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Abstract

We generalize the derivation of viscous anisotropic hydrodynamics from kinetic theory to allow for

non-zero particle masses. The macroscopic theory is obtained by taking moments of the Boltzmann

equation after expanding the distribution function around a spheroidally deformed local momentum

distribution whose form has been generalized by the addition of a scalar field that accounts non-

perturbatively (i.e. already at leading order) for bulk viscous effects. Hydrodynamic equations

for the parameters of the leading-order distribution function and for the residual (next-to-leading

order) dissipative flows are obtained from the three lowest moments of the Boltzmann equation.

The approach is tested for a system undergoing (0+1)-dimensional boost-invariant expansion for

which the exact solution of the Boltzmann equation in relaxation time approximation is known.

Nonconformal viscous anisotropic hydrodynamics is shown to approximate this exact solution more

accurately than any other known hydrodynamic approximation.

PACS numbers: 12.38.Mh, 25.75.-q, 24.10.Nz, 52.27.Ny, 51.10.+y
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I. INTRODUCTION

Relativistic fluid dynamics has been extensively used to describe the soft collective motion

of relativistic heavy-ion collisions (see, for instance, [1–3] and references therein) which plays

a central role in the phenomenology of the quark-gluon plasma. This led to a number of

works aimed at exploring the theoretical foundations of relativistic fluid dynamics, with the

goal of identifying improved hydrodynamic approximations of the underlying microcopic dy-

namics [4–12]. For systems of deconfined quarks and gluons, the shear viscosity is expected

to be much larger than the bulk viscosity at very high temperatures. It is then typically

assumed that the bulk viscous pressure, whose Navier-Stokes value is porportional to the

bulk viscosity, can be ignored in applications to heavy-ion physics. However, at temperature

regimes typically produced experimentally in heavy-ion collisions, the order of magnitude

of the bulk viscosity is unknown, and near the quark-hadron phase transition it could be

large, due to the breaking of scale invariance by critical fluctuations and correlations [13, 14].

Therefore, it is not well justified to a priori neglect the bulk viscous pressure when mod-

eling the dynamics of QCD matter created at the Relativistic Heavy Ion Collider (RHIC)

at Brookhaven National Laboratory and the Large Hadron Collider (LHC) at CERN. In-

deed, several recent studies discussed the possibility of non-negligible bulk viscous effects

on heavy-ion observables [15–25]. One reason for possibly larger than originally expected

bulk viscous effects in heavy-ion collisions is the existence of shear-bulk couplings in the

equations of motion that control the evolution of the shear and bulk vicous pressures [7–9].

Heavy-ion collisions are characterized by initially very large differences between the longitu-

dinal and transverse expansion rates that cause large shear stress which, in turn, generates

bulk viscous pressure via bulk-shear coupling [26]. This mechanism should be included in

phenomenological applications.

A key assumption made in hydrodynamics is that the system remains close to local

equilibrium. This assumption breaks down during the very early expansion stage of the

systems formed in ultrarelativistic heavy-ion collisions. To account for these large early-time

deviations from local momentum isotropy, a framework called “anisotropic hydrodynamics”

(aHydro) was developed [27, 28] and recently generalized to “viscous (or second-order)

anisotropic hydrodynamics” (vaHydro) [12]. In anisotropic hydrodynamics, one expands

around an anisotropic background fa where the largest local momentum-space anisotropies
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are built already into the leading-order (LO) term:

f(x, p) = fa

(√
pµΞµν(x)pν

Λ(x)

)
+ δf̃(x, p). (1)

Here Ξµν is a second-rank tensor whose structure depends on the shape and amount of the

momentum-space anisotropy in the local fluid rest frame, and Λ is a temperature-like scale

which reduces to the true local temperature in the isotropic equilibrium limit. Ref. [12]

was the first to include the correction δf̃ (which was computed using a Grad-Isreal-Stewart

14-moment approximation), leading to the equations of viscous anisotropic hydrodynamics

(vaHydro). When taking moments of the Boltzmann equation with the ansatz (1), the

contributions from δf̃ lead to additional dissipative (irreversible) currents Π̃ and π̃µν that

account for local momentum anisotropies not already built into the leading-order distribu-

tion function fa(
√
p·Ξ·p/Λ) and their relaxation equations [12]. In [12] these equations were

eventually simplified by assuming massless degrees of freedom which allowed the longitudi-

nal and transverse components PL and P⊥ of the anisotropic local pressure to factor into an

isotropic thermal equilibrium pressure Piso multiplied by longitudinal and transverse “defor-

mation factors” RL,⊥(ξ) which depend only on the local momentum anisotropy parameter ξ.

Of course, this assumption also implied zero bulk viscous pressure Π. As a test of the vaHy-

dro approach these simplified equations were then solved numerically for a transversally

homogeneous system undergoing boost-invariant longitudinal expansion ((0+1)-dimensional

expansion) for which the underlying Boltzmann equation can be solved exactly in the re-

laxation time approximation (RTA). Comparison of this exact solution with vaHydro as

well as several other viscous hydrodynamic approximations revealed a uniformly superior

performance of the vaHydro scheme.

We here generalize the vaHydro approach to the massive case where the above sim-

plifications no longer hold. A suitable generalization of the tensor Ξµν(x) in Eq. (1) was

first written down in [29] but not immediately exploited. It was recently shown that, with

this generalization, already LO anisotropic hydrodynamics (without the δf̃ terms) implicitly

contains some of the shear-bulk couplings present in modern versions of second-order viscous

hydrodynamics [26, 30]. By generalizing the work [12] to the massive case, we here extend

the works [26, 30] to next-to-leading order (i.e. we generalize the non-conformal aHydro

approximation used in [26, 30] to non-conformal vaHydro), keeping all additional shear

and bulk viscous corrections arising from the δf̃ term in Eq. (1). This improved approach is
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again tested in a system undergoing (0+1)-dimensional boost-invariant expansion for which

the exact solution of the RTA Boltzmann equation was recently extended to a gas of massive

particles [31].

