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Autónoma de Puebla, A.P. 1364, Puebla, Mexico

c Goethe-Universität Frankfurt am Main
Institut für Theoretische Physik

Max-von-Laue-Straße 1, D-60438 Frankfurt am Main, Germany

d Facultad de Ciencias, Universidad de Colima

Bernal Dı́az del Castillo 340, C.P. 28045 Colima, Mexico

For field theories with a topological charge Q, it is often of interest to mea-
sure the topological susceptibility χt = (〈Q2〉 − 〈Q〉2)/V . If we manage
to perform a Monte Carlo simulation where Q changes frequently, χt can be
evaluated directly. However, for local update algorithms and fine lattices, the
auto-correlation time with respect to Q tends to be extremely long, which
invalidates the direct approach. Nevertheless, the measurement of χt is still
feasible, even when the entire Markov chain is topologically frozen. We test
a method for this purpose, based on the correlation of the topological charge
density, as suggested by Aoki, Fukaya, Hashimoto and Onogi. Our studies in
non-linear σ-models and in 2d Abelian gauge theory yield accurate results for
χt, which confirm that the method is applicable. We also obtain promising
results in 4d SU(2) Yang-Mills theory, which suggest the applicability of this
method in QCD.
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1 Motivation

We are going to address the functional integral formulation of quantum
physics in Euclidean space with periodic boundary conditions. For a number
of models of interest, the configurations occur in distinct topological sec-
tors, each one characterized by a topological charge Q ∈ Z. Examples are 2d
Abelian gauge theory and 4d Yang-Mills theories. In these cases also fermions
may be present, so this class includes the Schwinger model and QCD. Further
examples are the O(N) models (non-linear σ-models) in N − 1 dimensions,
and all 2d CP(N − 1) models.

We deal with the case where parity symmetry holds, which implies the
expectation value 〈Q〉 = 0. Then the topological susceptibility is given by

χt =

∫

ddx 〈q(0)q(x)〉 = 〈Q2〉
Vcont

, (1.1)

where q is the topological charge density (Q =
∫

ddx q(x)), and Vcont is the
volume. This quantity is often of interest; for instance χt of quenched QCD
is relevant for the Witten-Veneziano relation [1]. Clearly, χt can only be
determined on the non-perturbative level. Hence lattice simulations are the
appropriate method for this purpose. (Actually the lattice definitions of q
and Q are slightly ambiguous, see e.g. Refs. [2] for comparative studies; we
will specify later the formulations that we use.)

Here we consider the 1d O(2) model (quantum rotor), the 2d O(3) model
(Heisenberg model), as well as 2d U(1), and 4d SU(2) gauge theories. In our
Monte Carlo study of non-linear σ-models, we apply a cluster algorithm [3],
which performs non-local update steps. Hence it frequently changes the
topological sector, so it provides precise results for χt by direct measurements.

In most other models of quantum field theory, especially in almost all
models with fermions or gauge fields, such an efficient algorithm is not known.
There one resorts to local update algorithms, such as the heatbath algorithm,
which we used in our gauge theory simulations. In that case, the Markov
chain tends to get stuck in one topological sector, in particular as one ap-
proaches the continuum limit. That may well happen in lattice QCD with
light dynamical quarks and a lattice spacing below 0.05 fm [4].

In light of these prospects for the near future, indirect methods to measure
χt are of interest. Here we test systematically the Aoki-Fukaya-Hashimoto-
Onogi (AFHO) method [5], which evaluates χt based on the density cor-
relations 〈q0 qx〉|Q|, measured at fixed |Q|. Hence this quantity enables the

2



determination of χt even from a Markov chain that is entirely confined to a
single topological sector.

An alternative concept with the same motivation is sketched in Ref. [6].
For a recent study with a related approach, see Ref. [7]. The procedure of
Ref. [8] is more general, but it contains yet another option to determine χt

from topologically restricted measurements.
Here we are going to demonstrate in a variety of models that the AFHO

method works. For suitable settings, it provided χt values which are cor-
rect to 2 or 3 digits. We will also discuss the practical limitations of this
approach.

2 Topological charge density correlation

The AFHO method was derived in Ref. [5], inspired by related considerations
by Brower, Chandrasekharan, Negele and Wiese [8]. It deals with the long-
distance correlation of the topological charge density qx at fixed |Q|. The
topological susceptibility χt can be evaluated from the (approximate) relation

lim
x→∞ 〈q0 qx〉|Q| ≈ − 1

V 2

(

〈Q2〉 −Q2 +
V c4
2〈Q2〉

)

= −χt

V
+

1

V 2

(

Q2 − c4
2χt

)

, (2.1)

where V is the volume in lattice units. The term

c4 =
1

V

(

3〈Q2〉2 − 〈Q4〉
)

(2.2)

is the kurtosis, which measures the deviation from a Gaussian distribution
of the topological charges. It tends to be tiny, see e.g. Refs. [9] for quenched
QCD results, and in the 1d O(2) model it vanishes exactly in the contin-
uum and infinite volume [10]. In the current context its contribution can be
ignored, as we will see in the following.

