heterotic
string. The generations of the chiral fermions included in (12, 2N) under SO(12)⊗Sp(2N) and

(20, 2N) under SO(20)⊗ Sp(2N) are determined by ±∏3
i=1m

(i)
a for a = 1, 2, 4, · · · , 13, in the

case m
(i)
3 = 0 with i = 1, 2, 3. In our most supersymmetric models, the chiral fermions arise

from (32, 2N) under SO(32)⊗ Sp(2N). Thus we require the non-trivial mechanism to obtain
the even number of chiral fermions such as U(1) fluxes on the heterotic five-branes in order to
avoid the Witten anomaly.

Finally we comment on the gauge enhancements induced by vanishing fluxes. In this paper,
we focus on the case mi

3 = 0, i = 1, 2, 3 in the light of U(1)Y massless conditions given by
Eqs. (24) and (28). These vanishing fluxes cause the gauge enhancement, SU(3)C × U(1)3 →
SU(4). Moreover it requires the Wilson-lines into the internal component of U(1)3 to break
down SU(4) into SU(3). Our models have other gauge enhancements. The realistic three-
generation models are summarized in three cases, “Case I”, “Case II” and “Case III” in
Eqs. (54), (55) and (56), respectively. In both cases, most magnetic fluxes are related to
each other due to the U(1)Y massless conditions given by Eqs. (24) and (28). For example, the
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invariant simple roots under the existences of fluxes read

Case I α1 = (0, 0, 0, 0, 0, 0; 1,−1, 0, · · · , 0),
α2 = (0, 0, 0, 0, 0, 0; 0, 1,−1, 0, · · · , 0),
α3 = (0, 0, 0, 0, 0, 0; 0, 0, 0, 1,−1, 0, · · · , 0),
α4 = (0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 1,−1, 0, · · · , 0),
α5 = (0, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 1, 0, · · · , 0),

Case II α1 = (0, 0, 0, 0, 0, 0; 1, 1, 0, · · · , 0),
Case III α1 = (0, 0, 0, 0, 0, 0; 1, 1, 0, · · · , 0),

α2 = (0, 0, 0, 0, 0, 0; 0, 0, 1, 1, 0, · · · , 0),

(62)

which implies the SU(6), SU(2) and SU(2) × SU(2) gauge symmetries, respectively. All of
them include SU(2)R. Furthermore, SU(3) of SU(6) is a flavor symmetry of right-handed
matter fields, and the three right-handed matter generations is a triplet under SU(3) flavor
symmetry, while the left-handed matter fields are singlets. We introduce Wilson lines to break
theses symmetries.

3.3 Three-generation models with K-theory constraints

So far, we have not considered the so-called K-theory constraints which are formulated in the
S-dual to the SO(32) heterotic string theory, i.e., Type I string theory. In the SO(32) heterotic
string theory, the total number of magnetic fluxes is further constrained as

13
∑

a=1

mi
a = 0 (mod 2), (63)

for i = 1, 2, 3, as stated in Ref. [11]. Such a condition allows for the well-defined spinor
representation of the gauge bundle, otherwise its wavefunction is not single-valued.

When we assume that the SO(32) heterotic string theory on our gauge background is de-
scribed as its S-dual theory, i.e., Type I string theory, the above condition (63) may correspond
to the K-theory constraints [24] which cannot be classified in terms of a homology. These
constraints can be understood by introducing all the possible probe D-branes [25], and then
they show the existence of several stable non-BPS branes with the discrete K-theory charge,
i.e., Z2-charge. In the case of N stacks of heterotic five-brane with Sp(2N) gauge group, they
require the condition (63) in order to avoid the Witten anomaly [16, 17].6 Furthermore, in
type I string, the fractional fluxes are allowed due to multiple wrapping numbers of D-branes.
Although such a degree of freedom is expected to appear in the heterotic string side, we do
not consider these possibilities, which we leave for future works. Since all the models discussed
in Sec. 3.2 do not satisfy the K-theory condition, in this section, we further search for the
possibilities of three-generation models under these assumptions.