The structure of this paper is as follows. In Sec. II we briefly review how to derive the

macroscopic hydrodynamic variables from kinetic theory by expanding the local distribution

function around a spheroidal momentum distribution. In Sec. III we write down the form

of the leading order anisotropic background as well as the perturbations around this form.

Then in Sec. IV we present the equations of motion for non-conformal viscous anisotropic

hydrodynamics. In Sec. V we summarize the basic steps applied to obtain a closed form

expression of the dynamical equations of motion for the residual dissipative currents, using

the macroscopic conservation laws. Sec. VI we simplify these equations for the limiting

case of a (0+1)-dimensional longitudinally boost-invariant expansion with finite particle

masses and compare their numerical solution to the exact result from solving the microscopic

Boltzmann equation. In Sec. VII we present our conclusions.

Our notation is as follows: We use natural units ~ = kB = c = 1. The Minkowski metric

tensor is gµν = diag(+,−,−,−). Greek indices run from 0 to 3 and Latin indices from

1 to 3. The summation convention for repeated indices (Greek or Latin) is always used.

Our tensor basis, in the local rest frame, is Xµ
0 ≡ uµ = (1, 0, 0, 0), Xµ

1 ≡ xµ = (0, 1, 0, 0),

Xµ
2 ≡ yµ = (0, 0, 1, 0), and Xµ

3 ≡ zµ = (0, 0, 0, 1). The transverse projection operator ∆µν ≡

−Xµ
i X

ν
i = gµν−uµuν is used to project four-vectors and/or tensors into the space orthogonal

to uµ. The notations A(µν) ≡ 1
2

(Aµν+Aνµ) and A[µν] ≡ 1
2

(Aµν−Aνµ) denote symmetrization

and antisymmetrization, respectively. A〈µν〉 ≡ ∆µν
αβA

αβ where ∆µν
αβ ≡ ∆

(µ
α ∆

ν)
β − ∆µν∆αβ/3

is the transverse (to u) and traceless projector for second-rank tensors. The four-derivative

is ∂µ ≡ ∂/∂xµ, D ≡ uµ∂µ is the convective derivative (the time derivative in the comoving

frame), ∇µ ≡ ∆µν∂ν is the covariant notation for the spatial gradient operator in the local

rest frame, and θ ≡ ∂µu
µ = ∇µu

µ is the scalar expansion rate.

II. HYDRODYNAMICS FROM RELATIVISTIC KINETIC THEORY

To keep the presentation selfcontained, we here briefly review how to extract hydrody-

namic variables from the Boltzmann equation for an expansion around a locally spheroidal

momentum distribution [12]. In kinetic theory the one-particle distribution function f is
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governed by the Boltzmann equation,

pµ∂µf = C[f ] , (2)

where C[f ] is the collision kernel. The particle current and energy-momentum tensor are

expressed as the first and second moments of the one-particle distribution function

Jµ = 〈pµ〉 , T µν = 〈pµpν〉 , (3)

where we defined the average of a momentum-dependent observable O(p) at point x as

〈O〉(x) ≡
∫
dP O(p)f(x, p) (4)

with the Lorentz invariant momentum-space measure dP ≡ (2π)−3(d3p/E). We decompose

the particle four-momentum pµ into parts parallel and orthogonal to the four-velocity uµ of

the local fluid rest frame [32],

pµ = Euµ + piX
µ
i , (5)

where E= p·u(x) is the local rest frame energy and pi = −Xν
i (x)pν are the Cartesian com-

ponents of the four-momentum in the local rest frame. For systems that are locally approx-

imately spheroidal in momentum-space, characterized by a “local anisotropic equilibrium”

distribution function fa, we can decompose f as

f(x, p) = fa(x, p) + δf̃ . (6)

Then Jµ and T µν can be tensor decomposed as

Jµ = Nuµ + Ṽ µ , (7)

T µν = Euµuν − (P⊥ + Π̃)∆µν + (PL − P⊥) zµzν + π̃µν . (8)

Here zµ(x)≡Xµ
3 (x) is the four-vector that reduces in the local fluid rest frame to a unit

vector in longitudinal (z) direction, N is the particle density and Ṽ µ is the particle current

in the local rest frame, E is the energy density in the local rest frame, P⊥ and PL are the

transverse and longitudinal pressures, Π̃ is the bulk viscous pressure, and π̃µν is the shear

stress tensor defined by

N ≡ 〈E〉a, Ṽ µ ≡ 〈pi〉δ̃X
µ
i ,

E ≡ 〈E2〉a, P⊥ ≡ 〈p2
⊥〉a PL ≡ 〈p2

z〉a
Π̃ ≡ −1

3
〈∆αβpα pβ〉δ̃, πµν ≡ 〈p〈µpν〉〉δ̃ .

(9)
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In these equations we introduced the notation 〈· · · 〉a ≡
∫
dP (· · · )fa and 〈· · · 〉δ̃ ≡∫

dP (· · · )δf̃ , and made use of the generalized Landau matching conditions 〈E〉δ̃ = 〈E2〉δ̃ =

0. For later convenience, the total bulk viscous pressure Π is calculable as

Π =
2P⊥ + PL

3
− Peq + Π̃ , (10)

and the total shear stress tensor is obtained from

πµν = (PL−P⊥)

(
∆µν

3
+ zµzν

)
+ π̃µν = (P⊥−PL)

xµxν+yµyν−2zµzν

3
+ π̃µν . (11)

III. 14-MOMENT APPROXIMATION FOR THE DISTRIBUTION FUNCTION

A. Leading order (LO) distribution function

In this paper we consider systems that are, to leading order, spheroidal in momentum-

space in the local rest frame. This is accomplished by introducing the anisotropy tensor Ξµν ,

so that the leading-order one-particle distribution function takes the form:

fa = f0

(
1

Λ(x)

√
pµΞµν(x)pν

)
, (12)

where we have assumed zero chemical potential and f0 has the functional form of a local

thermal equilibrium distribution,

f0(y) ≡ 1

ey + a
, (13)

where a = ±1, 0 corresponds to Fermi-Dirac, Bose-Einstein, and classical Boltzmann statis-

tics, respectively.

