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The nucleon thermal width due to pion-baryon loops and its contribution in Shear

viscosity
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In the real-time thermal field theory, the standard expression of shear viscosity for the nucleonic
constituents is derived from the two point function of nucleonic viscous stress tensors at finite
temperature and density. The finite thermal width or Landau damping is traditionally included in
the nucleon propagators. This thermal width is calculated from the in-medium self-energy of nucleon
for different possible pion-baryon loops. The dynamical part of nucleon-pion-baryon interactions are
taken care by the effective Lagrangian densities of standard hadronic model. The shear viscosity to
entropy density ratio of nucleonic component decreases with the temperature and increases with the
nucleon chemical potential. However, adding the contribution of pionic component, total viscosity
to entropy density ratio also reduces with the nucleon chemical potential when the mixing effect
between pion and nucleon components in the mixed gas is considered. Within the hadronic domain,
viscosity to entropy density ratio of the nuclear matter is gradually reducing as temperature and
nucleon chemical potential are growing up and therefore the nuclear matter is approaching toward
the (nearly) perfect fluid nature.

I. INTRODUCTION

The recent hydrodynamical [1, 2] as well as some trans-
port studies [3, 4] have indicated about an (nearly) ideal
fluid nature of nuclear matter, which may be produced
in the experiments of heavy ion collisions (HIC) like Rel-
ativistic Heavy Ion Collider (RHIC) at BNL. The hydro-
dynamical calculations became very successful in explain-
ing the elliptical flow parameter, v2 from RHIC data [5–
7] only when they assumed a very small ratio of shear
viscosity to entropy density (η/s) for the expanding nu-
clear matter. When some recent studies [8–11] (see also
Ref. [12]) show that η/s may reach a minimum in the
vicinity of a phase transition, then some special atten-
tions are drawn to the smallness of this minimum value
with respect to its lower bound (η/s = 1

4π ), commonly
known as the KSS bound [13]. In this context, the tem-
perature (T ) dependence of η/s is taken into account in
some recent hydrodynamical calculations [14–17] instead
of its constant value during the entire evolution. Niemi
et al. [14] have interestingly observed that the v2(pT ) of
RHIC data is highly sensitive to the temperature depen-
dent η/s in hadronic matter and almost independent of
the viscosity in QGP phase. This work gives an addi-
tional boost to the microscopic calculations of η/s of the
hadronic matter in the recent years [18–34], though his-
torically these investigations are slightly old [35–40].

Except a few [24, 30–32], most of the microscopic cal-
culations are done in zero baryon or nucleon chemical po-
tential (µN = 0). Along with the T dependence of η or
η/s, their dependence on the baryon chemical potential
should also be understood in view of the future experi-
ments such as FAIR. In the work of Itakura et al. [24]
and Denicol et al. [31], we notice that the η/s is reduced
at finite baryon chemical potential, whereas Gorenstein
et al. [30] observed an increasing nature of η/s with µN .
Itakura et al. have obtained η by solving the relativistic

quantum Boltzmann equation, where phenomenological
amplitudes of hadrons are used in the collision terms.
Denicol et al. have calculated the η at finite T and µN

by applying Chapman-Enskog theory in Hadron Reso-
nance Gas (HRG) model, whereas Gorenstein et al. have
taken a simplified ansatz of η to estimate η/s in the van
der Waals excluded volume HRG model. Similar to the
ansatz of η(T ) taken by Gorenstein et al., the η itself
increases with increasing temperature in Ref. [24], but
their η/s are exhibiting completely opposite nature of
T dependence. Therefore, the behavior of the η/s may
largely be influenced by the T dependence of entropy
density s.

Motivating by these delicate issues of shear viscosity at
finite µN , the present manuscript is concentrated on the
matter with nucleon degrees of freedom at finite T and
µN . The nucleons in the medium can slightly become
off-equilibrium because of their thermal width or Lan-
dau damping, which can be originated from the nucleon
thermal fluctuations into different baryons and pion. The
inverse of nucleon thermal width measures the relaxation
time of nucleon in the matter from which one can esti-
mate its corresponding shear viscosity contribution.

In the next section, the one-loop expression of η for
nucleon degrees of freedom is derived from the Kubo re-
lation, where a finite thermal width is traditionally in-
cluded in the nucleon propagators. This standard ex-
pression of η can also be deduced from relaxation time
approximation of kinematic theory approach. In the real-
time thermal field theory, the nucleon thermal width from
the different pion-baryon loops are calculated in Sec. 3,
where their interactions are determined from the effec-
tive hadronic model. In Sec. 4, the numerical results are
discussed followed by summary and conclusions in Sec. 5.

http://arxiv.org/abs/1503.06927v1
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II. KUBO RELATION FOR SHEAR VISCOSITY

OF NUCLEAR MATTER

From the simple derivation of Kubo formula [41, 42],
let us start with the expression of shear viscosity for nu-
cleonic constituents in momentum space [26, 46],

ηN =
1

20
lim

q0,~q→0

Aη(q0, ~q)

q0
, (1)

where

Aη(q0, ~q) =

∫
d4xeiq·x〈[πµν(x), πµν (0)]〉β (2)

is the spectral representation of two point function for
nucleonic viscous-stress tensor, πµν and

〈Ô〉β = Tr
e−βHÔ

Z
with Z = Tre−βH (3)

is denoting the thermodynamical ensemble average. The
energy momentum tensor of free nucleon is

