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Abstract In our previous work, based on the SU(6)

spin-flavor wave function, we regard Λ and p as com-

posed of different quark-diquark configurations and es-

tablished the Bethe-Salpeter (BS) equations of config-
urations for quark and scalar diquark. In our present

work, we apply this model to calculate the form factors

of the semileptonic transitions Λb → Λl+l− (l = µ, e, τ)

and Λb → plν̄ within the Standard Model (SM). The

decay Λb → Λµ+µ− is especially interesting since it has
been measured in CDF and LHCb Collaborations and

this rare decay is very sensitive to new physics effects.

The decay Λb → plν̄ is a promising mode for the mea-

surement of the Cabibbo-Kobayashi-Maskawa matrix
element |Vub| at the Large Hadron Collider. In our cal-

culations, depending on the ranges of the parameters in

the model including the diquark mass and the interac-

tion strength between the quark and the diquark in the

kernel of the BS equation, we find that the branching
ratio of Λb → Λµ+µ− in our model is consistent with

the experimental data and the current experimental re-

sults from LHCb agree with the differential branching

ratio of Λb → Λµ+µ− from our calculation except at the
lager momentum transfer region. This indicates that

there is still room for possible new physics effects. We

also give comparisions of the total branching ratios of

Λb → Λl+l− and Λb → plν̄ with those given by other

phenomenological methods.

I. Introduction

In recent years, a lot of experimental progresses have

been made in spectroscopy and decays of heavy baryons
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containing a heavy bottom or charm quark [1,2,3,4,5].

Processes associated with the flavor-changing neutral

current b → s transition have regained much atten-

tion since the CLEO measurement of the radiative b→
sγ decay [6]. Although the experimental measurement

of mesonic b → s transitions appeared about twenty

years ago [7], the first observation of the baryonic decay

Λb → Λµ+µ− was reported in 2011 by the CDF Collab-

oration [8]. A first measurement of the differential and
total branching fractions for this rare decay by LHCb

was reported in 2013 [9]. The decay Λb → Λl+l−(l =

µ, e, τ) proceeds through electroweak loop diagrams in

the Standard Model (SM). Since non-Standard Model
particles such as supersymmetric particles [10] and light

dark matter particals [11] may also participate in these

loops, measurement of this decay can be used to search

for new physics [12]. Furthermore, this channel can be

used as a tool in the exact determination of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix elements, Vtb and

Vts, and in the study of CP and T violations. On the

other hand, the study of the exclusive decay Λb → plν̄

is a promising mode for the measurement of the poorly
known magnitude of the CKM matrix element |Vub| at
the Large Hadron Collider. So far, all the measurements

of |Vub| have been from B meson decays and were per-

formed at B factories [13].

Theoretically, there are some works devoted to the

analysis of Λb → Λl+l− decays in the SM and in var-

ious scenarios of physics beyond the SM [14,15,16,17,
18,19,20]. In order to use the decay to search for new

physics, one should determine the hadronic matrix ele-

ment Λb → Λ, which is expressed in twelve form factors.

In the heavy quark limit, with the application of the
heavy quark effective theory (HEQT) for the b quark,

Λb → Λ(p) transition can be described by two inde-

pendent form factors [21]. The decrease in the num-
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ber of form factors greatly simplifies calculations. How-

ever, these two form factors contain all soft QCD effects

which are difficult to calculate from the first principles.

Therefore, one needs to resort to some phenomenologi-

cal models. The Λb → Λ form factors were calculated in
quark models [22,23,24,25,26,27] and the perturbative

QCD approach [28]. Moreover, the simple pole model

was adopted to compute the form factors by Mannel

and Rochsiegel [29]. The authors of Refs. [15-16,29-
37] employed the widely applied approach of QCD sum

rules to calculate these two form factors. The informa-

tion on Λc → Λ form factors is available from experi-

mental measurement of the semileptonic Λc → Λe+νe
decay [38,39], and this information was used to con-
strain the Λb → Λ form factors [29,22]. Recently, the

form factors of the Λb → Λ transition were determi-

nated in the first lattice QCD simulation [40]. In our

previous work, in the “quark-diquark” model in which
a baryon is regarded as a bound state of a quark and a

diquark, we established the Bethe-Salpeter (BS) equa-

tions for the quark and scalar diquark configurations

of Λ and p based on SU(6) spin-flavor wave functions

[41,42]. Then we solved them in the covariant instan-
taneous approximation with the kernel containing both

the scalar confinement and one-gluon-exchange terms

[41,42,43,44,45,46]. In the present work, we will apply

the BS wave functions of Λ and p and those of Λb which
were obtained previously to calculate branching ratios

for Λb → Λl+l− and Λb → plν̄ and compare our results

with experiment, lattice data, and results from other

phenomenological methods.