6In the heterotic string, the K-theory may be understood in terms of closed string tachyon [26] based on
supercritical string [27].
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First of all, in the light of U(1)Y massless condition, we impose the constraints for U(1)
fluxes as,

mi
3 = 0, mi

a+3 = −mi
a+8 (a = 1, 2, 3, 4, 5), (64)

with i = 1, 2, 3, which simplify the K-theory condition as

2
∑

a=1

mi
a = 0 (mod 2). (65)

From the fact that all the possible candidates for left-handed quarks Q and charged leptons L
are involved in the adjoint representation of SO(12), three generations of Q and L have to be
realized from such a representation. Then, their fluxes are constrained as

TypeA : (mQ1 , mQ2) = (2, 1), TypeA′ : (mQ1 , mQ2) = (1, 2),

TypeB : (mQ1 , mQ2) = (3, 0), TypeB′ : (mQ1 , mQ2) = (0, 3), (66)

where mi
Q1,2

, and hereafter we focus on the case that the right-handed quarks dcR are generated
from the vector representation of SO(12), for simplicity. In such cases, we find that only Type
B′ in Eq. (66) satisfies the K-theory condition (65) and the SUSY condition (42) yielding three
generations of Q and L. The possible U(1)1,2 fluxes are summarized in Tab. 13.
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)

(−5
2
, −1

2
, −1

2
) (1

2
, 1

2
, 1

2
)
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)
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)
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)
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)
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)
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)
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)
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2
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2
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2
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)

Table 13: The possible magnetic fluxes in TypeB′ within the range of −2 ≤ mi
Q1

≤ 2 for
mi

Q2
= 0 and −2 ≤ mi

Q2
≤ 2 for mi

Q1
= 0, where i = 1, 2, 3.

Next, we consider the remaining matter contents in the standard model, that is, ucR, d
c
R

and ecR. Among the constrained magnetic fluxes listed in Table 13, we further search for those
yield three generations of ucR, d

c
R and ecR, satisfying the U(1)Y massless condition (64) as well

as the SUSY condition (42). Note that the K-theory condition is already satisfied under the
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constraints (64) and (65). As a result, within the range of −5 ≤ mi
uc a
R2

≤ 5, there are three

allowed choices for the U(1) fluxes as follows,

“Case I′” (muc 4
R2
, muc 5

R2
, ..., muc 13

R2
) = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0),

(mdc 4
R2
, mdc 5

R2
, ..., mdc 13

R2
) = (0, 0, 0, 0, 0, 1, 1, 1, 0, 0),

(67)

“Case II′” (muc 4
R2
, muc 5

R2
, ..., muc 13

R2
) = (3, 0, 0, 0, 0, 0, 0, 0, 0, 0),

(mdc 4
R2
, mdc 5

R2
, ..., mdc 13

R2
) = (0, 0, 0, 0, 0, 3, 0, 0, 0, 0),

(68)

and
“Case III′” (muc 4

R2
, muc 5

R2
, ..., muc 13

R2
) = (2, 1, 0, 0, 0, 0, 0, 0, 0, 0),

(mdc 4
R2
, mdc 5

R2
, ..., mdc 13

R2
) = (0, 0, 0, 0, 0, 2, 1, 0, 0, 0).

(69)

For each model, the typical U(1) fluxes and the number of generations of matters are sum-
marized in Tables 14, 15, 16, 17, 18 and 19. In the “Case I′” summarized in Tables 14 and
15, non-vanishing Yukawa coupling terms involving the following combinations of quarks and
leptons are allowed as the renormalizable operators,

(Q2, L̄
4
4, u

c 4
R2
), (Q2, L̄

5
4, u

c 5
R2
), (Q2, L̄

6
4, u

c 6
R2
), (L2, L̄

4
4, n

4
2), (L2, L̄

5
4, n

5
2), (L2, L̄

6
4, n

6
2),

(Q2, L
9
3, d

c 9
R3
), (Q2, L

10
3 , d

c10
R3

), (Q2, L
11
3 , d

c11
R3

), (L2, L
9
3, e

c 9
R1
), (L2, L

10
3 , e

c 10
R1

), (L2, L
11
3 , e

c 11
R1

).
(70)

These include useful Yukawa couplings to give masses of all the quarks and leptons when L̄a
4, L

b
3

with a = 4, 5, 6 and b = 9, 10, 11 are identified as Higgs doublets.
As for the “Case II′” summarized in Tables 16 and 17, the following combinations of quarks

and leptons have renormalizable Yukawa coupling,

(Q2, L̄
4
4, u

c4
R2
), (Q2, L

9
3, d

c 9
R3
), (L2, L̄

4
4, n

4
2), (L2, L

9
3, e

c 9
R1
), (71)

where L̄4
4, L

9
3 are identified as Higgs doublets in order to be phenomenologically viable.