Tρσ = −gρσL+
∂L

∂(∂ρψ)
∂σψ

= −gρσL+ iψγρ∂σψ , (4)

and hence the viscous stress tensor will be

πµν = tρσµνTρσ

= tρσµν iψγρ∂σψ ( since tρσµνgρσ = 0 ) , (5)

where

tρσµν = ∆ρ
µ∆

σ
ν − 1

3
∆µν∆

ρσ , ∆µν = gµν − uµuν . (6)

In real-time formalism of thermal field theory, the ensem-
ble average of any two point function always becomes a
2 × 2 matrix structure. Hence, for viscous-stress tensor,
the matrix structure of two point function becomes

Πab(q) = i

∫
d4xeiqx〈Tcπµν(x)πµν (0)〉abβ , (7)

where the superscripts a, b(a, b = 1, 2) denote the thermal
indices of the matrix and Tc denotes time ordering with
respect to a symmetrical contour [43, 44] in the complex
time plane.
The matrix can be diagonalized in terms of a single

analytic function, which can also be related with the re-
tarded two point function of viscous-stress tensor. The
retarded function ΠR(q), diagonal element Π(q) and the
spectral function Aη(q) are simply related to any one of
the components of Πab(q). Their relations with 11 com-
ponent is given below

Aη(q) = 2ImΠR(q) = 2ǫ(q0)ImΠ(q)

= 2tanh(
βq0
2

)ImΠ11(q) . (8)

Hence, Eq. (1) can broadly be redefined as

ηN =
1

10
lim

q0,~q→0

ImΠR(q0, ~q)

q0
=

1

10
lim

q0,~q→0

ǫ(q0)ImΠ(q0, ~q)

q0

=
1

10
lim

q0,~q→0

tanh(βq0/2)ImΠ11(q0, ~q)

q0
. (9)

Using (5) in the 11 component of (7) and then applying
the Wick’s contraction technique, we have

Π11(q) = tρσαβt
αβ
µν i

∫
d4xeiqx〈Tψ (x)γρ∂σψ

︷︸︸︷
(x)ψ(0)γµ∂νψ︸ ︷︷ ︸(0)〉β

= i

∫
d4k

(2π)4
N(q, k)D11(k)D11(p = q + k) , (10)

where

N(q, k) = −IN tρσµνTr[γµ(q+k)ν(q/+k/+mN )γρkσ(k/+mN )] .
(11)

This self-energy function, Π11(q) for NN loop can dia-
grammatically be represented by Fig. 1(A). In the co-

moving frame, i.e., for u = (1,~0), the N(q, k) becomes

N(q, k) = −IN
[
32

3
{k0(q0 + k0)}{~k · (~q + ~k)}

−4

[
{~k · (~q + ~k)}2 +

~k2(~q + ~k)2

3

]]
.(12)

In the above equations, IN = 2 is the isospin degeneracy
of nucleon.
In Eq. (10), D11 is scalar part of 11 component of the

nucleon propagator at finite temperature and density. Its
form is

D11(k) =
−1

k2 −m2
N + iη

− 2πiFk(k0)δ(k
2 −m2

N )

with Fk(k0) = n+
k θ(k0) + n−

k θ(−k0)

= − 1

2ωN
k

(
1− n+

k

k0 − ωN
k + iη

+
n+
k

k0 − ωN
k − iη

− 1− n−
k

k0 + ωN
k − iη

− n−
k

k0 + ωN
k + iη

), (13)

where n±
k (ω

N
k ) = 1/{eβ(ωN

k ∓µN ) + 1} is Fermi-Dirac dis-

tribution function for energy ωN
k =

√
~k2 +m2

N . Here

the ± signs in the superscript of nk stand for nucleon
and anti-nucleon respectively. Among the four terms
in Eq. (13), the first and the second terms are associ-
ated with the nucleon propagation above the Fermi sea
and the propagation of its hole in the Fermi sea respec-
tively, while the third and fourth terms represent the
corresponding situations for anti-nucleon. The full rela-
tivistic nucleon propagator, thus, treats the particle and
anti-particle on an equal footing and all possible singu-
larities (nucleon, hole of the nucleon, anti-nucleon and
hole of the anti-nucleon) are automatically included.
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FIG. 1: Diagrammatic representation of NN loop is shown
in (A), where double lines stand for effective N propagators,
which contain their thermal widths Γ. The diagrammatic
representation of nucleon self-energy for πB loop is shown in
(B) from where Γ can be determined.

After doing the k0 integration of Eq. (10) and then
using it in Eq. (9), we have

ηN =
1

10
lim

q0,~q→0

∫
d3k

(2π)3
(−πN)

4ωN
k ω

N
p[

{−n−
k (ω

N
k ) + n−

p (−q0 + ωN
k )}

q0
δ(q0 − ωN

k + ωN
p )

+
{n+

k (ω
N
k )− n+

p (q0 + ωN
k )}

q0
δ(q0 + ωN

k − ωN
p ) + ..

]
,

(14)

where N = N(k0 = ±ωN
k ,
~k, q) and ωN

p =√
(~q + ~k)2 +m2

N .