The layout of the paper is as follows. in Section II,
we will review the basic formalism for the BS equations

for Λ and p. With the aid of HQET, the form factors

which are involved in Λb → Λl+l− and Λb → plν̄ de-

cays will be calculated using the BS wave functions of
Λ, p and those of Λb which were obtained previously. In

Section III we will show calculations and the numerical

results of the branching ratios of Λb → Λl+l−. In Sec-

tion IV, we will give the branching ratios of Λb → plν̄,

and will compare with the results from QCD light-cone
sum rule. Section V will be deserved for a summary and

some discussions.

II. Form Factors for Λb → Λl+l− and Λb → plν̄

Λ(p) contains three light quarks u, d, and s (u), in which

all the three light quarks play important roles in the

dynamics inside the baryon. In general, the parity of a

baryon at the ground state is positive. Since the parity
of the quark in the baryon is supposed to be positive,

the parity of the diquark involved in the ground state

baryon should also be positive. Due to Pauli principle,

two quarks with the same flavor constitutes an axial-

vector diquark and two quarks with different flavors can

constitute either a scalar diquark or an axial-vector di-

quark. Based on the SU(6) wave function of the proton,

the proton state can be expanded in the terms of quark-
diquark configurations as follows [47]

p↑ =
1

3
√
2
[3u↑(ud)0,0 + u↑(ud)1,0 −

√
2u↓(ud)1,1 −

√
2d↑(uu)1,0 + 2d↓(uu)1,1], (1)

p↓ =
1

3
√
2
[3u↓(ud)0,0 − u↑(ud)1,−1 +

√
2u↑(ud)1,−1 +

√
2d↓(uu)1,0 − 2d↑(uu)1,−1]. (2)

In the same way, we can obtain the following forms for
Λ [47]:

Λ↑ =
1

2
√
3
[2s↑(ud)0,0 +

√
2d↓(us)1,1 − d↑(us)1,0 +

d↑(us)0,0 −
√
2u↓(ds)1,1 + u↑(ds)1,0 −

u↑(ds)0,0] (3)

Λ↓ =
1

2
√
3
[2s↓(ud)0,0 −

√
2d↑(us)1,−1 + d↓(us)1,0

+d↓(us)0,0 +
√
2u↑(ds)1,−1 − u↓(ds)1,0 −

u↓(ds)0,0]. (4)

In Eqs. (1-4) the first and the second subscripts corre-

spond to the total spin and the third component of the

spin of the diqaurk, respectively. The arrow ↑ (↓) indi-
cates the spin direction of the corresponding baryon is

up (down).

Λb is regarded as a bound state of a b quark and

a scalar diquark (ud)0,0. In order to calculate the form

factors in the transition Λb → Λ (p), where the b quark
decays into s (u) quark and the scalar diquark behaves

as a spectator, one should calculate the BS wave func-

tions of the configurations s(ud)0,0 and u(ud)0,0 in Λ

and p, respectively.
We define the BS wave function of the system q(ud)0,0

(q = s or u) as the following:

χ(x1, x2, P ) = 〈0|Tψ(x1)ϕ(x2)|P 〉, (5)

where ψ(x1) and ϕ(x2) are the field operators of the
light quark at position x1 and the light scalar diquark

at position x2, respectively, P =Mv is the momentum

of Λ or p, and M (v) is its mass (velocity). Let mq

and mD represent the masses of the light quark and
the light diquark in the baryon Λ or p, λ1 =

mq

mq+mD
,

λ2 = mD

mq+mD
, and p represent the relative momentum

of the two constituents. X = λ1x1 + λ2x2 is the coor-
dinate of the center of mass and x = x1 − x2. The BS

wave function in momentum space, χp(p), is related to

χ(x1, x2, P ) through the following equation,
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χ(x1, x2, P ) = eiPX

∫

d4p

(2π)4
eipx χP (p). (6)

The BS equation for the q(ud)0,0 system in momen-

tum space can be written as follows:

χP (p) = SF (p1)

∫

d4q

(2π)4
K(P, p, q) χP (q) SD(p2), (7)

where p1 = λ1P + p and p2 = λ2P − p are the mo-

menta of the light quark q and the light scalar diquark,
respectively, K(P, p, q) is the kernel which is defined

as the sum of two particle irreducible diagrams, SF (p1)

and SD(p2) are propagators of the light quark with mo-

mentum p1 and the light diquark with momentum p2.

Motivated by the potential model, the kernel is given
by [42,48]

− iK(P, p, q) = I ⊗ IV1(p, q) + γµ ⊗ ΓµV2(p, q), (8)

where Γµ = (p2+ q2)
µF (Q2) is the effective vertex of a

gluon with two scalar diquarks, F (Q2) is introduced to

describe the structure of the diquark [42,48], F (Q2) =
αseffQ

2
0

Q2+Q2
0

, where Q2
0 is a parameter which freezes F (Q2)

when Q2 is very small. In the high energy region the

form factor is proportional to 1
Q2 which is consistent

with perturbative QCD calculations. By analyzing the
electromagnetic form factor for the proton, it was found

that Q2
0 = 3.2GeV2 can lead to consistent results with

the experimental data. V1 and V2 are the scalar con-

finement and one-gluon-exchange terms which have the

following forms in the covariant instantaneous approx-
imation respectively [41,42,43,44,45,46],