Eq. (2.1) consists of the leading terms of an expansion in 1/〈Q2〉, therefore
〈Q2〉 = V χt should be large. Since χt is expected to stabilize in the large
volume limit, eq. (2.1) holds up to sub-leading finite size effects. Moreover,
its derivation assumes the ratio |Q|/〈Q2〉 to be small, hence it is favorable to
apply this method in sectors of small |Q|.
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With these assumptions, eq. (2.1) shows that the correlation of the topo-
logical charge density in a fixed sector is not expected to vanish over long
distances. Instead it is expected to attain a plateau, which depends on |Q|:
it is slightly negative for Q = 0 (obviously, a fluctuation of q0 has to be
compensated elsewhere), but it rises for increasing Q2.

The AFHO method has been tested previously in the 2-flavor Schwinger
model with light chiral fermions [11]. The numerically measured correlations
〈q0 qx〉0 suggest that a conclusive evaluation of χt requires large statistics: on
a 16 × 16 lattice it requires O(105) configurations. Variants of this method
were already applied in 2-flavor QCD, though with a different density [12],
and recently also in QCD with 2+1 flavors, with a reduction to sub-volumes
[13]. For a precise test, the non-linear σ-models are perfectly suited, since
the method can be probed with high statistics, and the results for χt can be
compared with reliable direct measurements. In order to probe the potential
of this approach further, we add investigations in 2d Abelian and 4d non-
Abelian gauge theories. Synopses of this study were anticipated in proceeding
contributions [14].

3 Results for the 1d O(2) model

We start with the 1d O(2) model, or 1d XYmodel, which describes a quantum
mechanical particle moving freely on the circle S1, with periodic boundary
conditions in Euclidean time x. In continuous time, a trajectory can be
described by an angle ϕ(x), with ϕ(0) = ϕ(Lcont). On the lattice we deal
with angles ϕx, x = 1 . . . L and ϕL+1 = ϕ1.

1 We introduce the nearest site
difference

∆ϕx = (ϕx+1 − ϕx) mod 2π ∈ (−π, π] , (3.1)

i.e. the modulo function is defined such that |∆ϕx| is minimized.
This is one of the simplest models with a topological charge, which is

given by

Q =
1

2π

∫ Lcont

0

dxϕ′(x) (continuum) , Q =
1

2π

L
∑

x=1

∆ϕx (lattice) , (3.2)

where q(x) = ϕ′(x)/(2π) is the topological charge density in the continuum,
and qx = ∆ϕx/(2π) is its geometrically defined counterpart on the lattice.

1All lattice quantities will be given in lattice units.
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The continuum action reads Scont[ϕ] =
βcont

2

∫ Lcont

0
dxϕ′(x)2. In Appendix

A we show that relation (2.1) without the kurtosis term,

〈q(0)q(x)〉|Q| = −χt

V
+

Q2

V 2
, (3.3)

is exact in this case, and independent of the separation x.
In our numerical study, we consider three lattice actions: the standard

action, the Manton action [15] and the constraint action [16],

Sstandard[ϕ] = β
L
∑

x=1

(1− cos∆ϕx) , SManton[ϕ] =
β

2

L
∑

x=1

∆ϕ2
x ,

Sconstraint[ϕ] =

{

0 ∆ϕx < δ ∀x
+∞ otherwise

. (3.4)

The parameter β (or βcont) corresponds here to the moment of inertia, and
in the last case δ is the constraint angle.

action ξ χt

continuum 2βcont
1

4π2βcont

standard
[

ln
∫
π

−π
dϕ exp(−β(1−cosϕ))

∫
π

−π
dϕ exp(−β(1−cosϕ)) cosϕ

]−1
1

4π2

∫
π

−π
dϕ ϕ2 exp(−β(1−cosϕ))

∫
π

−π
dϕ exp(−β(1−cosϕ))

Manton
[

ln
∫
π

−π
dϕ exp(−βϕ2/2)

∫
π

−π
dϕ exp(−βϕ2/2) cosϕ

]−1
1

4π2

∫
π

−π
dϕ ϕ2 exp(−βϕ2/2)

∫
π

−π
dϕ exp(−βϕ2/2))

constraint [ln(δ/ sin(δ))]−1 δ2

12π2

Table 1: Closed expressions for the correlation length ξ and the topological
susceptibility χt in the 1d O(2) model at infinite size, in the continuum and
for three lattice actions.

In the thermodynamic limit, L → ∞, the correlation length ξ = 1/(E1 −
E0) (i.e. the inverse energy gap) and χt are known analytically [10, 16], as
we summarize in Table 1.2 The product ξ χt is a scaling quantity, i.e. a
dimensionless term composed of observables. In the continuum it amounts
to

ξ χt|continuum =
1

2π2
. (3.5)

2For the continuum action, Ref. [17] discusses the spin correlation function, and its
restriction to a single topological sector.
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Figure 1: The topological charge density correlation in the 1d O(2) model
over a distance of x lattice spacings, at L = 100. The first two plots refer to
the standard action and the Manton action at β = 2, with ξ = 2.779, 〈Q2〉 =
1.936, and ξ = 4.000, 〈Q2〉 = 1.266, respectively. The plot below is obtained
with the constraint action at δ = 1, L = 100, ξ = 5.793, 〈Q2〉 = 0.844. For
comparison, we include in all cases horizontal lines for the prediction based
on eq. (3.3), where we insert the directly measured values of χt .
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This value is attained for the lattice actions in the limit β → ∞ and δ → 0,
respectively, which reveals a facet of universality even in one dimension. The
corresponding scaling behavior is discussed in Refs. [10,16,18]. In particular,
the Manton action scales excellently, since it is classically perfect.