The two δ-functions will be responsible for generating
the Landau cuts (−~q < q0 < ~q), where the ImΠR(q) will
be non-zero. However, there will be two more δ-functions
(not written explicitly), which are not important for the
limiting point q0, ~q → 0 since they will generate unitary
cuts (−∞ < q0 < −

√
~q2 + 4m2

N and
√
~q2 + 4m2

N < q0 <
∞).
Using the identity

− πδ(x) = Im

[
lim

ΓN→0

1

x+ iΓN

]
(15)

in Eq. (14), we have

ηN =
1

10
lim

q0,~q→0
Im

[∫
d3k

(2π)3
N

4ωN
k ω

N
p

lim
ΓN→0

{
{−n−

k (ω
N
k ) + n−

p (−q0 + ωN
k )}/q0

(q0 − ωN
k + ωN

p ) + iΓN

+
{n+

k (ω
N
k )− n+

p (q0 + ωN
k )}/q0

(q0 + ωN
k − ωN

p ) + iΓN

}]
. (16)

We will continue our further calculation for finite value
of ΓN to get a non-divergent contribution of ηN . In-
cluding thermal width ΓN for constituent particles (here
nucleons) of the medium is a very well established tech-
nique [26, 27, 45] in Kubo approach to remove the di-
vergence of ηN as well as to incorporate the interaction

scenario, which is very essential for a dissipative system.
The interaction scenario is coming into the picture by
transforming the delta functions to the spectral functions
with finite thermal width. The thermal width (or col-
lision rate) ΓN of the constituent particles reciprocally
measures the shear viscosity coefficient, which is approx-
imately equivalent to the quasi particle description.
In the limiting case of q0, ~q → 0, we get ωN

p → ωN
k and

therefore Eq. (16) is transformed to

ηN =
1

10

∫
d3k

(2π)3
(−N0)

4ωN
k

2
ΓN

[I2 + I3] , (17)

where

N0 = lim
q0,~q→0

N(k0 = ±ωN
k ,
~k, q) (18)

and

I2,3 = lim
q0→0

{∓n∓
k (ω

N
k )± n∓

p (∓q0 + ωN
k )}

q0
. (19)

In the above Eq. (19), one can notice that the limiting
value of I2,3 is of the 0/0 form. Therefore, we can apply
the L’Hospital’s rule, i.e.,

I2,3 = lim
q0→0

d
dq0

{∓n∓
k (ω

N
k )± n∓

p (∓q0 + ωN
k )}

d
dq0

{q0}
= β[n∓

k (1− n∓
k )] , (20)

since

d

dq0
{±n∓

p (ωq = ∓q0 + ωN
k )} = ±

−β dωq

dq0
eβ(ωq±µN )

{eβ(ωq±µN ) + 1}2

lim
q0→0

d

dq0
{±n∓

p (ωq = ∓q0 + ωN
k )} = ± −(∓)βeβ(ω

N
k ±µN )

{eβ(ωN
k
±µN ) + 1}2

= β[n∓
k (1− n∓

k )] . (21)

Again, in the limiting value of q0, ~q → 0, Eq. (12) can be
simplified to

N0 = −IN
16~k4

3
. (22)

Hence, using the above results, the Eq. (17) becomes

ηN =
8βIN
15

∫
d3k

(2π)3

~k4

4ωN
k

2
ΓN

[
n−
k (1− n−

k ) + n+
k (1− n+

k )
]

=
βIN
15π2

∫ ~k6d~k

ωN
k

2
ΓN

[n−
k (1− n−

k ) + n+
k (1− n+

k )] . (23)

This is the one-loop expression of shear viscosity for the
matter with nucleon degrees of freedom in the Kubo ap-
proach. Though there are possibility of infinite number of
ladder-type diagrams, which are supposed to be of same
order of magnitude (O(1/ΓN )) like the one-loop, they
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Baryons JP

B IB Γtot ΓB→Nπ (B.R.) f/mπ

∆(1232) 3
2

+
3/2 0.117 0.117 (100%) 15.7

N∗(1440) 1
2

+
1/2 0.300 0.195 (65%) 2.5

N∗(1520) 3
2

−

1/2 0.115 0.069 (60%) 11.6

N∗(1535) 1
2

−

1/2 0.150 0.068 (45%) 1.14

∆∗(1600) 3
2

+
3/2 0.320 0.054 (17%) 3.4

∆∗(1620) 1
2

−

3/2 0.140 0.035 (25%) 1.22

N∗(1650) 1
2

−

1/2 0.150 0.105 (70%) 1.14

∆∗(1700) 3
2

−

3/2 0.300 0.045 (15%) 9.5

N∗(1700) 3
2

−

1/2 0.100 0.012 (12%) 2.8

N∗(1710) 1
2

+
1/2 0.100 0.012 (12%) 0.35

N∗(1720) 3
2

+
1/2 0.250 0.028 (11%) 1.18

TABLE I: From the left to right columns, the table contain the
baryons, their spin-parity quantum numbers JP

B , isospin IB,
total decay width Γtot, decay width in Nπ channels ΓB→Nπ or
ΓB(mB) in Eq. (32) (brackets displaying its Branching Ratio)
and at the last coupling constants f/mπ .

will be highly suppressed [46]. As we increase the number
of loops, the number of extra thermal distribution func-
tions will also appear in the shear viscosity expression
and hence their numerical suppression will successively
grow. On this basis, the one-loop results may be consid-
ered as a leading order results. One can derive exactly
same expression from relaxation time approximation in
kinetic theory approach.