Next, in the “Case III′” summarized in Tables 18 and 19, the renormalizable Yukawa cou-
plings are allowed for the following combinations of quarks and leptons,

(Q2, L̄
4
4, u

c4
R2
), (Q2, L̄

5
4, u

c5
R2
), (L2, L̄

4
4, n

4
2), (L2, L̄

5
4, n

5
2),

(Q2, L
9
3, d

c9
R3
), (Q2, L

10
3 , d

c 10
R3

), (L2, L
9
3, e

c 9
R1
), (L2, L

10
3 , e

c 10
R1

),
(72)

where L̄4,5
4 , L9,10

3 can be identified as Higgs doublets. Note that in the same way as in Sec. 3.2,
the consistency conditions given by Eq. (7) are not satisfied without introducing the heterotic
five-branes, in the supersymmetric case.

Finally we comment on the gauge enhancements induced by vanishing fluxes. As discussed in
Sec. 3.2, vanishing U(1)3 fluxes require the existence of Wilson-lines for the internal component
of U(1)3 to break SU(4) down to SU(3). There are other gauge enhancements in three realistic
models, “Case I′”, “Case II′” and “Case III′”, where most magnetic fluxes are related to each
other due to the U(1)Y massless conditions (24), (28) and the K-theory condition (63). For
example, there are invariant simple roots under the existences of fluxes such as SU(6), SU(2)
and SU(2)×SU(2) gauge symmetries for the “Case I′”, “Case II′” and “Case III′”, respectively.
We introduce Wilson-lines to break these gauge symmetries.
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(m1
1, m

2
1, m

3
1) (m1

2, m
2
2, m

3
2) (m1

3, m
2
3, m

3
3) (m1

4, m
2
4, m

3
4) (m1

7, m
2
7, m

3
7)

(−3
2
,−1

2
,−1

2
) (3

2
, 1
2
, 1
2
) (0, 0, 0) (−1

2
, 1
2
,−3

2
) (1

2
, 1
2
,−1

2
)

Table 14: The typical values of U(1) fluxes in the “Case I′” given by Eq. (67). The other U(1)
fluxes are constrained to be mi

4 = mi
5 = mi

6 = −mi
9 = −mi

10 = −mi
11 and mi

7 = mi
8 = −mi

12 =
−mi

13 with i = 1, 2, 3.

(Q1, Q2, L1, L2, u
c
R1
, dcR1

, dcR2
, n1) (0, 3, 0, 3, 0, 3,−3, 3)

(L4
3, L

4
4, u

c4
R2
, dc 4R3

, ec 4R1
, n4

2) (1, 0, 1, 0, 0, 1)
(L5

3, L
5
4, u

c5
R2
, dc 5R3

, ec 5R1
, n5

2) (1, 0, 1, 0, 0, 1)
(L6

3, L
6
4, u

c6
R2
, dc 6R3

, ec 6R1
, n6

2) (1, 0, 1, 0, 0, 1)
(L7

3, L
7
4, u

c7
R2
, dc 7R3

, ec 7R1
, n7

2) (0, 0, 0, 0, 0, 0)
(L8

3, L
8
4, u

c8
R2
, dc 8R3

, ec 8R1
, n8

2) (0, 0, 0, 0, 0, 0)
(L9

3, L
9
4, u

c9
R2
, dc 9R3

, ec 9R1
, n9

2) (0,−1, 0, 1, 1, 0)
(L10

3 , L
10
4 , u

c10
R2
, dc 10R3

, ec 10R1
, n10

2 ) (0,−1, 0, 1, 1, 0)
(L11

3 , L
11
4 , u

c11
R2
, dc 11R3

, ec 11R1
, n11

2 ) (0,−1, 0, 1, 1, 0)
(L12

3 , L
12
4 , u

c12
R2
, dc 12R3

, ec 12R1
, n12

2 ) (0, 0, 0, 0, 0, 0)
(L13

3 , L
13
4 , u

c13
R2
, dc 13R3

, ec 13R1
, n13

2 ) (0, 0, 0, 0, 0, 0)

Table 15: The number of generations for the representations in the “Case I′” given by Eq. (67).