Figure 1 shows examples for numerically measured correlations 〈q0 qx〉|Q|,
using these actions at L = 100. We see in all cases that the numerical data
are in excellent agreement with the predicted plateau values. These plateaux
are accurately visible, so the AFHO method does indeed enable a precise
numerical determination of χt.

To demonstrate this explicitly, we consider the range L = 150 . . . 400, and
|Q| = 0, 1, 2, which leads to the results for χt in Figure 2. For the Manton
action we obtain precise agreement with the theoretical χt value in all cases.
For the standard action we observe small deviations up to a few permille,
which are suppressed for |Q| ≤ 1, and for |Q| = 2 they are reduced as L
increases.

These tiny lattice artifacts are revealed due to extremely large statistics:
for each parameter set, at least 5 · 109 measurements have been performed
with a cluster algorithm. This yields very precise results, and illustrates the
convergence towards the theoretical χt value for increasing 〈Q2〉 (or equiva-
lently L).

4 Results for the 2d O(3) model

We proceed to field theory, and first to the 2d O(3) model (or Heisenberg
model), with periodic boundary conditions. In its lattice formulation a clas-
sical spin variable of unit length is attached to each lattice site x, ~ex ∈ S2.

Regarding the topological charge, we consider sets of three neighboring
spins. In our case the lattice consists of quadratic plaquettes, and each pla-
quette is divided into two triangles (the cutting diagonal has an alternating
orientation between nearest neighbor plaquettes). Each of these triangles
carries such a set of spins ~e1, ~e2, ~e3. They are connected on the sphere S2 by
the arcs of minimal length to form a spherical triangle. Its oriented area A
is given by [16]

x = 1 + ~e1 · ~e2 + ~e2 · ~e3 + ~e1 · ~e3 , y = ~e1 · (~e2 × ~e3) ,

ϕ = arg(x+ iy) mod 2π , A(~e1, ~e2, ~e3) = 2ϕ , (4.1)

where the modulo function is defined as in eq. (3.1). In each plaquette,
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Figure 2: The topological susceptibility χt in the 1d O(2) model for the
standard and Manton action at β = 4, where ξ = 6.8 and 8.0, respectively.
We show the theoretical value at L = ∞, the directly measured value (at
L = 400), and the values obtained from the AFHO method in the range
L = 150 . . . 400, in the sectors |Q| = 0, 1, 2. For the standard action,
there are permille level deviations from the predicted value, in particular for
|Q| = 2, which are suppressed for increasing L. For the Manton action all
results coincide to an impressive precision, even down to L = 150.

the normalized sum of these two oriented spherical triangles (the total solid
angle), qx = A(~ex, ~ex+1̂, ~ex+2̂, ~ex+1̂+2̂)/(4π), is the topological charge density.

If we sum over all plaquettes, and thus over all triangles, we obtain the
geometrically defined topological charge

Q =
∑

x

qx =
1

4π

∑

x

A(~ex, ~ex+1̂, ~ex+2̂, ~ex+1̂+2̂) ∈ Z . (4.2)
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This definition, which was advocated in Ref. [19], has the virtue of providing
integer Q values for all configurations (except for a subset of measure zero),
just like eq. (3.2). It counts how many times (and with which orientation)
these triangles cover the sphere.

The standard lattice action reads

Sstandard[~e ] = β
∑

x,µ

(1− ~ex · ~ex+µ̂) , (4.3)

where µ runs from 1 to 2, µ̂ is the unit vector in µ-direction, and β > 0.
Figure 3 shows the topological charge density correlation 〈q0 qx〉 at β =

1, measured in the sectors |Q| = 0, 1, 2, on L × L lattices of size L =
12 and L = 16. The measurements are carried out parallel to the axes,
and the spin separation proceeds in steps of two lattice units, due to the
alternating triangularization in the definition of qx. The horizontal lines are
the expected plateau values according to eq. (3.3). Again we inserted the
directly measured values of χt = 〈Q2〉/V ; they are very precise, thanks to
the use of a cluster algorithm, which provided a statistics of O(107) well
thermalized and decorrelated measurements.3

The plots clearly confirm the qualitatively expected picture. We further
confirm that the condition of a large separation is quite harmless: for the
separation of four lattice spacings, the plateau value is already well attained.