Ṽ1(pt −qt) =
8πκ

[(pt − qt)2 + µ2]2

−(2π)3δ3(pt − qt)

∫

d3k

(2π)3
8πκ

(k2 + µ2)2
, (9)

Ṽ2(pt − qt) = −16π

3

αseff

(pt − qt)2 + µ2
, (10)

where pt and qt are the transverse projection of the
relative momentum along the momentum P , which are

defined as pµt = pµ − v · pvµ and qµt = qµ − v · qvµ. The
second term of Ṽ1 is introduced to remove the infrared

singularity at the point pt = qt, and the small parame-

ter µ is introduced to avoid the divergence in numerical
calculations. After considering the constraints on χP (p)

imposed by parity and Lorentz transformations, χP (p)

can be expressed in terms of two Lorentz-scalar func-

tions, f1 and f2,

χP (p) = (f1 + /ptf2)u(v, s), (11)

where u(v, s) is the Dirac spinor of Λ or p. Defining

f̃1(2)(=
∫

dpl

2π f1(2)), we find these two BS scalar wave

functions satisfy the coupled integral equations as fol-

lows:

f̃1(pt) = −
∫

d3pt
(2π)3

1

4ωqωD(M − ωq − ωD)
[

(mq + ωq)(Ṽ1 + 2ωDṼ2F (Q
2))f̃1(qt)

−(pt · qt + p2t )Ṽ2F (Q
2)f̃1(qt)

]

−
∫

d3pt
(2π)3

1

4ωqωD(M − ωq − ωD)
[

(Ṽ1 − 2ωDṼ2F (Q
2))pt · qtf̃2(qt)

−(mq + ωq)(pt · qt + q2t )Ṽ2F (Q
2)f̃2(qt)

]

, (12)

f̃2(pt) = −
∫

d3pt
(2π)3

1

4ωqωD(M − ωq − ωD)
[

(Ṽ1 + 2ωDṼ2F (Q
2))f̃1(qt)

−(mq − ωq)
(pt · qt + p2t )

p2t
Ṽ2F (Q

2)f̃1(qt)
]

−
∫

d3pt
(2π)3

1

4ωqωD(M − ωq − ωD)
[

(mq − ωq)(Ṽ1 − 2ωDṼ2F (Q
2))

pt · qt
p2t

f̃2(qt)

−(pt · qt + q2t )Ṽ2F (Q
2)f̃2(qt)

]

, (13)

where ωD =
√

m2
D + p2t and ωq =

√

m2
q + p2t . The

BS wave functions f̃1(2) can be solved numerically by

discretizing the integration region (0,∞) into n pieces
(n is chosen to be sufficiently large). The normalization

condition for the BS wave function is given in the fol-

lowing after imposing the covariant instantaneous ap-

proximation on the kernel [43,46,49]:

iδi1i2j1j2

∫

d4qd4p

(2π)8
χ̄P (p, s)

[

∂

∂P0
IP (p, q)

i1i2j2j1

]

= δss′χP (q, s
′) (14)

where i1(2) and j1(2) represent the color indices of

the light diquark and the light quark, respectively, s(
′)

is the spin index for the light baryon,

δi1,i2j1,j2
= δi1j1δ

i2
j2
− δi1j2δ

i2
j1
,

Ii1i2j2j1P (p, q) is the inverse of the four point propagator
defined as follows:

Ii1i2j2j1P (p, q) = δi1j1δi2j2(2π)4δ4(p− q)S(−1)
q (p1)S

−1
D (p2).

(15)

In our calculations, we choose the diquark mass mD

to range from 700 MeV to 800 MeV [27]. With this



4

choice for mD, the binding energy E is negative and

varies from -90 MeV to -190MeV. κ is chosen to range

from 0.02 GeV3 to 0.08 GeV3 [27,42]. Then, for each

mD, we get a value of αseff corresponding to a value of

κ. Solving the discretized Eqs. (12,13), which become
an eigenvalue equation, we obtain the numerical results

for f̃1(pt) and f̃2(pt), which depend on two parameters,

mD and κ.

Using Lorentz symmetry and discrete C, P, T sym-
metries, one can show that the following matrix ele-

ments of the Λb → Λ transition can be parametrized by

twelve independent form factors [35],

〈Λ(P ′, s′)|s̄γµb|Λb(P, s)〉 =
ūΛ(P

′, s′)(g1γ
µ + ig2σµνp

ν + g3pµ)uΛb
(P, s),

〈Λ(P ′, s′)|s̄γµγ5b|Λb(P, s)〉 =
ūΛ(P

′, s′)(t1γ
µ + it2σµνp

ν + t3p
µ)γ5uΛb

(P, s),

〈Λ(P ′, s′)|s̄iσµνqνb|Λb(P, s)〉 =
ūΛ(P

′, s′)(gT1 γ
µ + igT2 σµνq

ν + gT3 q
µ)uΛb

(P, s),

〈Λ(P ′, s′)|s̄iσµνγ5q
νb|Λb(P, s)〉 =

ūΛ(P
′, s′)(tT1 γ

µ + itT2 σµνq
ν + tT3 q

µ)γ5uΛb
(P, s), (16)

where q = P −P ′ is the momentum transfer, and gi, ti,

gTi , t
T
i (i = 1, 2 and 3) are various form factors which are

Lorentz scalar functions of q2. The most general form
for the matrix elements in Eq. (16) consistent with the

spin symmetry on the b quark in the limit mb → ∞ is

〈Λ(P ′, s′)|s̄Γµb| Λb(v, s)〉 = ūΛ(P
′, s′)(F1 + F2/v)