The most general decomposition of the rank-two tensor Ξµν that possesses spheroidal

symmetry in the local rest frame is [29]

Ξµν = uµuν − Φ∆µν + ξzµzν , (14)

where all terms are functions of position x. In local rest frame coordinates fa takes the form

fa = f0

(
1

Λ

√
m2+(1+Φ)p2

⊥+(1+Φ+ξ)p2
z

)
≡ f0

(
Ea

Λ

)
, (15)

where we defined E2
a ≡ (1+Φ)m2

⊥ cosh2 y + ξm2
⊥ sinh2 y − Φm2, with m2

⊥=m2+p2
⊥. Con-

necting the “anisotropic equilibrium” quantities with moments of fa, one finds that these
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quantities can be written as (see Appendix)

N (Λ, ξ,Φ; m̂) = 〈E〉a =
N0(Λ)

(1+Φ)(1+Φ+ξ)
, (16)

E (Λ, ξ,Φ; m̂) = 〈E2〉a

=
Λ4

2π2

∫ ∞
0

dy cosh2 y

∫ ∞
m̂

dm̂⊥ m̂
3
⊥ f0

(√
m̂2
⊥[(1+Φ) cosh2 y + ξ sinh2 y]− m̂2Φ

)
, (17)

P⊥ (Λ, ξ,Φ; m̂) = 〈p2
⊥〉a

=
Λ4

4π2

∫ ∞
0

dy

∫ ∞
m̂

dm̂⊥ m̂⊥
(
m̂2
⊥−m̂2

)
f0

(√
m̂2
⊥[(1+Φ) cosh2 y + ξ sinh2 y]− m̂2Φ

)
, (18)

PL (Λ, ξ,Φ; m̂) = 〈p2
z〉a

=
Λ4

2π2

∫ ∞
0

dy sinh2 y

∫ ∞
m̂

dm̂⊥ m̂
3
⊥ f0

(√
m̂2
⊥[(1+Φ) cosh2 y + ξ sinh2 y]− m̂2Φ

)
, (19)

where m̂≡m/Λ and m̂⊥≡m⊥/Λ≡
√
m2+p2

⊥/Λ. The equilibrium thermodynamic quanti-

ties are given as moments of f0. For Boltzmann statistics they have the functional form:

N0(T ;m) ≡ Tm

2π2
K2(m/T ) , (20)

E0(T ;m) ≡ T 2m2

2π2

(
3K2(m/T ) +

m

T
K1(m/T )

)
, (21)

P0(T ;m) ≡ N (T ;m)T , (22)

where Kn(z) are the modified Bessel function of the second kind.

B. 14-moment expansion of the deviation from the LO distribution

In the 14-moment approximation, the deviation δf̃ of the full distribution function f

from the locally anisotropic state (12) is expanded to second order in momenta as [12]:

δf̃

faf̃a

= α− βE + wE2 − w

3
∆µνpµpν + w〈µν〉p

〈µpν〉 , (23)

where f̃a≡ 1−afa. In the absence of a chemical potential, as assumed in (12), there is no

heat current Ṽ µ, and the coefficients of any terms linear in p〈µ〉 in Eq. (23) vanish. By

inserting Eq. (23) into the definitions (9) of the residual dissipative flows, the 14-moment

coefficients can be expressed in terms of these flows by solving the matrix equation Ab = c,
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where

A ≡



J̃1,0 −J̃2,0 J̃3,0 + J̃3,1 0 0 0 0 0 ρzz1,0

J̃2,0 −J̃3,0 J̃4,0 + J̃4,1 0 0 0 0 0 ρzz2,0

J̃2,1 −J̃3,1 J̃4,1 + 5
3
J̃4,2 0 0 0 0 0 ρzz2,1

ϕxx21 −ϕxx31 ϕxx41 + ϕxx42 λ1111 0 0 λ1122 0 λ1133

0 0 0 0 2λ1212 0 0 0 0

0 0 0 0 0 2λ1313 0 0 0

ϕxx21 −ϕxx31 ϕxx41 + ϕxx42 λ1122 0 0 λ1111 0 λ1133

0 0 0 0 0 0 0 2λ1313 0

ϕzz21 −ϕzz31 ϕzz41 + ϕzz42 λ1133 0 0 λ1133 0 λ3333



, (24)

b ≡
(
α β w w11 w12 w13 w22 w23 w33

)T
, (25)

c ≡
(

0 0 Π̃ π̃11 π̃12 π̃13 π̃22 π̃23 π̃33

)T
. (26)

This allows the distribution function expanded around an anisotropic background to be

expressed in terms of the residual dissipative flows Π̃ and π̃µν as

f = fa +
[
λΠΠ̃ + λµνπ π̃µν +

(
λµνΠ Π̃ + λµναβπ π̃αβ

)
p〈µpν〉

]
faf̃a , (27)

where λΠ, λµνπ , λµνΠ , and λαβµνπ , along with the auxiliary tensors ρµνnq , ϕ
αβ
nq , and λµναβ appearing

in (24), are defined in Ref. [12].