For a quantitative analysis, we perform individual fits of the data to a con-
stant in one sector (skipping 2 . . . 6 points at the boundaries); each fit yields
a value of the topological susceptibility χt. In addition we consider combined
fits in two or three sectors. These results are confronted with the directly
measured values in Figure 4. As theory predicts, the lowest |Q|-sectors are
most reliable. In fact, the evaluation of χt based on 〈q0 qx〉|Q| is successful to
an accuracy of a few percent in these cases. However, Figure 3 also shows
that the application of this method is getting difficult when L increases: then
the values of 〈q0 qx〉|Q| become tiny, and thus hard to distinguish from zero,
and from each other.

This is a case of strong coupling; β = 1 leads to a correlation length of
ξ ≃ 1.3 (at large L). Hence the volumes that we used can be considered

3This model is sometimes considered topologically ill, because χt ξ
2, which is supposed

to be the scaling term, diverges logarithmically in the continuum limit. In the integral
representation of eq. (1.1), this effect emerges at distance x = 0; at finite distances, the
topological charge density correlation is a controlled quantity [16]. Here we determine χt

with different methods at fixed ξ, so this defect does not affect our study.
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Figure 3: The topological charge density correlation in the 2d O(3) model,
with the standard lattice action at β = 1. We show data measured on
L × L lattices, L = 12 and 16, in the sectors |Q| = 0, 1, 2. They are
compared to lines for the values according to eq. (3.3), with the directly
measure susceptibility χt.
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Figure 4: The topological susceptibility in the 2d O(3) model on 12×12 and
16×16 lattices, with the standard action at β = 1. We show results obtained
from fits to the topological charge density correlation in sector |Q|, or com-
bined fits in several sectors. This is compared to the direct measurement as
〈Q2〉/V , which is very precise. All results are compatible within the errors.

large, but the lattice is coarse. In order to probe the AFHO method closer
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to the continuum limit, we now proceed to a different setting. We move to
the constraint action, which is defined in analogy to eq. (3.4), i.e. the action
is zero if all angles between neighboring spins are less than δ, and infinite
otherwise [16]. We set the constraint angle to δ = 0.55 π, which corresponds
to a correlation length of ξ ≃ 3.6. Accordingly, we now consider larger
square lattices, with L = 16 and L = 32. Figure 5 shows the topological
charge correlations in this case, and Figure 6 displays the fit results.
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Figure 5: Plots analogous to Figure 3, now for the constraint action at δ =
0.55 π, which corresponds to ξ ≃ 3.6, and with lattice sizes L = 16 and
L = 32.

These plots show again that the condition of a larger separation |x| is not
a practical problem. However, despite the statistics of O(107) measurements,
the AFHOmethod does run into trouble in reproducing the directly measured
χt values beyond one digit. This is mostly a consequence of the larger volumes
involved; they suppress the signal, which is relevant to extract χt in this
indirect manner.

Let us finally take a large step to a numerical experiment very close to the
continuum limit: it is performed with the standard lattice action at β = 1.5,
on square lattices with L = 16 . . . 128; at large L, this corresponds to ξ ≃ 9.5.
Figure 7 shows the results for χt up to L = 84, based on the topological
charge correlations in the sectors |Q| = 0, 1, 2, and by direct measurement.
As L increases, the latter converges well at L ≥ 32. The results by the
AFHO method move towards the directly measured value, and get close to
it at L = 40. Here the range L ≈ 40 . . . 60 is optimal for its application.
As we increase L further, we face again the problem that the tiny signal,
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Figure 6: The topological susceptibility in the 2d O(3) model on 16×16 and
32 × 32 lattices, with the constraint action at δ = 0.55 π, where ξ ≃ 3.6.
We display results from fits to the topological charge density correlation in
sector |Q|, or combined fits in several sectors. Comparison to the direct
measurement shows that the AFHO method is less successful than in the
examples of Figure 4, since larger volumes are involved.

which matters for χt, gets lost in the statistical noise. For |Q| = 1, 2 this
happens already at L ≥ 64; only at Q = 0 the method still leads to useful
results up to L = 84. (For completeness we add that at L = 128 we obtained
χt = 0.0019(8), which is still compatible with the directly measured value
0.002292(9), but it has an error of 42 %).

5 Results for 2d Abelian gauge theory

We proceed to 2d U(1) gauge theory with the plaquette action, i.e. Wilson’s
standard lattice formulation [20]. We simulate it with the heatbath algorithm
on periodic L × L lattices, with a variety of L and β values, which keep
〈Q2〉 in the range of 0.7 to 10.4. In each case, the statistics involves 107

configurations. For the topological charge density qx we also applied the
straight plaquette regularization of the field strength tensor in terms of non-
compact link variables Ax,µ,

qx = Fx,12 =
1

2π

[

(Ax,1 + Ax+1̂,2 − Ax+2̂,1 − Ax,2) mod 2π
]

, (5.1)
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Figure 7: The topological susceptibility χt for the standard action at β =
1.5, on L × L lattices with L = 16 . . . 84 (with ξ ≃ 9.5 at large L). The
directly measured values stabilize for L ≥ 32 (its errors are too small to be
visible in this plot), and the AFHO results approximate it well in the regime
L = 40 . . . 84. For smaller L, this method suffers from significant finite size
effects, and for larger L the signal for the determination of χt is too small
for a good numerical resolution.

still with the modulo function as defined in eq. (3.1). As in Section 4, its
correlation was measured parallel to one of the axes.