ΓµuΛb
(v, s), (17)

where Γµ represent γµ, γµγ5, σµνq
ν , and σµνγ5q

ν . Fi

(i = 1, 2) can be expressed as functions solely of v ·
P ′, which is the energy of the Λ baryon in the Λb rest
frame. Comparing Eq. (16) with Eq. (17), we obtain

the following relations:

g1 = t1 = gT2 = tT2 =

(

F1 +
MΛ

MΛb

F2

)

,

g2 = t2 = g3 = t3 =
1

MΛb

F2,

gT3 = − F2

MΛb

(MΛb
−MΛ),

tT3 =
F2

MΛb

(MΛb
+MΛ),

gT1 = tT1 =
F2

MΛb

q2. (18)

The BS wave function of Λb was given in previ-

ous works and has the form χΛb

P (p) = φΛb(p)uΛb
(v, s),

where φΛb (p) is the scalar BS wave functions [41,42].

The transition matrix for Λb → Λ can be expressed in

terms of the BS wave function of Λb and the s(ud)0,0
component of Λ, χΛ

P ′(p′),

〈Λ(P ′, s′)|s̄Γµ|Λb(P, s)〉 =

∫

d4p

(2π)4
×

χ̄Λ
P ′(p′)Γµχ

Λb

P (p)S−1
D (p2). (19)

From Eqs. (3) and (4) we can see that the Clebsh-

Gordan coefficient of the s(ud)0,0 configuration is 1/
√
3.

Substituting the BS wave functions of Λb and the s(ud)0,0
system into Eq. (19) and integrating out the longitudi-

nal momentum pl, we obtain the following forms for F1

and F2:

F1 =
1√
3

∫

d3pt
(2π)3

φ̃Λb (pt)

∫

d3kt
(2π)3

{

− 1

2ω′
s(MΛ − ωωD − ω′

s −
√
ω2 − 1 cos θpt)

{[

(Ṽ1(p
′
t − kt) + 2ωDṼ2(p

′
t − kt)F (Q

2))(ms + ω′
s)

−(p′t · kt + p′2t )Ṽ2(p
′
t − kt)F (Q

2)
]

f̃Λ
1 (kt)

+
[

(Ṽ1(p
′
t − kt)− 2ωDṼ2(p

′
t − kt)F (Q

2))

−(ms + ω′
s)(p

′
t · kt + p′2t )Ṽ2F (Q

2)
]

f̃Λ
2 (kt)

}

+
ω

1− ω2

1

2ω′
s(MΛ − ωωD − ω′

s −
√
ω2 − 1 cos θpt)

v · p′t ×
{[

(Ṽ1(p
′
t − kt) + 2ωDṼ2(p

′
t − kt)F (Q

2))

−(ms − ω′
s)(Ṽ1(p

′
t − kt)

+
p′t · kt
p′2t

Ṽ2(p
′
t − kt)F (Q

2))
]

f̃Λ
1 (kt)

+
[

(ms − ω′
s)(Ṽ1(p

′
t − kt)

−2ωDṼ2(p
′
t − kt)F (Q

2))
p′t · kt
p′2t

−(p′t · kt + p′2t )Ṽ2(p
′
t − kt)F (Q

2)
]

f̃Λ
2 (kt)

}

}

, (20)

F2 =
1√
3

∫

d3pt
(2π)3

φ̃Λb (pt)

∫

d3kt
(2π)3

− 1

1− ω2

1

2ω′
s(MΛ − ωωD − ω′

s −
√
ω2 − 1 cos θpt)

v · p′t ×
{

[

(Ṽ1(p
′
t − kt) + 2ωDṼ2(p

′
t − kt)F (Q

2))

−(ms − ω′
s)(Ṽ1(p

′
t − kt) +

p′t · kt
p′2t

Ṽ2F (Q
2))

]

f̃Λ
1 (kt)

+
[

(ms − ω′
s)(Ṽ1(p

′
t − kt)− 2ωDṼ2(p

′
t − kt)F (Q

2))

p′t · kt
p′2t

− (p′t · kt + p′2t )Ṽ2(p
′
t − kt)F (Q

2)
]

f̃Λ
2 (kt)