III. CALCULATION OF NUCLEON THERMAL

WIDTH

Now, our next aim is to calculate the thermal width of
nucleon ΓN , which can be estimated from the retarded
component of nucleon self-energy (ΣR) at finite temper-
ature and density. Their relation is given by

ΓN (~k, T, µN) = −ImΣR(k0 = ωN
k ,
~k, T, µN) . (24)

During the propagation in the hot and dense nuclear mat-
ter, nucleon may pass through different πB loops, where

B stand for different higher mass baryons including nu-
cleon itself. In this work, all possible 4-star baryon res-
onances with spin 1/2 and 3/2 are considered. These
are N(980), ∆(1232), N∗(1440), N∗(1520), N∗(1535),
∆∗(1600), ∆∗(1620), N∗(1650), ∆∗(1700), N∗(1700),
N∗(1710) and N∗(1720), where masses (in MeV) of the
baryons are given inside the brackets. The nucleon self-
energy for πB loop is shown in diagram 1(B) and its 11
component can be expressed as

Σ11(k, T, µN) = −i
∫

d4l

(2π)4
L(k, l)D11(l,mπ, T )

D11(u = k − l,mB, T, µN) , (25)

whereD11(l,mπ, T ), D11(u = k−l,mB, T, µN) are scalar
part of pion and baryon propagators at finite temperature
and density. The L(k, l) contains vertices and numerator
parts of the propagators. The chemical potential of all
baryons are assumed to be the same as nucleon chemical
potential µN . Similar to Eq. (8), this 11 component is
also related with retarded component as

ImΣR(k) = coth

{
β(k0 − µN )

2

}
ImΣ11(k) . (26)

Performing the l0 integration in (25) and then using the
relation (26), we get the imaginary part of retarded self-
energy,

ImΣR(k) = π

∫
d3l

(2π)3
1

4ωπ
l ω

B
u

[L(l0 = ωπ
l ,
~l, k)

[{1 + nl(ω
π
l )− n+

u (k0 − ωπ
l )}δ(k0 − ωπ

l − ωB
u )

+{−nl(ω
π
l )− n−

u (−k0 + ωπ
l )}δ(k0 − ωπ

l + ωB
u )]

+L(l0 = −ωπ
l ,
~l, k)[{nl(ω

π
l )

+n+
u (k0 + ωπ

l )}δ(k0 + ωπ
l − ωB

u ) + {−1

−nl(ω
π
l ) + n−

u (−k0 − ωπ
l )}δ(k0 + ωπ

l + ωB
u )]] ,

(27)

where ωB
u =

√
(~k −~l)2 +m2

B , n
±
u and nl are respectively

Fermi-Dirac and Bose-Einstein distribution functions.
The regions of different branch cuts in k0-axis are (−∞
to −

√
~k2 + (mπ +mB)2 ) for unitary cut in negative k0-

axis, (−
√
~k2 + (mB −mπ)2 to

√
~k2 + (mB −mπ)2 ) for

Landau cut and (

√
~k2 + (mπ +mB)2 to ∞ ) for unitary

cut in positive k0-axis. These are representing the dif-
ferent kinematic regions where the imaginary part of the
nucleon self-energy becomes non-zero because of the dif-
ferent δ functions in Eq. (27). The ΓN for all πB loops
(except the πN) are coming from the Landau cut contri-
bution associated with the third term of Eq. (27), which
can be simplified as

ΓN =
1

16π~k

∫ ω̃−

ω̃+

dω̃{nl(ω̃) + n+
u (ω

N
k + ω̃)}

L(l0 = −ω̃,~l =
√
ω̃2 −m2

π, k0 = ωN
k ,
~k) ,(28)
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where nl(ω̃) = 1/{eβω̃ − 1}, n+
u (ω

N
k + ω̃) =

1/{eβ(ω̃+ωN
k −µN ) + 1}, ω̃± = R2

2m2
N

(−ωN
k ± ~kW ) with

W =

√
1− 4m2

πm
2
N

R4 and R2 = m2
N +m2

π −m2
B.

The effective Lagrangian densities for BNπ interac-
tions are given below [47]

L =
f

mπ
ψBγ

µ

{
iγ5

11

}
ψN∂µπ + h.c. for JP

B =
1

2

±

,

L =
f

mπ
ψ
µ

B

{
11

iγ5

}
ψN∂µπ + h.c. for JP

B =
3

2

±

, (29)

where coupling constants f/mπ for different baryons have
been fixed from their experimental vacuum widths in Nπ
channel. With the help of the above Lagrangian densi-
ties, one can easily find

L(k, l) = −
(
f

mπ

)2

l/(k/− l/− PmB)l/ for JP
B =

1

2

±

,

L(k, l) = −
(
f

mπ

)2

(k/ − l/+ PmB)lµlν

{
−gµν + 1

3
γµγν

+
2

3m2
B

(k − l)µ(k − l)ν

+
1

3mB
(γµ(k − l)ν − (k − l)µγν)

}
for JP

B =
3

2

±

.

(30)

For simplification the coefficients of γ0 and 11 are taken
as in Ref. [48] and their addition gives

L(k, l) = −
(
f

mπ

)2{(
R2

2
−m2

π

)
l0

− Pm2
πmB

}
for JP

B =
1

2

±

,

L(k, l) = −
(
f

mπ

)2
2

3m2
B

{(
R2

2
−m2

π

)2

−m2
πm

2
B

}
(k0 − l0 + PmB) for JP

B =
3

2

±

.

(31)

The isospin part of the Lagrangian densities are not writ-

ten in the Eq. (29). The isospin structure for JP
B = 1

2

±

and JP
B = 3

2

±
should be ψ~τ · ~πψ and ψ~T · ~πψ respec-

tively, where ~T is the spin 3/2 transition operator and
~τ is the Pauli operator. This issue is managed by mul-
tiplying appropriate isospin factors with the expressions
of corresponding loop diagrams. The isospin factor for
πN or πN∗ loop is IN→πN,N∗ = 3, whereas for the π∆
or π∆∗ loop, IN→π∆,∆∗ = 2.
All baryon resonances have finite vacuum width in Nπ

decay channel. The calculations of these decay widths are
very essential in the present work for two reasons. First
is to fix the coupling constants f/mπ for different BNπ

interaction Lagrangian densities and second is to include
the effect of these baryon widths (ΓB) on the nucleon
thermal width ΓN . Using the Lagrangian densities, the
vacuum decay width of baryons B for Nπ channel can
be obtained as