(m1
1, m

2
1, m

3
1) (m1

2, m
2
2, m

3
2) (m1

3, m
2
3, m

3
3) (m1

4, m
2
4, m

3
4) (m1

5, m
2
5, m

3
5)

(−1
2
,−1

2
,−1

2
) (5

2
, 1
2
, 1
2
) (0, 0, 0) (−11

2
, 1
2
, 1
2
) (5

2
,−1

2
,−1

2
)

Table 16: The typical values of U(1) fluxes in the “Case II′” given by Eq. (68). The other U(1)
fluxes are constrained to be mi

4 = −mi
9 and mi

5 = mi
6 = mi

7 = mi
8 = −mi

10 = −mi
11 = −mi

12 =
−mi

13 with i = 1, 2, 3.

(Q1, Q2, L1, L2, u
c
R1
, dcR1

, dcR2
, n1) (0, 3, 0, 3, 0, 5,−5, 1)

(L4
3, L

4
4, u

c4
R2
, dc 4R3

, ec 4R1
, n4

2) (5, 0, 3, 0, 0, 3)
(L5

3, L
5
4, u

c5
R2
, dc 5R3

, ec 5R1
, n5

2) (0,−2, 0, 0, 0, 0)
(L6

3, L
6
4, u

c6
R2
, dc 6R3

, ec 6R1
, n6

2) (0,−2, 0, 0, 0, 0)
(L7

3, L
7
4, u

c7
R2
, dc 7R3

, ec 7R1
, n7

2) (0,−2, 0, 0, 0, 0)
(L8

3, L
8
4, u

c8
R2
, dc 8R3

, ec 8R1
, n8

2) (0,−2, 0, 0, 0, 0)
(L9

3, L
9
4, u

c9
R2
, dc 9R3

, ec 9R1
, n9

2) (0,−5, 0, 3, 3, 0)
(L10

3 , L
10
4 , u

c10
R2
, dc 10R3

, ec 10R1
, n10

2 ) (2, 0, 0, 0, 0, 0)
(L11

3 , L
11
4 , u

c11
R2
, dc 11R3

, ec 11R1
, n11

2 ) (2, 0, 0, 0, 0, 0)
(L12

3 , L
12
4 , u

c12
R2
, dc 12R3

, ec 12R1
, n12

2 ) (2, 0, 0, 0, 0, 0)
(L13

3 , L
13
4 , u

c13
R2
, dc 13R3

, ec 13R1
, n13

2 ) (2, 0, 0, 0, 0, 0)

Table 17: The number of generations for the representations in the “Case II′” given by Eq. (68).
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1) (m1
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2
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3
2) (m1

3, m
2
3, m

3
3) (m1

4, m
2
4, m

3
4) (m1
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2
5, m

3
5) (m1

6, m
2
6, m

3
6)

(−3
2
,−1

2
,−1

2
) (3

2
, 1
2
, 1
2
) (0, 0, 0) (−7

2
, 1
2
, 1
2
) (−5

2
, 1
2
, 1
2
) (3

2
,−1

2
,−1

2
)

Table 18: The typical values of U(1) fluxes in the “Case III′” given by Eq. (69). The other U(1)
fluxes are constrained to be mi

6 = mi
7 = mi

8 = −mi
11 = −mi

12 = −mi
13 with i = 1, 2, 3.

(Q1, Q2, L1, L2, u
c
R1
, dcR1

, dcR2
, n1) (0, 3, 0, 3, 0, 3,−3, 3)