}

,

(21)
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where ωs =
√

m2
s − p2t , ω

′
s =

√

m2
s − p

′2
t , p′t (= p′ −

p′l · v) and p′l (= p′ · v) are the transverse and longi-

tudinal relative momenta along the momentum of Λ,

respectively, ω = v · v′ (v and v′ are the velocities

of the Λb and Λ, respectively) is the invariant velocity
transfer, θ is the angle between pt and v

′
t. All the form

factors are functions of the invariant velocity transfer,

ω =
m2

Λb
+m2

Λ−q2

2mΛb
mΛ

, therefore, the minimum and maxi-

mum values of ω are 1 and
m2

Λ+m2
Λb

2mΛb
mΛ

, respectively. In

our calculation, we take ms = 0.45 GeV, MΛ = 1.116

GeV, MΛb
= 5.62 GeV. Then one can find ω ranges

from 1 to 2.62. Substituting F1 and F2 into Eq. (18)

we will get the numerical results of gi, ti, g
T
i and tTi

as functions of ω. The plots of g1, g2, g
T
1 , g

T
3 , and tT3

are shown in Figs 1 and 2. Other form factors can be

obtained from Eq. (18) straightforwardly.

1 1.5 2 2.5
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

ω

Fig. 1 Λb → Λ form factors as functions of ω. The upper
(lower) line in the upper plane corresponds to g1 (gT3 ). The
upper, middle, and lower lines in the lower plane correspond
to g2, gT1 , and tT3 , respectively. The solid and dotted lines cor-
respond to mD = 0.7 GeV and mD = 0.8 GeV, respectively,
when κ = 0.05GeV3.

In a similar way, we obtain the form factors for Λb →
p replacing ms by mu and MΛ by Mp. ω for Λb →
p ranges from 1 to 3.08, and the the Clebsch-Gorden

coefficient of the u(ud)0,0 configuration is 1/
√
2. The

numerical results for g1, g2, t
T
1 , t

T
3 , and g

T
3 for Λb → p

are plotted in Fig. 3 and 4.

From Figs. 1-4, we can see that the magnitudes of

form factors decrease as ω increases. This is because the

overlap integrals of BS wave functions decrease with the
increase of ω. The numerical results of these functions

will be used to calculate the decay widths of Λb →
Λl+l− and Λb → plν̄ in next sections.

1 1.5 2 2.5
−0.4

−0.2

0

0.2

0.4

ω

Fig. 2 Λb → Λ form factors as functions of ω. The upper
(lower) line in the upper plane corresponds to g1 (gT

3
). The

upper, middle, and lower lines in the lower plane correspond
to g2, gT

1
, and tT

3
, respectively. The solid and dotted lines

correspond to κ = 0.02 GeV3 and 0.08 GeV3, respectively,
when mD = 0.75 GeV.

1 1.5 2 2.5 3
−0.4

−0.2

0

0.2

0.4

ω

Fig. 3 Λb → p form factors as functions of ω. The upper
(lower) line in the upper plane corresponds to g1 (gT3 ). The
upper, middle, and lower lines in the lower plane correspond
to g2, gT1 , and tT3 , respectively. The solid and dotted lines cor-
respond to mD = 0.7 GeV and mD = 0.8 GeV, respectively,
when κ = 0.05 GeV 3.

III. Λb → Λl+l− Decay in the Standard Model

We first apply our results for the Λb → Λ form fac-

tors to calculate the differential fraction for the decay

Λb → Λl+l− (l = e, µ, τ) in the SM. This process is

loop-suppressed, and hence potentially sensitive to new

physics beyond the SM. At the quark level, Λb → Λl+l−

is described by b → sl+l− transition. The effective

Hamiltonian describing the electroweak penguin and

weak box diagrams related to this transition is given

by [18,56]

H =
GFα√
2π

λt

[

Ceff
9 (s̄γµPLb) + C10(s̄γµPLb)(l̄γ

µγ5l)
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1 1.5 2 2.5 3
−0.5

0

0.5

ω

Fig. 4 Λb → p form factors as functions of ω. The upper
(lower) line in the upper plane corresponds to g1 (gT3 ). The
upper, middle, and lower lines in the lower plane correspond
to g2, gT1 , and tT3 , respectively. The solid and dotted lines
correspond to κ = 0.02 GeV3 and 0.08 GeV3, respectively,
when mD = 0.75 GeV.

−2Ceff
7 mb

(

s̄iσµν
qµ

q2
PR

)

(l̄γµl)

]

, (22)

where GF is the Fermi coupling constant, α is the

electromagnetic coupling constant,

λt = VtbV
∗
ts,

PR,L =
1

2
(1± γ5),

q is the momentum transferred to the lepton pair which

is the sum of the momenta of l+ and l−, Ceff
7 , Ceff

9 ,
and C10 are the Wilson coefficients. We note that only

the term associated with the Wilson coefficient C10 is

independent of the renormalization scale. To find the

transition amplitude Λb → Λ, we need to sandwich
this effective Hamiltonian between the initial and final

baryon states and calculate the matrix elements

〈Λ(P ′, s′)|s̄γµb|Λb(P, s)〉,

〈Λ(P ′, s′)|s̄γµγ5b|Λb(P, s)〉,

〈Λ(P ′, s′)|s̄iσµνqνb|Λb(P, s)〉,

and

〈Λ(P ′, s′)|s̄iσµνγ5q
νb|Λb(P, s)〉.