ΓB(mB) =
IN∗→πN

2JB + 1

(
f

mπ

)2 |~pcm|
2πmB

[2mB|~pcm|2

+m2
π(ω

N
cm − PmN )] for JP

B =
1

2

±

,

ΓB(mB) =
I∆,∆∗→πN

2JB + 1

(
f

mπ

)2 |~pcm|3
3πmB

[ωN
cm + PmN ] for JP

B =
3

2

±

, (32)

where |~pcm| =

√
{m2

B
−(mN+mπ)2}{m2

B
−(mN−mπ)2}

2mB
and

ωN
cm =

√
|~pcm|2 +m2

N . The isospin factors are
IN∗→πN = 3 and I∆,∆∗→πN = 1 for the Nπ decay chan-
nels of N∗ and ∆∗ (or ∆) respectively.
Now, the ΓN in Eq. (28) can be convoluted (see e.g.

Refs. [49, 50]) as

ΓN (mB) =
1

NB

∫ mB+2ΓB(mB)

mB−2ΓB(mB)

dMBAB(MB)ΓN (MB) ,

NB =

∫ mB+2ΓB(mB)

mB−2ΓB(mB)

AB(MB) , (33)

where

AB(MB) =
1

π
Im

[
1

MB −mB + iΓB(MB)/2

]
(34)

is vacuum spectral function of baryons for their vacuum
decay width in Nπ channel. Replacing baryon mass mB

by its invariant massMB in Eq. (32), one can get the off-
mass shell expression of ΓB(M). The values of coupling
constants f/mπ, which are fixed from the experimental
values of baryon decay width in Nπ channels [51], are
shown in a Table (I).

IV. RESULTS AND DISCUSSION

Let us first take a glance at the invariant mass dis-
tribution of imaginary part of nucleon self-energy for
different πB loops. Fig. (2) shows the results for
baryons B = N(940), ∆(1232) (upper panel) and B =
∆∗(1620), N∗(1650), N∗(1720) (lower panel), whereas
Fig. (3) displays the results for baryons B = N∗(1440),
N∗(1520), ∆∗(1600) (upper panel) and B = N∗(1535),
∆∗(1700) (lower panel). The numerical strengths for
B = N∗(1700) and N∗(1710) are too low to display with
the other baryons. These results are obtained by replac-

ing ωN
k =

√
~k2 +m2

N by ωk =
√
~k2 +M2 in Eq. (28)

(dashed line) and (33) (solid line) for the fixed values of
~k = 0, µN = 0 and T = 0.150 GeV. From the sharp



6

-0.1

-0.08

-0.06

-0.04

-0.02

0Im
Σ 

(G
eV

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
M (GeV)

-0.0006

-0.0003

0

N*(1720)

∆*(1620)

N*(1650)

∆(1232)

N(940)

T=150 MeV
µN=0

k=0

FIG. 2: Imaginary part of nucleon self-energy for different
πB loops are individually shown before (dashed line) and
after (solid line) folding by corresponding baryon spectral
functions. B = N(940),∆(1232) are in upper panel whereas
B = ∆∗(1620), N∗(1650), N∗(1720) are in lower panel for

fixed values of three momentum of N (~k = 0), temperature
(T = 0) and baryon chemical potential (µN = 0).
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FIG. 3: Same as Fig. (2) for the rest of the baryons
B = N∗(1440), N∗(1520), ∆∗(1600) (upper panel) and B =
N∗(1535), ∆∗(1700) (lower panel).

ending of the dashed line, the Landau regions for differ-
ent loops are clearly visible. As an example for πN loop
the Landau region is M = 0 to mN −mπ, i.e., 0 to 0.8
GeV. Due to the folding of the baryon spectral functions,
these sharp endings are smeared towards higher value of

M . Since ΣR(M) also depends on T , µN and ~k therefore
total contribution of ΣR(M) from all the loops has been

shown in Fig. (4) for different sets of T , µN and ~k.
The nucleon thermal width ΓN is basically the con-

tribution of ImΣR at M = mN , which is marked by
dotted line. Being an on-shell quantity, ΓN is associ-
ated with the thermodynamical probability of different
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FIG. 4: Imaginary part of total self-energy for different sets of

nucleon momentum (~k), temperature (T ) and baryon chemi-
cal potential (µN).
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FIG. 5: The variation of nucleon thermal width ΓN (upper
panel) and its corresponding mean free path λN (lower panel)
with T are shown.

on-shell scattering processes instead of off-shell scatter-
ing processes as described by Weldon for the imaginary
part of self-energy in Ref. [52]. Following Weldon’s pre-
scription, forward and inverse scattering of nucleon can
be respectively described as follows. During propagation
of N , it can disappear by absorbing a thermalized π from
the medium to create a thermalized B. Again N can ap-
pear by absorbing a thermalized B from the medium as
well as by emitting a thermalized π. The nl(1−n+

u ) and
n+
u (1 +nl) are the corresponding statistical probabilities

of the forward and inverse scattering respectively [52],
because just by adding them, we will get the thermal
distribution part of Eq. (28), i.e., (nl + n+

u ).