IV. VISCOUS ANISOTROPIC HYDRODYNAMIC EQUATIONS OF MOTION

In this section we derive the hydrodynamic equations of motion by taking moments of

the Boltzmann equation. Taking moments implies multiplying (2) by integer powers of the

four-momentum and integrating over momentum-space. This process results in the following

n-th (n ≥ 0) moment equation:

∂µ1〈pµ1 · · · pµn+1〉 = Cµ1···µn . (28)

The n-th rank collisional tensor is defined in the following manner:

Cµ1···µnr =

∫
dP Erpµ1 · · · pµnC[f ] , (29)

with Cµ1···µn ≡ Cµ1···µn0 . The infinite set of coupled moments (28) is equivalent to knowing the

full solution f of the Boltzmann equation (2). Only the first few moments have an intuitive
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physical meaning: The zeroth moment ∂µ〈pµ〉 = C embodies the conservation of particle

number for vanishing C, the first moment ∂µ〈pµpν〉 = 0 the conservation of energy and

momentum. The macroscopic equations of spheroidal viscous anisotropic hydrodynamics

are derived in the following subsections.

A. Zeroth moment of the Boltzmann equation

The zeroth moment of the Boltzmann equation gives

∂µj
µ = DN +N θ + ∂µṼ

µ = C. (30)

Denoting the action of the time derivative in the local rest frame D by a dot, Eq. (30) can

be written as an equation of motion for the rest frame particle density N :

Ṅ = −N θ − ∂µṼ µ + C. (31)

B. First moment of the Boltzmann equation

The first moment of the Boltzmann equation is equivalent to the requirement of energy-

momentum conservation: ∂µT
µν = 0. With the viscous anisotropic hydrodynamic decom-

position of T µν given in (7) this conservation law yields

∂µT
µν = uνD(E+P⊥+Π̃) + uν(E+P⊥+Π̃)θ + (E+P⊥+Π̃)Duν − ∂ν(P⊥+Π̃)

+ zνDL(PL−P⊥) + zν(PL−P⊥)θL + (PL−P⊥)DLz
ν + ∂µπ̃

µν = 0.
(32)

Projecting these four equations on the fluid four-velocity yields an equation of motion for

the rest frame energy density E :

uν∂µT
µν = Ė + (E+P⊥+Π̃)θ + (PL−P⊥)uνDzz

ν − π̃µνσµν = 0. (33)

The projections ∆α
ν∂µT

µν transverse to uµ yield equations of motion for the fluid four-

velocity uµ:

∆α
ν∂µT

µν = (E+P⊥+Π̃)u̇α −∇α(P⊥+Π̃) + ∆α
ν∂µπ̃

µν (34)

+zαDz(PL−P⊥) + zα(PL−P⊥)(∂µz
µ) + (PL−P⊥)Dzz

α − (PL−P⊥)uαuνDzz
ν = 0.

In the above equations we have introduced the velocity shear tensor σµν ≡ ∇〈µuν〉 and the

derivative operator Di ≡ Xµ
i ∂µ. Equations (33) and (34) are the fundamental equations of

relativistic viscous anisotropic hydrodynamics.
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C. Second moment of the Boltzmann equation

The second moment of the Boltzmann equation gives

∂µFµνλ = Cνλ , (35)

where Fµνλ ≡ 〈pµpνpλ〉. Decomposing pµ into parts parallel and orthogonal to uµ by using

Eq. (5) leads to

Fµνλ ≡ 〈E3〉uµuνuλ + 〈E2pi〉
(
uµuνXλ

i + uµXν
i u

λ +Xµ
i u

νuλ
)

+ 〈Epipj〉
(
uµXν

i X
λ
j +Xµ

i u
νXλ

j +Xµ
i X

ν
j u

λ
)

+ 〈pipjpk〉Xµ
i X

ν
jX

λ
k . (36)

To evaluate the l.h.s. of Eq. (35) requires taking the four-divergence of tensor Fµνλ

∂µFµνλ = D〈E3〉uνuλ + 〈E3〉
(
uνuλθ + 2u(νDuλ)

)
+ Xν

i X
λ
j D〈Epipj〉+ 〈Epipj〉

(
Xν
i X

λ
j θ + 2X

(ν
i DX

λ)
j

)
+ 2u(νXλ)Di〈Epipj〉+ 2〈Epipj〉

(
u(νX

λ)
j ∂µX

µ
i + u(νDiX

λ)
j

)
. (37)

Projecting out the transverse to uµ and traceless part of Eq. (35), ∆αβ
νλ∂µFµνλ = C〈αβ〉, yields

X
〈α
i X

β〉
j (D〈Epipj〉+ 〈Epipj〉θ) + 2〈Epipj〉∆αβ

νλ

(
Xν
i DX

λ
j +Xν

i Dju
λ
)

= C〈αβ〉 . (38)

To work out the averages 〈Epipj〉 appearing in Eq. (38), we use (27) to write

〈Epipj〉 = Ĩ ij10 + ψijΠ Π̃ + ψijµνπ π̃µν , (39)

where Ĩ ij10 is defined in the Appendix and

ψijΠ ≡
[∫

dP λΠEpipjfaf̃a + λµνΠ

∫
dP p〈µpν〉Epipjfaf̃a

]
Π̃ , (40)

ψijµνπ ≡
[∫

dP λµνΠ Epipjfaf̃a + λαβµνΠ

∫
dP p〈αpβ〉Epipjfaf̃a

]
π̃µν . (41)

Using (39), equation (38) can finally be written in the following form:

X
〈α
i X

β〉
j

[
˙̃I ij10 + ψijΠ

˙̃Π + ψijµνπ
˙̃πµν + ψ̇ijΠ Π̃ + ψ̇ijµνπ π̃µν

]
+X

〈α
i X

β〉
j

[
˙̃I ij10 + ψijΠ Π̃ + ψijµνπ π̃µν

]
θ

+ 2
[

˙̃I ij10 + ψijΠ Π̃ + ψijµνπ π̃µν

]
∆αβ
νλ

(
Xν
i DX

λ
j +Xν

i Dju
λ
)