Thanks to a generous separation of the measurements, the direct evalua-
tion of χt is very precise, although the updates are local.

Figure 8 gives three examples which illustrate that also here the data for
the topological charge density match the predicted plateaux well, so that the
determination of χt by the AFHO method is possible. In addition we see
again the difficulty setting in as the volume increases.

Figure 9 provides an overview over the results in the range L = 6 . . . 20
and β = 1 . . . 5. In the extreme cases, the plaquette values amount to 〈P 〉 =
0.4464 (β = 1) and 0.8934 (β = 5); for the rest we refer to the caption of
Figure 8.

In this case, we apply the AFHO method as a combined fit to the data in
the topological sectors with Q = 0 and |Q| = 1. This might be the optimal
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Figure 8: The topological charge density correlation in 2d U(1) gauge theory
on L × L lattices, over a distance of x lattice spacings. We show the first
three plateau values (horizontal lines, based on direct measurements of χt),
and the corresponding data for β = 2, L = 12, with a plaquette value of
〈P 〉 = 0.6978 and 〈Q2〉 = 2.79; β = 3, L = 16, 〈P 〉 = 0.8100, 〈Q2〉 = 2.83,
and β = 4, L = 20, 〈P 〉 = 0.8635, 〈Q2〉 = 3.02.
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application, which includes a large number of data points, but avoids the
less reliable topological sectors. In all the cases shown in Figure 9, these
AFHO results for χt agree with the directly measured values, within errors
on the percent level, e.g. at L = 16 we obtain χt = 0.0196(6) (β = 2);
0.0110(3) (β = 3); 0.0075(2) (β = 4).

 0
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Figure 9: The topological susceptibility χt for 2d U(1) gauge theory, on
L× L lattices. The horizontal lines are the directly measured values (errors
and differences for various L are invisible on this scale). The symbols are the
AFHO values obtained by a combined fit in the sectors |Q| ≤ 1.

In contrast to the previous sections, we are now dealing with a local up-
date algorithm, which is the situation that motivates this project. As an
illustrative example, we add a measurement of the integrated autocorrela-
tion time τint (for the definition, see e.g. Ref. [21]) with respect to Q. It is
expressed in the number of sweeps (updates of each link variable), in a fixed
volume with L = 16. Figure 10 shows that τint increases rapidly as we ap-
proach the continuum limit. This confirms that, for the heatbath algorithm,
the problem of “topological freezing” becomes severe indeed, once we attain
plaquette values of 〈P 〉 & 0.9. (The results in Figures 8 and 9 were ob-
tained by separating the measurements by a number of sweeps, which clearly
exceeds τint).
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Figure 10: The integrated autocorrelation time τint in 2d U(1) gauge theory,
with respect to the topological charge Q. We consider β = 1 . . . 5 on a 16×16
lattice, and measure τint based on 107 sweeps, after thermalization. As β is
getting large, we observe an exponential increase of τint (measured in the
number of sweeps).

6 Results for 4d SU(2) Yang-Mills theory

Finally we study 4d SU(2) Yang-Mills theory, which is in many respects
close to QCD, but computationally cheaper. Therefore, tests in SU(2) Yang-
Mills theory are ideal for hints about the practical applicability of the AFHO
method to QCD. As usual, the lattice gauge field is represented in terms of
compact link variables Ux,µ ∈ SU(2) [20].

Following Ref. [22], we determine the topological charge density qx, and
the topological charge Q =

∑

x qx, by an improved field theoretic definition,

qx[U ] =
1

16π2

∑

µνρσ

ǫµνρσ
∑

✷=1,2,3

c✷
✷4

F (✷×✷)
x, µν [U ] F (✷×✷)

x, ρσ [U ] , (6.1)

where F
(✷×✷)
x, µν denotes the dimensionless lattice field strength tensor, clover

averaged over square-shaped Wilson loops of size ✷× ✷, and c1 = 1.5, c2 =
−0.6, c3 = 0.1.

We apply eq. (6.1), after performing a number Ncool of cooling sweeps
with the intention to suppress UV fluctuations in the gauge configurations,
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while preserving the topological structure. A cooling sweep amounts to a
local minimization of the action, i.e. a successive minimization with respect
to each gauge link. For this minimization we also use an improved version of
the lattice Yang-Mills action,

S[U ] =
β

16

∑

x

∑

µν

∑

✷=1,2,3

c✷
✷4

Tr
(

1−W (✷×✷)
x, µν [U ]

)

, (6.2)

where β = 1/(4g2), and W
(✷×✷)
x, µν is a clover averaged loop of size ✷ × ✷.

Choosing an appropriate sweep number Ncool is a subtle and somewhat am-
biguous task, which will be discussed below.