From Eq. (28) or (33), we see that ΓN depends on
temperature T , baryon chemical potential µN and three

momentum ~k of nucleon. The upper panels of Fig. (5)
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FIG. 6: The variation of nucleon thermal width ΓN (upper
panel) and its corresponding mean free path λN (lower panel)
as a functions of baryon chemical potential µN are shown.

and (6) are, respectively, displaying the variation of ΓN

with T for different sets of (~k, µN ) and of ΓN with µN

for different set of (~k, T ). The mean free path can be

defined as λN (~k, T, µN) =
~k

ωN
k
ΓN (~k,T,µN )

and its corre-

sponding variation with T and µN are respectively shown
in the lower panels of Fig. (5) and (6). The range of
T and µN , in which λN is smaller than the dimension
of the medium (∼ 10 − 40 fm, a typical dimension of
strongly interacting matter, produced in the laboratories
of HIC), plays the main role of dissipation via scattering
in the medium because the larger λ is associated with
the scenario after freeze out of the medium. From the
dashed line of Fig. (5) we see that T > 0.120 GeV (but
up to Tc ≈ 0.175 GeV) is that relevant region for baryon
free nuclear matter (µN = 0). Whereas for finite baryon
chemical potential (e.g. solid line of Fig. (5) at µN = 0.7
GeV), this relevant T region will be shifted slightly to-
ward lower temperature (in addition, Tc is also expected
to decrease with increase of µN ). Since high momentum

(~k) of constituent particles always helps them to freeze
out from the medium, the relevant T region for nucleon

with high ~k is reduced by shifting towards the high T
region. This can be understood by comparing the solid
and dotted lines in the lower panel of Fig. (5).

Using the numerical function ΓN (~k, T, µN ) in Eq. (23),
we get ηN as a function of T and µN , which are shown in
the upper panels of Fig. (7) and (8). Here we see ηN is
monotonically increasing with T and µN both. Using the
simple equilibrium expression of entropy density (sN ) for
nucleons,

sN = 4β

∫
d3~k

(2π)3

(
ωN
k +

~k2

3ωN
k

− µN

)
n+
k (ω

N
k ), (35)

the ηN/sN has been generated as a function of T and
µN . From the lower panels of Fig. (7) and (8), we see
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FIG. 7: (color on-line) The T dependence of ηN (upper panel),
sN (middle panel) and ηN/sN (lower panel) of the nucleonic
component. The straight red line denotes the KSS bound.
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FIG. 8: (color on line) The variation of ηN (upper panel),
sN (middle panel) and ηN/sN (lower panel) of the nucleonic
component with µN .
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FIG. 11: Corresponding results of Fig. (10) against the µN

axis with two different temperatures.

that ηN/sN can be reduced by increasing T as well as by
decreasing µN .
In the left and right panels of Fig. (9), the contribu-

tions of different loops (dominating loops only) are indi-
vidually shown in ηN vs T and ηN vs µN graphs respec-
tively. The π∆ loop plays a leading role to generate the
typical values (0.0001 − 0.01 GeV3) of ηN for strongly
interacting matter because the major part of the nucleon
thermal width is coming from this loop only.
Up to now, we have calculated the contribution of shear

viscosity from nucleon thermal width, although a ma-
jor contribution comes from the thermal width of pion.
Hence, one should add the pionic contribution with nu-
cleon contribution for getting total shear viscosity of nu-
clear matter at finite temperature and density. In our

recent work [53], the shear viscosity, coming from pionic
thermal width has already been addressed. The one-loop
Kubo expression of shear viscosity and ideal expression
of entropy density for pionic components are respectively
given below,

ηπ =
β

10π2

∫
d3k~k6

Γπωπ
k
2 nk(ω

π
k ) [1 + nk(ω

π
k )] , (36)

and

sπ = 3β

∫
d3~k

(2π)3

(
ωπ
k +

~k2

3ωπ
k

)
nk(ω

π
k ) , (37)

where nk(ω
π
k ) = 1/{eβωπ

k −1} is the Bose-Einstein distri-

bution function of pion with ωπ
k = (~k2 +m2

π)
1/2, and Γπ

is the thermal width of π mesons in the medium due to
πσ and πρ fluctuations.
Now, adding that pion contribution with the nucleon,

one can simply get the total shear viscosity of nuclear
matter as

ηtot = ηπ + ηN , (38)

where ηπ and ηN do not face any mixing effect of pion

density, ρπ = 3
∫

d3k
(2π)3nk(ω

π
k ) and nucleon density, ρN =

4
∫

d3k
(2π)3n

+
k (ω

N
k ). However, viscosity of single component

gas should be different from the viscosity of that compo-
nent in a mixed gas [24, 54]. To incorporate this mixing
effect for rough estimation, we follow the approximated
relation [24, 54]

ηmix
tot = ηmix

π + ηmix
N , (39)

where

ηmix
π =

ηπ

1 +
(

ρN

ρπ

)(
σπN

σππ

)√
1+mπ/mN

2

(40)

and

ηmix
N =

ηN

1 +
(

ρπ

ρN

)(
σπN

σNN

)√
1+mN/mπ

2

. (41)

For simplicity, the cross sections of all kinds of scattering
are taken as constant with same order of magnitude (i.e.
σππ ≈ σπN ≈ σNN ). In the upper panels of Fig. (10)
and (11), the T and µN dependence of ηπ (dotted line),
ηN (dashed line) and their total ηtot (solid line and dash-
dotted line for two different values of µN and T ) are sep-
arately shown. Whereas lower panel of the figures show
their corresponding mixing effect following from Eq. (40),
(41) and (39). From the Fig. (11), one should notice that
the independent nature of ηπ(µN ) has been changed to
a decreasing function due to mixing effect. Similar qual-
itative trend has been seen in Ref. [24].
The entropy density of nucleon component from

Eq. (35), pion component from Eq. (37) and their to-
tal stot = sN + sπ are individually shown in the up-
per panels of Fig. (12) and (13) as functions of T and
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FIG. 13: (color on-line) The corresponding results of Fig. (12)
are shown with respect to µN .