These matrix elements are expressed in terms of the
form factors obtained from Eqs. (16-21) in Section II.

Then, the matrix element of the decay Λb → Λl+l− can

be written as [18,56]

M(Λb → Λl+l−) =
GF

2
√
2π

× λt
[

l̄γµl{ūΛ[γµ(A1(1 + γ5)

+B1(1− γ5)) + iσµνpν(A2(1 + γ5)

+B2(1− γ5))]uΛb
}

+l̄γµγ5l{ūΛ[γµ(D1(1 + γ5)

+E1(1− γ5)) + iσµνpν(D2(1 + γ5) + E2(1− γ5))

+pµ(D3(1 + γ5) + E3(1 − γ5))]uΛb
}
]

, (23)

where the parameters Ai, Bi and Dj , Ej (i = 1, 2

and j = 1, 2, 3) are defined as

Ai =
1

2

{

Ceff
9 (gi − ti)−

2Ceff
7

p2
(gTi + tTi )

}

,

Bi =
1

2

{

Ceff
9 (gi + ti)−

2Ceff
7

p2
(gTi − tTi )

}

,

Dj =
1

2
C10(gj − tj),

Ej =
1

2
C10(gj + tj). (24)

The final task is to calculate the decay rate of Λ→
Λl+l− in the whole physical region, 4m2

l ≤ q2 ≤ (mΛb
−

mΛ)
2. The differential decay rate is obtained as [18,56]

dΓ

dq2
=

G2
Fα

2

8192π5mΛb

|VtbV ∗
ts|2vl

√

λ(1, r, s)[T0(s)

+
1

3
T2(s)], (25)

where

s = q2/m2
Λb
,

r = mΛ/mΛb
,

λ(1, r, s) = 1 + r2 + s2 − 2r − 2s− 2rs,

and

vl =

√

1− 4m2
l

q2

is the lepton velocity. The functions T0(s) and T2(s) are
given as [18,56]

T0(s) = 32m2
lm

4
Λb
s(1 + r − s)(|D3|2 + |E3|2)

+64m2
lm

3
Λb
(1− r − s)Re(D∗

1E3 +D3E
∗
1 )

+64m2
Λb

√
r(6m2

l −M2
Λb
s)Re(D∗

1E1)

+64m2
lm

3
Λ

√
r
(

2mΛb
sRe(D∗

3E3)

+(1− r + s)Re(D∗
1D3 + E∗

1E3)
)

+32m2
Λ(2m

2
l +m2

Λs){(1− r + s)mΛb

√
rRe(A∗

1A2

+B∗
1B2)−mΛb

(1− r − s)Re(A∗
1B2 + A∗

2B1)

−2
√
r
(

Re(A∗
1B1) +m2

ΛsRe(A
∗
2B2)

)
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+8m2
Λb
[4m2

l (1 + r − s) +m2
Λb
((1 + r)2 −

s2)](|A1|2 + |B1|2) + 8m4
Λb
{4m2

l [λ+ (1 + r − s)s]

+m2
Λb
s[(1− r)2 − s2]}(|A2|2 + |B2|2)

−8m2
Λb
{4m2

l (1 + r − s)−mΛb
[(1− r)2 − s2]}

(|D1|2 + |E1|2) + 8m5
Λb
sv2{−8mΛb

s
√
rRe(D∗

2E2)

+4(1− r + s)
√
rRe(D∗

1D2 + E∗
1E2)− 4(1− r − s)

Re(D∗
1E2 +D∗

2E1) +mΛb
[(1− r)2 − s2]

(|D2|2 + |E2|2)}, (26)

and

T2(s) = −8m4
Λb
v2l λ(|A1|2 + |B1|2 + |C1|2 + |D1|2)

+8m6
Λb
sv2l λ(|A2|2 + |B2|2 + |C2|2 + |D2|2).

(27)

ω = (m2
Λb

+m2
Λ − q2)/2mΛb

mΛ, so ω ranges from 1

to (m2
Λ +m2

Λb
− 4m2

l )/2mΛmΛb
. The differential decay

rate expressed in terms of ω has the following form,

dΓ

d(2mΛmΛb
ω)

=
G2

Fα
2mΛb

8192π5
|VtbV ∗

ts|2vl
√

λ(1, r, s)[T0(s)

+
1

3
T2(s)]. (28)

In our numerical calculations, we use the value of the

CKM matrix elements |VtbV ∗
ts| = 0.041 and the Wilson

coefficients at µ = mb, C
eff
7 = −0.313, Ceff

9 = 4.334

and C10 = −4.669 [52,53,50]. As mentioned before,

letting κ range from 0.02 GeV to 0.08 GeV and mD

from 0.7 MeV to 0.8 MeV, we have obtained numerical
results of the form factors g(t)i, g

T (tT )i (i = 1, 2, 3).