= C〈αβ〉 . (42)
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V. EQUATIONS OF MOTION FOR THE RESIDUAL DISSIPATIVE FLOWS

To close the system of equations we need to know the space-time evolution of the dissi-

pative currents appearing in (9). To accomplish this, we derive the equations of motion for

Π̃ and π̃µν from their kinetic definitions [7, 8, 12]:

˙̃Π = −m
2

3

∫
dP ˙δf̃ , (43)

˙̃π〈µν〉 = ∆µν
αβ

∫
dP p〈αpβ〉 ˙δf̃ . (44)

The Boltzmann equation (2) can be written in the form

δ ˙̃f = −ḟa −
1

E

(
p·∇(fa+δf̃)− C[f ]

)
. (45)

Substituting this into the expressions (43) and (44) one obtains the following equations of

motion:

− 3

m2

˙̃Π− C−1 =W −X θ − Yµνσµν +
3

m2
Π̃θ − 〈E−2pµpν〉δ̃∇µuν (46)

˙̃π〈µν〉 − C〈µν〉−1 = Kµν + Lµν +Mµν +Hµνλ (żλ + uα∇λzα) + (1 + Φ)Qµνλα∇λuα

− 5

3
π̃µνθ − 2π̃

〈µ
λ σ

ν〉λ + 2π̃
〈µ
λ ω

ν〉λ + 2Π̃σµν

−
〈
E−2p〈µpν〉p〈α〉p〈β〉

〉
δ̃
∇αuβ . (47)

The evolution equations for the dissipative flows Π̃ and π̃µν can now be obtained by inserting

the closed form (27) of the single-particle distribution function into the expectation values

〈 · · · 〉δ̃ on the r.h.s. of the equations of motion (46) and (47). This leads to

− 3

m2

˙̃Π− C−1 =W −X θ − Yµνσµν +
3

m2
Π̃θ − δµνΠΠΠ̃∇µuν − π̃αβδµναβΠπ ∇µuν (48)

˙̃π〈µν〉 − C〈µν〉−1 = Kµν + Lµν +Mµν +Hµνλ (żλ + uα∇λzα) + (1 + Φ)Qµνλα∇λuα

− 5

3
π̃µνθ − 2π̃

〈µ
λ σ

ν〉λ + 2π̃
〈µ
λ ω

ν〉λ + 2Π̃σµν

− Π̃δµναβπΠ ∇αuβ − δµναβσλππ π̃σλ∇αuβ . (49)
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The dissipative forces for the bulk viscous pressure and shear-stress tensor evolution equation

are defined as

W ≡ β̇aJ̃0,0,1 +
βa

2
J̃ zz

0,0,−1ξ̇ +
3

2
βaJ̃2,1,−1Φ̇ , (50)

X ≡ βa

3

[
(1+Φ)(2J̃ xx

0,0,−1 + J̃ zz
0,0,−1) + ξJ̃ zz

0,0,−1

]
, (51)

Yµν ≡
[
(1+Φ)(J̃ zz

0,0,−1 − J̃ xx
0,0,−1) + ξJ̃ zz

0,0,−1

]
zµzν , (52)

Mµµ ≡ 3βa

2
Φ̇

(
J̃ ij

2,1,−1X
µ
i X

ν
j +

5

3
∆µνJ̃4,2,−1

)
. (53)

The remaining dissipative forces in Eq. (49) Kµν , Lµν , etc. and transport coefficients δµνΠΠ,

δµναβΠπ , etc. are given in Appendix C of Ref. [12].

The viscous anisotropic hydrodynamic framework for a nonconformal system (with van-

ishing chemical potential) in a general (3+1)-dimensional framework is defined by Eqs. (31),

(33), (34), (42), (48), and (49). Structurally they reduce to Eqs. (88) and (90) of Ref. [12]

when taking the limit Φ→ 0. The difference between the equations studied here and in [12]

is that here we account for some of the bulk viscous effects non-perturbatively, by including

them via the scalar field Φ already in the LO distribution function fa. This leads to slight

changes in the structure of the relaxation equations for Π̃ and π̃µν and also changes the

values of the transport coefficients.

VI. (0+1)-DIMENSIONAL EXPANSION FOR A NONCONFORMAL SYSTEM

A. Reduced evolution equations

In this section we present and solve the boost-invariant vaHydro equations for a sim-

plified situation without transverse expansion. In the following we will use the relaxation

time approximation (RTA) for the scattering kernel,

C[f ] = −p · u
τeq

[
f(p; Λ, ξ,Φ)−f0(u·p/T )

]
, (54)

where τeq is the relaxation time, assumed to be momentum-independent. For transversely

homogeneous systems undergoing boost-invariant longitudinal expansion, the Boltzmann

equation (2) with an RTA collision kernel (54) can be solved exactly [33–35], and this can

be used to determine the efficacy of various approximation schemes. In the situation just

12



described there are no transverse derivatives, the comoving time derivative Ȧ = DA simply

becomes dA/dτ , and the shear stress tensor π̃µν is fully defined by a single non-vanishing

component π̃ ≡ π̃zz = −π̃zz: at z= 0, π̃µν = diag(0,−π̃/2,−π̃/2, π̃). For (0+1)-dimensional

expansion with azimuthal symmetry we have the following simplifications:

xλDxu
λ = yλDyu

λ = 0 , (55)

zλDzu
λ = −1

τ
, θ =

1

τ
. (56)

Using this we can write the (0+1)-d viscous anisotropic hydrodynamic equations of motion

as:

Ṅ = −N
τ
− 1

τeq
(N −Neq) , (57)

Ė = −1

τ

(
E + PL + Π̃− π̃

)
, (58)

d

dτ
〈Ep2

z〉 −
d

dτ
〈Ep2

x〉 =
1

τ

(
〈Ep2

x〉 − 3〈Ep2
z〉
)

+
1

τeq

(
〈Ep2

x〉 − 〈Ep2
z〉
)
. (59)