µN respectively. The corresponding η/s without (middle
panel) and with (lower panel) mixing effect are shown
in Fig. (12) and (13) as a function of T and µN respec-
tively. The decreasing nature of total η/s(T ) qualita-
tively remains the same after incorporating the mixing
effect whereas an increasing function of the total η/s(µN )
transforms to a decreasing function due to this mixing ef-
fect. Comparing our results with the results of Itakura
et al. [24], where η/s(µN ) also reduces with µN , the mix-
ing effect appears to be very important. However, the
total η/s(µN ) in mixing scenario becomes an increasing

function beyond µN ≈ 0.5 GeV because the increasing
rate of ηmix

N (µN ) dominates over the decreasing rate of
ηmix
π (µN ) in that region. Using the effective hadronic
Lagrangian, the conclusion of our results should be con-
centrated within regions of 0.100 GeV < T < 0.160 GeV
and 0 < µN < 0.500 GeV.

V. SUMMARY AND CONCLUSION

Owing to the Kubo relation, the shear viscosity can
be expressed in terms of two point function of the vis-
cous stress tensors at finite temperature. By using the
real-time thermal field theoretical method, this two point
function has been represented as NN loop diagram when
the nucleons are considered as constituent particles of the
medium. A finite nucleon thermal width ΓN has been
traditionally included in the nucleon propagators of the
NN loop for getting a non-divergent shear viscosity ηN .
This nucleon thermal width is obtained from the one-loop
self-energy of nucleon at finite temperature and density.
Different possible pion baryon loops are accounted to cal-
culate the total ΓN , which depends on the three momen-

tum of nucleons (~k) as well as the medium parameters

T and µN . Using the numerical function ΓN(~k, T, µN),
ηN and ηN/sN are numerically generated as functions of
T and µN . Adding the pionic contribution taken from
Ref. [53] with the numerical values of the nucleonic com-
ponent, we have obtained the total shear viscosity, where
a gross mixing effect of two component system has been
implemented. Along the temperature axis, the shear vis-
cosity of both pion and nucleon components appear as
increasing function, whereas along the µN axis shear vis-
cosity of pion component changes from its constant be-
havior to a decreasing function due to presence of mixing
effect. The total shear viscosity to entropy density ratio
(ηmix

tot /stot) for the pion-nucleon mixed gas reduces with
increasing T as well as µN and quantitatively becomes
very close to the KSS bound. This behavior indicates
that ηmix

tot /stot tends to reach its minimum value near the
transition temperature at vanishing as well as finite value
of µN . According to these results, the finite baryon chem-
ical potential helps the nuclear matter to come closer to
its (nearly) perfect fluid nature.

Acknowledgment : The work is financially sup-
ported by Fundacao de Amparo a Pesquisa do Estado de
Sao Paulo, FAPESP (Brazilian agencies) under Contract
No. 2012/16766-0. I am very grateful to Prof. Gastao
Krein for his academic and non-academic support during
my postdoctoral period in Brazil. I would also like to
thank Abhishek Mishra, Sandeep Gautam and Supriya
Mondal for their useful help while writings this article.

[1] P. Romatschke and U. Romatschke, Phys. Rev. Lett. 99,
172301 (2007); M. Luzum and P. Romatschke, Phys. Rev.
C 78, 034915 (2008).

[2] H. Song and U. W. Heinz, Phys. Lett. B 658, 279 (2008);
Phys. Rev. C 78, 024902 (2008).

[3] Z. Xu, C. Greiner, and H. Stocker, Phys. Rev. Lett. 101,



10

082302 (2008); Z. Xu and C. Greiner, Phys. Rev. C 79,
014904 (2009).

[4] G. Ferini, M. Colonna, M. Di Toro, and V. Greco, Phys.
Lett. B 670, 325 (2009); V. Greco, M. Colonna, M. Di
Toro, and G. Ferini, Prog. Part. Nucl. Phys. 65, 562
(2009).

[5] A. Adare, et al. (PHENIX Collaboration), Phys. Rev.
Lett. 98 (2007) 162301;S. S. Adler et al. (PHENIX Col-
laboration), Phys. Rev. Lett. 91, 182301 (2003).

[6] J. Adams et al. (STAR Collaboration), Phys. Rev. C 72,
014904 (2005).

[7] B. B. Back et al. (PHOBOS Collaboration), Phys. Rev.
C 72, 051901(R) (2005).

[8] L. P. Csernai, J. I. Kapusta, and L. D. McLerran,
Phys. Rev. Lett. 97, 152303 (2006); J.I. Kapusta
arXiv:0809.3746 [nucl-th].

[9] P. Chakraborty and J. I. Kapusta Phys. Rev C 83,
014906 (2011).

[10] T. Hirano, M. Gyulassy Nucl. Phys. A 769 (2006) 71.
[11] P. Zhuang, J. Hufner, S. P. Klevansky, L. Neise Phys.

Rev. D 51 (1995) 3728; P. Rehberg, S. P. Klevansky, J.
Hufner, Nucl. Phys. A 608 (1996) 356.

[12] J. W. Chen, M. Huang, Y. H. Li, E. Nakano, D. L. Yang,
Phys. Lett. B 670 (2008) 18; J. W. Chen, C. T. Hsieh,
H. H. Lin, Phys. Lett. B 701 (2011) 327.

[13] P. Kovtun, D. T. Son, and O. A. Starinets, Phys. Rev.
Lett. 94, 111601 (2005).