Using the lifetime of the Λb baryon, (1.451± 0.013)×
10−12s [51], and integrating the differential branching

ratio (28) over ω from 1 to (m2
Λ+m

2
Λb

−4m2
l )/2mΛmΛb

,

we obtain the ranges of the branching ratios, which are
listed in Table I.

In Table I, we also present the values of the branch-

ing ratios obtained in HQET [54] and the light-cone

QCD sum rules [18]. It can be seen from the Table I
that, as is excepted, the branching ratios decrease when

l goes from the e to τ [50]. We can also see that our re-

sult on the branching ratio for Λb → Λµ+µ− is about

1/4 of that predicted by HQET and about 1/6 of that

given by light-cone QCD sum rules. Our result is consis-
tent with the experimental data and the other two are

not. Since 1010∼1011 ΛbΛ̄b pairs are expected to be pro-

duced per year at LHCb, the results presented in Table

I indicate that the detection possibility of Λb → Λl+l−

(l = e, µ, τ) is quite high [18].

Letting κ and mD vary in their regions we obtain

the area of the differential branching ratio for Λb →

Λµ+µ−, which is shown in Fig 5 along with recent ex-

perimental results from LHCb [9]. The agreement of our

results with the experimental data is clear except when

the square of the momentum transfer is bigger than 15

GeV2. So there is still room for possible new physics.
We also compared our result with that of the first Lat-

tice QCD simulation [18,55] and found that they are

consistent with each other. Predictions for Λb → Λl+l−

when l = e, τ are shown in Fig. 6 and Fig. 7, respec-
tively, which will be compared with the forthcoming

experimental data.

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

q2(GeV 2)

d
B

(Λ
b
→

Λ
µ

+
µ
−

)/
d
q2

(1
0
−

7
G

eV
−

2
)

Fig. 5 The differential branching ratio for Λb → Λµ+µ−

obtained in our model. The upper (lower) curved solid line
corresponds to the upper (lower) boundary of the differential
branching ratio as mD and κ vary in their ranges. The ex-
perimental data are taken from Ref. [11], with the error bars
including systematic and statistical uncertainties.

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

q2(GeV )

d
B

(Λ
b
→

Λ
e+

e−
)/

d
q2

(1
0
−

7
G

eV
−

2
)

Fig. 6 The differential branching ratio for Λb → Λe+e−

obtained in our model. The upper (lower) curved solid line
corresponds to the upper (lower) boundary of the differential
branching ratio. The uncertainties of the boundaries come
from the ranges of mD and κ.
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Table 1 Values of the branching ratios for Λb → Λl+l− in our model and the values from the light-cone QCD sum rules and
HQET for different leptons

present work HQET [54] light-cone QCD sum rules[18] Exp. [51]

Br(Λb → Λe+e−) (1.21 ∼ 2.32) × 10−6 (2.23 ∼ 3.34) × 10−6 (4.6 ± 1.6) × 10−6

Br(Λb → Λµ+µ−) (0.53 ∼ 0.89) × 10−6 (2.08 ∼ 3.19) × 10−6 (4.0 ± 1.2) × 10−6 (1.08 ± 0.28) × 10−6

Br(Λb → Λτ+τ−) (0.037 ∼ 0.083) × 10−6 (0.179 ∼ 0.276) × 10−6 (0.8 ± 0.3) × 10−6

13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8

1

q2(GeV 2)

d
B

(Λ
b
→

Λ
τ

+
τ
−

)/
d
q2

(1
0
−

7
G

eV
−

2
)

Fig. 7 The differential branching ratio for Λb → Λτ+τ−

obtained in our model. The upper (lower) curved solid line
corresponds to the upper (lower) boundary of the differential
branching ratio. The uncertainties of the boundaries come
from the ranges of mD and κ.

IV. THE DECAY Λb → plν̄

At the quark level, the decay Λb → plν̄ is governed by

the tree-level b → u transition. The effective Hamilto-

nian responsible for this transition at the quark level

has the form

H(Λb → plν̄) =
Gf√
2
Vubūγµ(1 − γ5)bl̄γ

µ(1 − γ5)ν. (29)

To calculate the amplitude, we need to sandwich the

above Hamiltonian between the initial and final states
and compute the matrix element 〈p|ūγµ(1 − γ5)b|Λb〉.
As discussed in Sect. I, we have obtained the six form

factors for this decay amplitude in our previous work

[27].

In the next step, we calculate the total decay rate

of Λb → plν̄ in the whole physical region,

m2
l ≤ q2 ≤ (mΛb

−mp)
2.