With some algebra, using the explicit functional form (20) of the particle density (16) for

Boltzmann statistics, the first two of these can be rewritten in terms of the parameters of

the leading-order distribution fa as

ξ̇

1+Φ+ξ
− 2

(
3+

m

Λ

K1(m/Λ)

K2(m/Λ)

)
Λ̇

Λ
+

(
2

1+Φ
+

1

1+Φ+ξ

)
Φ̇

=
2

τ
+ 2Γ

(
1− T

Λ

K2(m/T )

K2(m/Λ)
(1+Φ)

√
1+Φ+ξ

)
, (60)

(∂ξE)ξ̇ + (∂ΛE)Λ̇ + (∂ΦE)Φ̇ = −1

τ

(
E + PL + Π̃− π̃

)
, (61)

where the partial derivatives of E on the left hand side of Eq. (61) can be worked out from

the explicit expression (17). The effective temperature T in Eq. (60) is obtained from the

dynamical Landau matching condition

E(Λ, ξ,Φ; m) = Eeq(T ; m) . (62)

Some additional work yields the evolution equations for Π̃ and π̃ in the form

˙̃Π = −Γ

(
2P⊥+PL

3
−Peq+Π̃

)
+
m2

3Λ

(
J̃0,0,1

Λ̇

Λ
− 1

2
J̃ zz

0,0,−1ξ̇ −
3

2
J̃2,1,−1Φ̇ +

1+Φ+ξ

τ
J̃ zz

0,0,−1

)

− λΠΠ
Π̃

τ
− λΠπ

π̃

τ
, (63)
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˙̃π = −Γ

(
π̃ − 2

3
(PL − P⊥)

)
+

1

Λ

[(
J̃ zz

0,0,1 − J̃2,1,1

) Λ̇

Λ
+

(
1+Φ+ξ

τ
− ξ̇

2

)(
J̃ zzzz

0,0,−1−J̃ zz
2,1,−1

)
− 3

2

(
J̃ zz

2,1,−1−
5

3
J̃4,2,−1

)
Φ̇

]

+ λπΠ
Π̃

τ
+ λππ

π̃

τ
. (64)

Equations (59)-(64) form the coupled set of dynamical equations that must be solved for

(0+1)-dimensional expansion. The J̃ integrals appearing in the last two of these equations

are defined in the Appendix. The terms 〈Ep2
x〉 and 〈Ep2

z〉 appearing in Eq. (59) involve

the transport coefficients ψijΠ and ψijzzπ . From a formal point of view, it is nice to have

analytic expressions for the transport coefficients. However, for nonconformal systems the

“shear-bulk” coupling is rather complicated. For numerical purposes it is then easier to just

use the parametrization of the non-equilibrium distribution function (23) and numerically

invert the matrix equation Ab = c at each time step in the numerical integration to obtain

the coefficients in the 14-moment approximation. We now show how to do this. For (0+1)-

dimensional expansion with azimuthal symmetry we have the following simplifications:

b ≡
(
α β w w11 0 0 w22 0 w33

)T
, (65)

c ≡
(

0 0 Π̃ π̃/2 0 0 π̃/2 0 −π̃
)T

. (66)

xλDxu
λ = yλDyu

λ = 0 , (67)

zλDzu
λ = −1

τ
, θ =

1

τ
(68)

By defining the vector

J ii ≡
(
J̃ ii

1,0 J̃ ii
2,0 J̃ ii

3,0 + J̃ ii
3,1 J̃ iixx

1,0 0 0 J̃ iixx
1,0 0 J̃ iizz

1,0

)T
, (69)

we can write

〈Ep2
i 〉 ≡ Ĩ ii1,0 +~b · ~J ii . (70)

Then taking the derivative

d

dτ
〈Ep2

i 〉 =
dĨ ii1,0
dτ
−
(
A−1dA

dτ
b

)
·J ii +

(
A−1û

)
·J iidΠ̃

dτ
+
(
A−1v̂

)
·J iidπ̃

dτ
+~b·d

~J ii

dτ
, (71)

where we introduced the vectors

û ≡
(

0 0 1 0 0 0 0 0 0
)T

, (72)

v̂ ≡
(

0 0 0 1
2

0 0 1
2

0 −1
)T

. (73)
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With the anisotropic form (12) as the underlying LO distribution function, it is convenient

to evolve the system in terms of the kinematical parameters ξ, Φ, and Λ, rather than the

macroscopic densities. Writing Eq. (71) in terms of ξ̇, Φ̇, and Λ̇

d

dτ
〈Ep2

i 〉 = ψiiξ ξ̇ + ψiiΦΦ̇ + ψiiΛΛ̇ + ψiiΠ
˙̃Π + ψiiπ ˙̃π , (74)

where we have introduced the shorthand notation:

ψiia ≡ ∂aĨ ii1,0 −
(
A−1(∂aA) b

)
·J ii + b · ∂aJ ii , (75)

ψiiΠ ≡
(
A−1û

)
·J ii , (76)

ψiiπ ≡
(
A−1v

)
·J ii . (77)

Then defining ψk ≡ ψzzk − ψxxk , where k ∈ {ξ,Λ,Φ, Π̃, π̃}, and taking the zz-component of

Eq. (59), we get

ψξ ξ̇ + ψΛΛ̇ + ψΦΦ̇ + ψΠ
˙̃Π + ψπ ˙̃π =

1

τ

(
〈Ep2

x〉 − 3〈Ep2
z〉
)

+
1

τeq

(
〈Ep2

x〉 − 〈Ep2
z〉
)
. (78)

The transport coefficients appearing in Eqs. (48) and (49) can be written as

λΠΠ = 1 +
m2

3
bΠ·J Π , λΠπ =

m2

3
bπ·J Π , (79)