The lattice action used for the generation of gauge configurations is the
standard plaquette action, which is obtained from eq. (6.2) by setting c1 = 1,
c2 = c3 = 0. As in Section 5, the simulations were performed with a heatbath
algorithm [20], now at β = 2.5. This corresponds to the lattice spacing
a ≈ 0.073 fm, when the scale is set by identifying the Sommer parameter r0
with 0.46 fm [23]. That value of a is in the range of lattice spacings 0.05 fm ≤
a ≤ 0.15 fm typically used in contemporary QCD simulations. We generated
about 4000 configurations in each of three volumes, V = 144 , 164 , 184. This
is also a typical statistics in QCD simulations.

Assigning a topological charge Q to each configuration leads to the statis-
tics given in Table 2 for the sectors |Q| ≤ 4. We proceed by computing the
correlation function of the topological charge density 〈q0qx〉|Q| in all these
sectors Q and volumes V .

The normalization factor on the right-hand-side of eq. (2.1) is given by
the inverse volume. As we have observed in the previous sections, the corre-
spondingly suppressed signal in a large volume is often the bottleneck in the
application of the AFHO method. In order to compensate this suppression,
which is worrisome in a 4d volume, we now determine 〈q0qx〉 by measur-
ing all-to-all correlations in each configuration, thus taking advantage of the
discrete translational and rotational invariance.

In a second step we fit to these lattice results the right-hand-side of eq.
(3.3), i.e. eq. (2.1) with c4 = 0, with respect to χt, at sufficiently large sepa-
rations x, where 〈q0qx〉|Q| exhibits a plateau. Figure 11 illustrates the deter-
mination of χt after Ncool = 10 cooling sweeps, in the three lattice volumes
under consideration. Clearly the correlation function 〈q0qx〉|Q| is different
for each topological sector |Q|. These differences are more pronounced for
smaller volumes V and larger topological charges Q, which shows that the
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V Q = 0 |Q| = 1 |Q| = 2 |Q| = 3 |Q| = 4

144 1023 1591 893 350 103
164 722 1371 942 574 248
184 622 1079 898 616 402

Table 2: Number of configurations for three volumes V , in each topolog-
ical sector 0 ≤ |Q| ≤ 4. The topological charge has been assigned after
performing Ncool = 10 cooling sweeps.

splitting according to eqs. (2.1) and (3.3) can indeed be resolved from our
data. Hence the statistics, drastically amplified by the all-to-all correlations,
is indeed sufficient to reveal the relevant signal.

In particular, for V = 144 the maximally available on-axis separations
|x| = 6, 7, 8 are at the border-line which allows us to observe plateaux of
〈q0qx〉|Q|. For V = 164 plateaux are visible in the range |x| = 7, 8, 9 and in
V = 184 even five points, 7 ≤ |x| ≤ 11, are consistent with a plateau.

Since the signal, i.e. the differences between the plateau values, increases
for smaller volumes, a promising strategy might be to use anisotropic vol-
umes. For example the volumes of a 144 and a 123 × 24 lattice are similar
(i.e. both should exhibit a similar signal quality), but the latter allows to
study larger separations (on-axis up to |x| = 12, though not with the entire
statistics of all-to-all correlations).

In Figure 12 we show determinations of χt and compare different numbers
of cooling sweeps, Ncool = 5 , 10 , 20, in the volumes V = 144 and 184. For a
small number, such as Ncool = 5, the correlation function 〈q0qx〉|Q| is rather
noisy. This is a consequence of strong UV fluctuations, which are manifest in
the topological charge density qx, and which are not filtered out sufficiently at
small Ncool. For a large number of cooling sweeps, like Ncool = 20, statistical
errors are significantly smaller, but the correlation function 〈q0qx〉|Q| exhibits
plateaux only at larger separations |x|.

This effect becomes plausible when considering the structure of the states
contributing to 〈q0qx〉|Q|. This correlation function is the Fourier transform
of an analogous correlation function, summed over all topological sectors
at a finite vacuum angle θ (for a detailed discussion, see Ref. [17]). The
plateau values arise due to the non-vanishing vacuum expectation value 〈qx〉
at θ 6= 0. Deviations from these plateaux are predominantly caused by
low-lying excitations, which correspond to glueballs in Yang-Mills theory.
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Figure 11: The correlation 〈q0qx〉|Q| as a function of the on-axis separation |x|,
after Ncool = 10 cooling sweeps, for the lattice volumes V = 144 , 164 , 184.
Fits of the right-hand-side of eq. (3.3) with respect to χt are indicated by
the horizontal solid lines.
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Figure 12: The correlation 〈q0qx〉|Q| as a function of the on-axis separation
|x| for different numbers of cooling sweeps, Ncool = 5 , 10 , 20, and lattice
volumes V = 144 and 184.

Due to the glueball size, the overlap with qx|Ω〉 (where |Ω〉 is the vacuum
state) increases when using extensive cooling (then qx is an extended operator
resembling a low-lying glueball), compared to little or no cooling (then qx is
a highly local operator). Consequently, cooling enhances the contribution of
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excitations to the correlation function 〈q0qx〉|Q| and, hence, causes stronger
deviations from the plateaux.