(L4
3, L

4
4, u

c4
R2
, dc 4R3

, ec 4R1
, n4

2) (2, 0, 2, 0, 0, 2)
(L5

3, L
5
4, u

c5
R2
, dc 5R3

, ec 5R1
, n5

2) (1, 0, 1, 0, 0, 1)
(L6

3, L
6
4, u

c6
R2
, dc 6R3

, ec 6R1
, n6

2) (0, 0, 0, 0, 0, 0)
(L7

3, L
7
4, u

c7
R2
, dc 7R3

, ec 7R1
, n7

2) (0, 0, 0, 0, 0, 0)
(L8

3, L
8
4, u

c8
R2
, dc 8R3

, ec 8R1
, n8

2) (0, 0, 0, 0, 0, 0)
(L9

3, L
9
4, u

c9
R2
, dc 9R3

, ec 9R1
, n9

2) (0,−2, 0, 2, 2, 0)
(L10

3 , L
10
4 , u

c10
R2
, dc 10R3

, ec 10R1
, n10

2 ) (0,−1, 0, 1, 1, 0)
(L11

3 , L
11
4 , u

c11
R2
, dc 11R3

, ec 11R1
, n11

2 ) (0, 0, 0, 0, 0, 0)
(L12

3 , L
12
4 , u

c12
R2
, dc 12R3

, ec 12R1
, n12

2 ) (0, 0, 0, 0, 0, 0)
(L13

3 , L
13
4 , u

c13
R2
, dc 13R3

, ec 13R1
, n13

2 ) (0, 0, 0, 0, 0, 0)

Table 19: The number of generations for the representations in the “Case III′” given by Eq. (69).
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4 Conclusion

In this paper, we have derived the realistic standard model gauge groups from the framework
of SO(32) heterotic string theory on three factorizable 2-tori with magnetic fluxes. Introducing
magnetic fluxes as well as Wilson lines into Cartan directions of SO(32) break SO(32) to
SU(3)× SU(2)× U(1)Y and extra symmetries. These U(1) fluxes also lead to chiral fermions
in the four dimensions if and only if the fluxes insert into all the three 2-tori. At the same time,
the generations of chiral matters are determined by the numbers of fluxes. We have derived
three chiral generations of quarks and leptons. Our models also include Higgs fields, which
have Yukawa couplings to quarks and leptons at tree level.

Possible configurations of magnetic fluxes are severely constrained by the massless condition
of U(1)Y hypercharge gauge boson and the consistency condition of heterotic string theory. It
is remarkable that in general, the ten-dimensional Green-Schwarz term induces the Stueckel-
berg couplings to multiple U(1) gauge bosons which might lead to the mass term of U(1)Y
hypercharge gauge boson. In this respect, the numbers of fluxes have been constrained by the
massless condition of U(1)Y gauge boson. Since the torus is flat, our models requires the exis-
tence of heterotic five-branes in order to satisfy the consistency conditions without introducing
the extra Stueckelberg couplings to U(1) gauge boson, in contrast to the E8 × E8 heterotic
string theory. At that time, the Witten anomaly cancellation constrains the number of U(1)
fluxes due to the nature of symplectic groups on the heterotic five-branes. In fact, the chiral
fermions under the fundamental representation of symplectic gauge groups do not arise in the
parts of our models, whereas the other parts of our models requires the non-trivial mechanisms
such as U(1) fluxes on heterotic five-branes to cause even number of these chiral fermions to
avoid the Witten anomaly. We listed supersymmetric three-generation standard models with
massless U(1)Y gauge bosons and desirable Yukawa couplings of quarks, leptons and Higgs.
The detailed phenomenological analysis of our models such as mass matrices would be studied
in a separate work and the detail of this paper is applicable in the framework of type I string.

The unbroken gauge sector in our models has N = 4 supersymmetry, that is, three adjoint
scalar fields and four types of gaugino fields. However, the existence of (anti-)heterotic five-
branes would lead to the breaking of (all) partial breaking of supersymmetry in our model.
Orbifolding would be useful to reduce N = 4 supersymmetry to N = 1. Zero-mode wavefuc-
tions have been also studied on orbifolds with magnetic fluxes [28, 29]. Such extensions would
be also interesting.
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A Normalization of the SO(32) gauge group

In this appendix, we show the normalization of Abelian gauge groups embedded in SO(32)
gauge group. (For more details, see Refs. [10, 21, 22].) First, we comment on the normalization
about the non-Abelian gauge groups in SO(32). The sum of each Coxeter labels associated
with the simple roots of SO(32) are called as the Coxeter number h(g) which is related to the
quadratic Casimir via the following relation,

∑

c,d

facdf bcd = h(g)ψ2δab (73)

where h(g) = 30, fabc with a = 1, 2, · · · , 496 are the structure constants of SO(32) and ψ2

denotes the length of the root which is normalized as two.
The normalization of the Abelian gauge groups are estimated by the current algebra or