The range of ω for this decay is

[1, (m2
Λb

+m2
Λ −m2

l )/(2mΛb
mΛ)]

The decay width is given by the following expression:

Γ (Λb → plν̄) =
G2

f

384π3m3
Λb

|Vub|2
∫ ∆2

m2
l

dq2(1−m2
l /q

2)2

×
√

(Σ2 − q2)(∆2 − q2)N(q2), (30)

where

N( q2) = g21q
2(∆2(4q2 −m2

l ) + 2Σ2∆2(1 + 2m2
l /q

2)

−(Σ2 + 2q2)(2q2 +m2
l )) + g22(q

2)(∆2 − q2)

(2Σ2 + q2)× (2q2 +m2
l ) + 3M2

Λb
g23(q

2)m2
l (Σ

2

−q2)q2 + 6g1(q
2)g2(q

2)(∆2 − q2)(2q2 +m2
l )Σ

−6g1(q
2)g3q

2m2
l (Σ

2 − q2)∆+ t21(q
2)(Σ2(4q2 −m2

l )

+2Σ2∆2(1 + 2m2
l )/q

2 − (∆2 + 2q2)(2q2 +m2
l ))

+t22(q
2)(Σ2 − q2)(2∆2 + q2)(2q2 +m2

l )

+3t23(q
2)m2

l (∆
2 − q2)q2 − 6t1(q

2)t2(q
2)(Σ2 − q2)

(2q2 +m2
l )∆+ 6t1(q

2)g3 ∗ (q2)m2
l (∆

2 − q2)Σ, (31)

and ∆ = mΛb
−mp, Σ = mΛb

+mp. The numerical
results are listed in Table II, together with theoretical

results from other models.

The four results of Ref. [56] in each line in the table

refer to those from QCD sum rules, lattice QCD, QCD
sum rules in the heavy quark limit, and lattice QCD in

the heavy quark limit in order. The decay rates were

calculated in the covariant quark model [57], SU(3)

symmetry quark model [58] and HONR and HOSR con-

stituent quark models (HONR and HOSR refer to har-
monic oscillator nonrelativistic and harmonic oscillator

semirelativistic constituent quark models, respectively)

[59]. We compare our results for the rates [in the units of

|Vub|2 ps−1] with the predictions of other phenomeno-
logical methods. From the table, it is clear that our

results are of the same order as those of lattice QCD

in the heavy quark limit [56] and those from Refs. [58-

59]. However, our results disagree (up to two orders of

magnitude) with those of Ref. [57] and those obtained
from QCD sum rules, lattice QCD, and QCD sum rules

in the heavy quark limit [56].

V. SUMMARY AND DISCUSSION

Theoretical studies of the rare baryon decay of Λb →
Λl+l− require knowledge of the hadronic matrix ele-
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Table 2 Values of the decay rates (in units |Vub|2 ps−1) of the transitions Λb → plν̄ and comparision with other methods

present work Other models

Λb → pµ−ν̄µ 3.12 ∼ 7.06 250 ± 85[56];235± 85[56];477 ± 175[56]; 3.84 ± 1.25[56]; 13.3[57]; 6.48[58];4.55[59];7.55[59];
Λb → pe−ν̄e 2.09 ∼ 7.40 6.48[58];4.55[59];7.55[59]; 13.3[57]; 250 ± 85[56]; 235 ± 85[56]; 478 ± 175[56]; 3.76 ± 1.20[56];
Λb → pτ−ν̄τ 1.35 ∼ 4.10 4.01[59]; 6.55[59]; 312 ± 105[56]; 208 ± 70[56]; 646 ± 215[56]; 1.93 ± 0.70[56]; 9.6[57];

ment 〈Λ|s̄Γ b|Λb〉 which involves nonperturbative QCD

effects. At the leading order in HQET, this matrix el-
ement is described by two independent form factors,

which are determinated by the wave functions of the ini-

tial and final baryons. We calculate these two form fac-

tors in the BS equation approach in the quark-diquark
model. Consequently, we obtain all the twelve form fac-

tors resposible for the decay Λb → Λl+l−, which de-

pend on the two parameters, mD and κ, in our model.

Then, we obtain the total and the differential branch-

ing ratios of the decay Λb → Λl+l−. We also compare
our results with those of other approaches and the ex-

perimental data from LHC. We find that our result on

the total branching ratio of Λb → Λµ+µ− is consistent

with the experimental data but those of the light-cone
QCD sum rules and HQET methods are not. We also

obtain the area of the differential branching ratio for

Λb → Λµ+µ−, which is consistent with those of the

first lattice QCD simulation and with the experimental

data except when the square of momentum transfer is
bigger than 15 GeV2. This indicates there is still room

for possible new physics effects. Furthermore, we give

the decay rates of Λb → plν̄. We find that our values

are the same order as those of Refs. [58-59] and those
of lattice QCD in the heavy quark limit in each line

in Table II [56], but different from those obtained from

QCD sum rules, lattice QCD, and QCD sum rules in

the heavy quark limit by up to two orders of magnitudes

[56]. The decay Λb → plν̄ will likely yield the first de-
termination of the CKM matrix elment |Vub| from Λb

decays at LHC. Our results depend on two parameters

in our model, mD and κ, which vary in some ranges.

This lead to some uncertainties in our results. All our
predictions will be tested in the future experiments.
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