In practice one should decide for an optimal compromise, i.e. an inter-
mediate number of cooling sweeps. Such a compromise can be read off for
instance from plots showing the dependence of the topological susceptibility
χt (obtained by the AFHO method at fixed |Q|), or the correlation function
〈q0qx〉|Q at specific separation |x| ≈ L/2 on Ncool. Such plots are shown in
Figure 13 for L = 18 and fixed topological charge |Q| = 0, 1, 2. As expected,
the statistical errors are quite large for small Ncool

<
∼ 5. In an intermediate

region, 5 <
∼Ncool

<
∼ 15, there are stable plateaux of both 〈q0qx〉|Q| and χt with

comparably small statistical errors. The rather long plateaux indicate that
cooling is a numerically stable procedure, not destroying topological excita-
tions nor introducing any unwanted non-locality effects. At large Ncool

>
∼ 15

there is a slight trend towards lower χt, in particular for Q = 0, which could
be a first sign of contamination by excited states. An optimal choice for Ncool

is somewhere inside the plateaux region, such as Ncool = 8 or Ncool = 10, as
we have used in the examples in Figure 11 and Table 3.

Numerical results for the larger volumes, V = 164 and 184, and moderate
cooling, Ncool = 8 or 10, where a reasonably accurate determination of χt

seems possible, are summarized in Table 3. Fits have been restricted to sec-
tors Q fulfilling |Q|/(χtV ) < 0.5, which involves the small expansion parame-
ter in the derivation of eq. (2.1) [5,17]. The resulting values for the topological
susceptibility agree within the errors with a previous straight determination
(without topology fixing), which arrived at χt = 7.0(9)× 10−5 [22].

V Ncool Q = 0 |Q| = 1 |Q| = 2 |Q| = 3 combined

164
8 6.1(9) 5.5(9) 7.1(8) 6.3(6)
10 7.4(10) 5.4(7) 6.5(9) 6.3(5)

184
8 7.1(14) 5.8(10) 7.4(12) 9.2(19) 7.3(6)
10 6.2(10) 5.9(10) 6.6(9) 8.7(11) 7.0(5)

Table 3: Results for the topological susceptibility χt × 105 extracted from
fits to a single sector |Q|, or combined fits to several sectors (0 ≤ |Q| ≤ 2 for
V = 164, 0 ≤ |Q| ≤ 3 for V = 184). A corresponding study without topology
fixing [22] obtained χt × 105 = 7.0(9).

We also investigated the magnitude of ordinary finite volume effects, (not
related to topology fixing). We did this by computing and comparing χt at
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Figure 13: The correlation 〈q0qx〉|Q| at |x| = L/2 = 9, and the topological
susceptibility χt, as a function of the number of cooling sweeps Ncool in the
volume V = 184.

unfixed topology using χt = 〈Q2〉/V . For the three volumes used throughout
this section, and Ncool = 10, we obtain for χt(V )

χt(14
4) = 7.02(1)×10−5, χt(16

4) = 6.97(2)×10−5, χt(18
4) = 7.01(3)×10−5.

These values agree within the statistical errors. Moreover, both the differ-
ences as well as the statistical errors are significantly smaller (by more than a
factor of 10) than the uncertainties associated with our χt determinations us-
ing the AFHO method, as listed in Table 3. Therefore, in our study ordinary
finite volume effects can safely be neglected.

The similarity of 4d SU(2) Yang-Mills theory and QCD suggests that an
application of the AFHO method to QCD will also allow for a determination
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of the topological susceptibility up to about 10%, based on O(1000) configu-
rations for each of the topological sectors with small |Q|. We plan to explore
this scenario in the near future.

7 Conclusions

We have investigated the AFHO method [5] for the evaluation of the topo-
logical susceptibility χt based on the correlation of the topological charge
density. Amazingly, this method allows — in principle — for a measurement
of χt even within a fixed topological sector, and low |Q| are most promising.

We have seen that the method as such works; in some cases it provided
results, which are correct to 2 or 3 digits. Hence situations do exist, where
the approximations in the derivation of formula (3.3) (in particular including
order O(1/V 2) incompletely, and neglecting all terms of O(1/V 3)) can be
justified, as we could confirm on the non-perturbative level.

This approximation neglects the kurtosis term in relation (2.1), and all
higher terms. They are suppressed by the inverse volume. Moreover, it
is a generic property that topological charges are approximately Gauss dis-
tributed, such that |c4| is small. As a peculiar case, it vanishes in the contin-
uum 1d O(2) model, and in that case there are no higher corrections either
(cf. Appendix A).

Regarding the limitations of the applicability range, we note that — for
most models studied here — the theoretical condition of measuring the cor-
relation “at large separation” turned out not to be worrisome in practice;
only in Section 6 this issue has some relevance. However, the AFHO method
generally runs into trouble when the volume V increases. Then the signal
in 〈q0 qx〉|Q| is suppressed by a factor 1/V , and the separation between the
predicted plateaux by 1/V 2. If we want the correlation length to be clearly
larger than the lattice spacing (so that lattice artifacts are under control),
we need a sizable lattice to keep the finite size effects under control as well.
With these conflicting requirements, even in our 2d test models, and despite
a statistics of 107 measurements, this method led to results with rather large
statistical errors.