Kač-Moody algebra of SO(32) which is given by

[jam, j
b
n] = i

∑

c

fabcjcm+n +
2k

ψ2
mδabδm,−n, (74)

where k is the level of Kač-Moody algebra and jam are the Laurent coefficients of the current
ja(z),

ja(z) =
1

2
N(ψiT a

ijψ
j) =

∞
∑

m=−∞

jam
zm+1

, (75)

with ψi and (T a)ij (i = 1, 2, · · · , 32) being the 32 real fermions and generators in the vector
representation of SO(32), respectively. N(ψiT a

ijψ
j) stands for the normal ordering of the oper-

ator, (ψiT a
ijψ

j). When the level of Kač-Moody algebra is equal to one, we obtain the operator
product expansion of the current

ja(z)jb(w) ∼ 2δab

ψ2(z − w)2
+
ifabc

z
jc(w), (76)

and then we can extract the normalization of (T a)ij as tr(T
aT b) = 2δab.

In our model, the generators of U(1)a, Ta are normalized as

T1 =
1√
2
diag(0, 0, 0, 0, 1, 1, 0, 0, · · · , 0),

T2 =
1

2
diag(1, 1, 1, 1, 0, 0, 0, 0, · · · , 0),

T3 =
1√
12

diag(1, 1, 1,−3, 0, 0, 0, 0, · · · , 0),

T4 = diag(0, 0, 0, 0, 0, 0, 1, 0, · · · , 0),
T5 = diag(0, 0, 0, 0, 0, 0, 0, 1, 0, · · · , 0),

...

T13 = diag(0, 0, 0, 0, 0, 0, 0, 0, · · · , 1), (77)
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on the basis of U(16) which is the maximal subgroup of SO(32). In general, the generators of
U(N) can be identified as the part of SO(2N) generators. (See e.g. Ref. [23].)

B The trace identities

Here, we summarize the trace identities

TrF 2 = 30trF 2 = 60F 2
SU(3)C

+ 60F 2
SU(2)L

+ 60

13
∑

a=1

f 2
a ,

TrF̄ 2 = 30trF̄ 2 = 60

13
∑

a=1

f̄ 2
a ,

TrFF̄ = 30trFF̄ = 60

13
∑

a=1

faf̄a,

trF 2F̄ 2 =

(

1

2
tr(T 2

2 )f̄
2
2 +

√

tr(T 2
2 )tr(T

2
3 )

3
f̄2f̄3 +

1

6
tr(T 2

3 )f̄
2
3

)

tr(F 2
SU(3)) + tr(T 2

1 )f̄
2
1 tr(F

2
SU(2))

+ 2tr(T 4
1 )f̄

2
1 f

2
1 + 2

13
∑

c=4

tr(T 4
c )f

2
c f̄

2
c

+ 2
(

tr(T 4
2 )f̄

2
2 + tr(T 2

2 T
2
3 )f̄

2
3

)

f 2
2 + 4

(

2tr(T 2
2 T

2
3 )f̄2f̄3 + tr(T2T

3
3 )f̄

2
3

)

f2f3

+ 2
(

tr(T 4
3 )f̄

2
3 + tr(T 2

2 T
2
3 )f̄

2
2 + 2tr(T2T

3
3 )f̄2f̄3

)

f 2
3 ,

trFF̄ 3 = 2trT 4
1 f̄

3
1 f1 + 2

(

trT 4
2 f̄

3
2 + 3(trT 2

2 T
2
3 )f̄2f̄

2
3 + (trT2T

3
3 )f̄

3
3

)

f2

+
(

trT 4
3 f̄

3
3 + 3(trT2T

3
3 )f̄2f̄

2
3 + 3(trT 2

2 T
2
3 )f̄

2
2 f̄3
)

f3 + 2

13
∑

c=4

trT 4
c f̄

3
c fc, (78)

where fa and f̄a denote the four-dimensional and extra-dimensional field strengths of U(1)a
and we employ the trace identities such as

TrF 2 = 30 trF 2,

TrF 4 = 24trF 4 + 3(trF 2)2,

TrFF̄ 3 = 24trFF̄ 3 + 3(trFF̄ )(trF̄ 2),

TrF 2F̄ 2 = 24trF 2F̄ 2 + 2(trFF̄ )2 + (trF 2)(trF̄ 2),

trT 4
1 = 1/2, trT 4

2 = 1/4, trT 4
3 = 7/12, trT 4

a = 1 (c = 4, · · · , 13),
trT 2

2 T
2
3 = 1/4, trT 3

2 T3 = 0, trT2T
3
3 = −1/2

√
3. (79)
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