[14] H. Niemi, G.S. Denicol, P. Huovinen, E. Molnar, D.H.
Rischke, Phys. Rev. Lett. 106 (2011) 212302.

[15] C. Shen and U. W. Heinz, Phys. Rev. C 83, 044909
(2011); H. Song and U. W. Heinz, Phys. Rev. C 81,
024905 (2010).

[16] J. R. Bhatt, H. Mishra, and V. Sreekanth, J. High Energy
Phys. 11 (2010) 106.

[17] J. Peralta-Ramos, G. Krein, Int. J. Mod. Phys. Conf. Ser.
18 (2012) 204; Phys. Rev. C 84 (2011) 044904.

[18] A. Wiranata, V. Koch, M. Prakash, X. N. Wang,
Phys.Rev. C88 (2013) 4, 044917; A. Wiranata, M.
Prakash, Phys. Rev. C 85, 054908 (2012).

[19] J. N. Hostler, J. Noronha, C. Greiner, Phys. Rev. C 86

(2012) 024913; Phys. Rev. Lett. 103, 172302 (2009).
[20] A. S. Khvorostukhin, V. D. Toneev, D.N. Voskresensky,

Phys. Atom. Nucl. 74 (2011) 650; Nucl.Phys. A 845

(2010) 106; Nucl.Phys. A915 (2013) 158.
[21] M. Buballa, K. Heckmann, J. Wambach, Prog. Part.

Nucl. Phys. 67 (2012) 348.
[22] A. Dobado and S.N. Santalla, Phys. Rev. D 65, 096011

(2002); A. Dobado and F. J. Llanes-Estrada, Phys. Rev.
D 69, 116004 (2004).

[23] J. W. Chen, Y. H. Li, Y. F. Liu, and E. Nakano,
Phys. Rev. D 76, 114011 (2007); E. Nakano,
arXiv:hep-ph/0612255.

[24] K. Itakura, O. Morimatsu, and H. Otomo, Phys. Rev. D
77, 014014 (2008).

[25] A. Muronga, Phys. Rev. C 69, 044901 (2004).

[26] D. Fernandez-Fraile and A. Gomez Nicola, Eur. Phys. J.
C 62, 37 (2009); Eur. Phys. J. A 31, 848 (2007); Int. J.
Mod. Phys. E 16 (2007) 3010.

[27] R. Lang, N. Kaiser and W. Weise, Eur. Phys. J. A 48,
109 (2012); R. Lang, W. Weise, Eur. Phys. J. A 50, 63
(2014)

[28] S. Mitra, S. Ghosh, and S. Sarkar Phys. Rev. C 85,
064917 (2012).

[29] S. Pal, Phys. Lett. B 684 (2010) 211.
[30] M. I. Gorenstein, M. Hauer, O. N. Moroz, Phys. Rev. C

77, 024911 (2008).
[31] G.S. Denicol, C. Gale, S. Jeon, J. Noronha, Phys. Rev.

C 88 (2013) 064901.
[32] N. Demir and S. A. Bass, Phys. Rev. Lett. 102, 172302

(2009).
[33] D. Q. Fang, Y. G. Ma, C. L. Zhou, Phys. Rev. C 89,

047601 (2014);
[34] N. Sadooghi, F. Taghinavaz, Phys. Rev. D 89, 125005

(2014).
[35] S. Gavin, Nucl. Phys. A 435 (1985) 826
[36] M. Prakash, M. Prakash, R. Venugopalan, and G. Welke,

Phys. Rep. 227, 321 (1993).
[37] J.L. Anderson, H.R. Witting, Physica 74 (1973) 466;

Physica 74 (1973) 489.
[38] V.M. Galitsky, Yu.B. Ivanov, V.A. Khangulian, Sov. J.

Nucl. Phys. 30 (1979) 401.
[39] P. Danielewicz, Phys. Lett. B 146 (1984) 168.
[40] R. Hakim, L. Mornas, P. Peter, H.D. Sivak, Phys. Rev.

D 46 (1992) 4603; R. Hakim, L. Mornas, Phys. Rev. C
47 (1993) 2846.

[41] D. N. Zubarev Non-equilibrium statistical thermodynam-

ics (New York, Consultants Bureau, 1974).
[42] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
[43] A. J. Niemi and G. W. Semenoff, Annals of Physics 152,

105 (1984).
[44] S. Mallik, S. Sarkar Eur.Phys.J. C 61 (2009) 489.
[45] A. Hosoya, M. Sakagami, and M. Takao, Ann. Phys. 154,

229 (1984).
[46] S. Ghosh, Int. J. Mod. Phys. A 29 (2014) 1450054.
[47] M. Post, S. Leupold, U. Mosel, Nucl. Phys. A 741, 81

(2004).
[48] S. Ghosh, S. Sarkar, S. Mallik, Phys. Rev. C 82 (2010)

045202.
[49] S. Ghosh and S. Sarkar, Nucl. Phys. A 870871 (2011)

94111.
[50] S. Ghosh and S. Sarkar, Eur. Phys. J. A 49, 97 (2013).
[51] J. Beringer et al. (Particle Data Group) Phys. Rev. D

86, 010001 (2012).
[52] H.A. Weldon, Phys. Rev. D 28, 2007 (1983).
[53] S. Ghosh, G. Krein, S. Sarkar, Phys. Rev. C 89 (2014)

045201.
[54] E. H. Kennard, Kinetic Theory of Gases, with an In-

troduction to Statistical Mechanics (McGraw-Hill, New
York, 1938).

http://arxiv.org/abs/0809.3746
http://arxiv.org/abs/hep-ph/0612255