Thus we observe that the AFHO method, which is based on topologi-
cally restricted measurements, is plagued by unusually persistent finite size
effects. In usual settings, the latter are exponentially suppressed, i.e. they
are ∝ exp(−const. L/ξ), and quite small if L/ξ & 4. However, topologically
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restricted numerical measurements are very sensitive to finite size effects: we
recall that relation (2.1) is a truncated polynomial expansion in 1/V , but
we can also refer directly to the large ratios L/ξ, which were used all over
this study: e.g. in the upper plot of Figure 2 it amounts to L/ξ > 22, which
usually makes finite size effects negligible, but here they are significant. This
property calls for a larger size L. In turn, that causes problems in extracting
the subtle effect, which is relevant for the indirect determination of χt.

That issue might be the bottleneck for the prospects to apply the AFHO
method in four dimensions, and it has inspired the approach of restriction to
sub-volumes [13]. However, our study in Section 6 shows that the suppression
of the wanted signal by the inverse volume can be successfully compensated
if we enhance the statistics by means of all-to-all correlation measurements.
We have seen in 4d SU(2) Yang-Mills theory that this procedure does pro-
vide sufficient precision for 〈q0qx〉, even for a moderate number of O(1000)
configurations in one topological sector. Due to this observation, the AFHO
method in its original form appears quite promising in QCD. We are going
to test if it enables also there the evaluation of χt in an unconventional way,
to an accuracy of about 10%.
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A Topological charge density correlation in

the continuum 1d O(2) model

The key quantity of this work is the correlation function of the topological
charge density. In this appendix we compute it analytically for the 1d O(2)
model, formulated in continuous Euclidean time x, with periodicity length
L. For this purpose, it is useful to include a θ-term in the action,

S[ϕ] =
βcont

2

∫ Lcont

0

dxϕ′(x)2 − iθQ[ϕ] . (A.1)

In the canonical formulation of quantum mechanics, the corresponding Hamil-
ton operator, its energy eigenfunctions and eigenvalues read [10]

Ĥ =
1

2βcont

(

p̂− θ

2π

)2

, 〈ϕ|n〉 = 1√
2π

einϕ , En =
1

2βcont

(

n− θ

2π

)2

, (A.2)

where p̂ = −i ∂
∂ϕ

and n ∈ Z. The operator for the topological charge density
is given by

q̂ =
1

2π
[Ĥ, ϕ̂] =

1

2πβcont

(

− ∂

∂ϕ
+ i

θ

2π

)

. (A.3)

This operator is anti-Hermitian (due to the Euclidean time derivative of the
Hermitian operator ϕ̂), with the matrix elements

〈m|q̂|n〉 = 1

(2π)2βcont

∫ π

−π

dϕ e−imϕ
(

− ∂

∂ϕ
+ i

θ

2π

)

einϕ =
i(θ − 2πn)

(2π)2βcont

δmn .

Hence the expectation value

〈q(x)〉 = 1

Z(θ)

i

(2π)2βcont

∑

n∈Z

(θ − 2πn) e−EnLcont , with Z(θ) =
∑

n∈Z

e−EnLcont

is imaginary in general (of course it vanishes at θ = 0).
Therefore the corresponding correlation function is in general negative,4

〈q(0)q(x)〉 =
1

Z(θ)

∑

m,n∈Z

〈m|q̂|n〉 〈n|q̂|m〉 e−Enx−Em (Lcont−x)

= − 1

Z(θ)

1

(2π)4β2
cont

∑

n∈Z

(θ − 2πn)2 e−EnLcont . (A.4)

4In field theoretic models, the correlation of the topological charge density over large
distance is known to be negative as well [24].
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It is remarkable that this correlation is independent of x, if x/Lcont /∈ Z (this
condition allows us to insert a unit factor

∑

n |n〉〈n| between the end-points).
The vacuum angle θ enables also the computation of the topologically

restricted partition function,

ZQ =
1

2π

∫ π

−π

dθ Z(θ) e−iQθ =
1

2
√
πα

e−Q2/(4α) , α =
L

8π2βcont
,

and correlation function,

〈q(0)q(x)〉Q =
1

2πZQ

∫ π

−π

dθ Z(θ)〈q(0)q(x)〉 e−iQθ

= − 1

(2π)5β2
contZQ

∫ ∞

−∞

dθ θ2 e−αθ2−iθQ

=
1

32π4β2
contα

(

− 1 +
Q2

2α

)

. (A.5)

Finally we insert α and χt = αLcont/2 (cf. Table 1) to arrive at

〈q(0)q(x)〉Q = − χt

Lcont

+
Q2

L2
cont

. (A.6)

Also the topologically restricted correlation function is constant in x, which
explains that the data in Section 3 attain the plateau values immediately.

Moreover, we see that eq. (3.3) is exact in this specific case, which is
consistent with the fact that the kurtosis vanishes [10]. Therefore, in our
numerical study presented in Section 3, the actual issues are lattice artifacts
and the visibility of the predicted plateau values in numerical simulation
data; both are generally relevant questions.
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