λπΠ =
4

3
+ bΠ·J π , λππ = −7

3
+ bπ·J π , (80)

where bΠ ≡ A−1û, bπ ≡ A−1v̂, and

J̃Π ≡
(
J̃ zz
−2,0, J̃ zz

−1,0, J̃ zz
0,0 + J̃ zz

0,1, J̃ xxzz
−2,0 , 0, 0, J̃ xxzz

−2,0 , 0, J̃ zzzz
−2,0

)
, (81)

J̃π ≡
(
J̃ zz

0,1−J̃ zzzz
−2,0 , J̃ zz

1,1−J̃ zzzz
−1,0 , J̃ zz

2,1+
5

3
J̃ zz

2,2−J̃ zzzz
0,0 −J̃ zzzz

0,1 ,

J̃ xxzz
0,1 −J̃ xxzzzz

−2,0 , 0, 0, J̃ xxzz
0,1 −J̃ xxzzzz

−2,0 , 0, J̃ zzzz
0,1 −J̃ zzzzzz

−2,0

)
. (82)

B. Numerical results

In this subsection we solve for (0+1)-dimensional expansion the vaHydro equations

(59)-(64) numerically and compare the resulting evolution histories for the macroscopic

thermodynamic quantities with the corresponding moments of the related exact solution of

the Boltzmann equation [31]. We initialize the system at τ0 = 0.5 fm/c with T0 = 600 MeV,

Π̃0 = 0, and π̃0 = 0.For simplicity and illustration, we assume a temperature independent
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FIG. 1: Ratio of the longitudinal to transverse pressure P⊥/PL (left column) and the bulk viscous

pressure Π (right column). The top panels correspond to an initial anisotropy parameter ξ0 = 0

whereas the bottom panels are for ξ0 = 100. The black solid, red short-dashed, blue dashed-dotted,

and green long-dashed lines are the results obtained from the exact solution of the Boltzmann

equation, NLO anisotropic hydrodynamics (vaHydro), LO anisotropic hydrodynamics (aHydro),

and second-order viscous hydrodynamics [7–9], respectively. The initial conditions in this figure

are T0 = 600 MeV, m = 1 GeV, Π̃0 = 0, π̃0 = 0, τeq = 0.5 fm/c, and τ0 = 0.5 fm/c.

relaxation time, exploring the cases τeq = 0.5 fm/c in Figs. 1 and 2 as well as the ten times

larger value τeq = 5 fm/c in Fig. 3.

In Figs. 1−3 we plot in the left panels the evolution of the ratio P⊥/PL between the

longitudinal and transverse pressures, and in the right panels the bulk viscous pressure Π.

For Figs. 1 and 3 we assume particles of mass m = 1 GeV while in Fig. 2 we use m = 0.1 GeV.

The upper and lower panels in Figs. 1 and 2 correspond to different initial momentum-space
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FIG. 2: Similar to Fig. 2, but for a ten times smaller mass m = 0.1 GeV.

anisotropies: For the histories shown in the upper panels of Figs. 1 and 2, as well as those

in Fig. 3, we assumed initial momentum isotropy, ξ0 = 0. The lower panels in Figs. 1 and

2 start instead from a very anisotropic initial state with ξ0 = 100. In all cases, the solid

black line shows the results obtained from the exact solution of the Boltzmann equation. The

short-dashed red lines represent our vaHydro results while the dashed-dotted blue and long-

dashed green curves show results from LO anisotropic hydrodynamics (aHydro) [30] and

second-order viscous hydrodynamics (vHydro) evaluated in the 14-moment approximation

[7–9] for comparison.

We observe that in all cases the vaHydro framework gives the best approximation

to the exact solution for the longitudinal/transverse pressure ratio and the bulk viscous

pressure. Especially during the early evolution stages, vaHydro matches the exact solution

almost perfectly while LO aHydro and second-order viscous hydrodynamics [7–9] exhibit

significant deviations. The improvement achieved by including in the dynamical description
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FIG. 3: Similar to Fig. 1, but for τeq = 5 fm/c. An additional set of purple dotted curves shows the

effect of setting the bulk-shear coupling terms in the evolution equations for Π̃ and π̃ to zero.

the additional dissipative flows generated by δf̃ is particularly visible in the evolution of the

bulk viscous pressure, caused by the non-vanishing particle mass.

As discussed in [26], for massive particle systems coupling terms between the shear and

bulk viscous pressures play an important role in the evolution of the viscous stress; in viscous

hydrodynamics (vHydro) these must be included explicitly at second order in an expansion

around a locally isotropic momentum distribution [7–9] while anisotropic hydrodynamics

(aHydro), based on the ansatz (12), captures their effects already at leading order, with

similar precision. The dotted purple curves in Fig. 3, which were obtained by setting in

Eqs. (63) and (64) the bulk-shear coupling coefficients λΠπ and λπΠ to zero, show that in

our improved vaHydro framework residual bulk-shear coupling terms between Π̃ and π̃

(due to δf̃) play only a minor role, and only at late times. The main improvement over

aHydro and second-order vHydro results from the other terms on the right hand sides of

these equations, including the diagonal couplings λΠΠ and λππ.

VII. CONCLUSIONS

In this paper we derived a generalization of the viscous anisotropic hydrodynamic frame-

work [12] to systems with massive degrees of freedom, assuming a vanishing chemical poten-

tial. To test the efficacy of this extended vaHydro formalism we applied it to a transversally

homogeneous non-conformal system that undergoes boost-invariant longitudinal expansion
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(i.e. (0+1)-dimensional flow) for which there exists an exact solution of the RTA Boltzmann

equation [31, 36]. We tested its precision in this situation by comparing, over a wide range

of particle masses, relaxation times and initial momentum anisotropy parameters, the nu-

merical predictions of vaHydro for the longitudinal/transverse pressure ratio and the bulk

viscous pressure with the corresponding results obtained from the exact (0+1)-d solution of

the RTA Boltzmann equation [31, 36], as well as with those from two other hydrodynamic

expansion schemes, namely second-order viscous hydrodynamics in the 14-moment approx-

imation (vHydro) [7–9] and anisotropic hydrodynamics (aHydro) [30]. In all cases we

found that vaHydro agrees almost perfectly with the exact kinetic solution and presents a

significant improvement over the other two hydrodynamic approaches.

For massless theories, a powerful test for the efficiency of various hydrodynamic ap-

proximation schemes for the RTA Boltzmann equation is the amount of entropy generated

by viscous heating during the evolution of the system [12, 29]. Among all known hydrody-

namic schemes, only aHydro and vaHydro reproduce this quantity qualitatively correctly

in both the strong (τrel → 0) and weak (τrel → ∞) coupling limits, and for (0+1)-d expan-

sion vaHydro does so almost perfectly. It would have been nice to perform this check also

for the case of massive theories. However, for massive particles the entropy needs to be

computed from kinetic theory (rather than using the particle density). We postpone this for

future work.
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Appendix: Evaluation of the “anisotropic” thermodynamic integrals

In this Appendix we compute the auxiliary “anisotropic” thermodynamic integrals Ĩ i1···iknqr

and J̃ i1···ik
nqr defined as

Ĩ i1···i`j1···jpnqr ≡ (−1)q

(2q + 1)!!

∫
dP En−2q

(
∆αβpαpβ

)q
Er

a pi1 · · · pi`pj1 · · · pjpfa , (83)

J̃ i1···i`j1···jp
nqr ≡ (−1)q

(2q + 1)!!

∫
dP En−2q

(
∆αβpαpβ

)q
Er

a pi1 · · · pi`pj1 · · · pjpfaf̃a , (84)

where i = 1, 2 and j = 3 denote the number of pi and pz components, respectively, and

f̃a = 1−afa. To work out the derivative of Ĩ i1···i`j1···jpnqr with respect to ξ, Φ and Λ we use the

following relations:

∂ξ (Er
afa) =

p2
z

2Ea

(
r

Ea

− 1

Λ

)
faf̃a , (85)

∂Φ (Er
afa) = −∆αβpαpβ

2Ea

(
r

Ea

− 1

Λ

)
faf̃a , (86)

∂Λfa =
Ea

Λ2
fa . (87)

This allows us to write

∂ξĨ i1···i`j1···jpnqr =
1

2

(
rJ̃ i1···i`j1···jp+2

n,q,r−2 − 1

Λ
J̃ i1···i`j1···jp+2

n,q,r−1

)
(88)

∂ΦĨ i1···i`j1···jpnqr =
1

2

(
rJ̃ i1···i`j1···jp

n+2,q,r−2 −
1

Λ
J̃ i1···i`j1···jp
n+2,q,r−1

)
(89)

∂ΛĨ i1···i`j1···jpnqr =
1

Λ2
J̃ i1···i`j1···jp
n,q,r+1 (90)

We parametrize the four-momenta in hyperbolic coordinates,

pµ = (m⊥ cosh y, p⊥ cosφ, p⊥ sinφ,m⊥ sinh y) , (91)

where m2
⊥ ≡ m2 + p2

⊥ is the transverse mass, with integration measure

dP =
dy m⊥dm⊥dφ

(2π)3
. (92)

Then

Ĩ i1···i`j1···jpnqr ≡ (−1)q

(2q + 1)!!

1

(2π)3

∫
dy m⊥dm⊥dφ (m⊥ cosh y)n−2q

(
m2−m2

⊥ cosh2 y
)q

×
[
m2
⊥
(
(1+Φ) cosh2 y + ξ sinh2 y

)
−m2Φ

]r/2 (
m2
⊥−m2

)`/2
p̄i1 · · · p̄i`(m⊥ sinh y)p

× f0

(
1

Λ

√
m2
⊥
(
(1+Φ) cosh2 y + ξ sinh2 y

)
−m2Φ

)
, (93)
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where we defined the scaled transverse Cartesian momentum components p̄i ≡ pi/p⊥, such

that p̄x = cosφ and p̄y = sinφ. We now define dimensionless parameters m̂⊥ ≡ m⊥/Λ and

m̂ ≡ m/Λ which results in

Ĩ i1···i`j1···jpnqr ≡ (−1)q

(2q + 1)!!

Λn+`+p+r+2

2π2
Φi1···i`

∫
dy coshn−2q y sinhp yHnq`pr (y, ξ,Φ; m̂) , (94)

where

Φi1···i` ≡
∫ 2π

0

dφ

2π
p̄i1 · · · p̄i` (95)

Hnq`pr (y, ξ,Φ; m̂) ≡
∫ ∞
m̂

dm̂⊥m̂
n−2q+p+1
⊥

[
m̂2
⊥
(
(1+Φ) cosh2 y + ξ sinh2 y

)
− m̂2Φ

]r/2
(96)

×
(
m̂2−m̂2

⊥ cosh2 y
)q (

m̂2
⊥−m̂2

)`/2
f0

(√
m̂2
⊥
(
(1+Φ) cosh2 y + ξ sinh2 y

)
− m̂2Φ

)
.

The same decomposition follows for J̃ i1···i`j1···jp
nqr :

J̃ i1···i`j1···jp
nqr ≡ (−1)q

(2q + 1)!!

Λn+`+p+r+2

2π2
Φi1···i`

∫
dy coshn−2q y sinhp y H̃nq`pr (y, ξ,Φ; m̂) , (97)

where H̃nq`pr takes into account quantum statistics and is obtained by making the substi-

tution f0(·) → f0(·)f̃0(·). We note that in the classical limit (a= 0) the two functions are

identical, Ĩ i1···i`j1···jpnqr (a=0) = J̃ i1···i`j1···jp
nqr (a=0).
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