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Abstract

We introduce the concept of equivalence among Wilson actions. Applying the concept to a

real scalar theory on a euclidean space, we derive the exact renormalization group transformation

of K. G. Wilson, and give a simple proof of universality of the critical exponents at any fixed

point of the exact renormalization group transformation. We also show how to reduce the original

formalism of Wilson to the simplified formalism by J. Polchinski.
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I. INTRODUCTION

The purpose of this paper is to introduce the concept of equivalence among Wilson

actions. We consider a generic real scalar theory in D-dimensional euclidean space, and

denote the Fourier component of the scalar field with momentum p by φ(p).

A Wilson action S[φ] is a real functional of φ(p). A momentum cutoff is incorporated so

that the exponentiated action eS[φ] can be integrated with no ultraviolet divergences.[1] An

example is given by

S[φ] = −
∫

p

p2

K
(

p
Λ

)

1

2
φ(p)φ(−p) + SI [φ] (1)

where the cutoff function K(p̄) is a positive function of p̄2 that is 1 at p̄2 = 0, and decreases

toward 0 rapidly for p̄2 ≫ 1. The first term of the action can suppress the modes with

momenta higher than Λ sufficiently that eS[φ] can be integrated over φ(p) of all momenta.

The second term consists of local interaction terms. In the continuum approach adopted

here, correlation functions are defined for φ(p) of all momenta, even those above Λ.

A Wilson action is meant to describe low momentum (energy) physics accurately, but

not physics at or above the cutoff scale. If two Wilson actions describe the same low energy

physics, we regard them as equivalent. It is the purpose of this paper to provide a concrete

definition of equivalence using the continuum approach.

The paper is organized as follows. In sect. II we introduce modified correlation functions,

and then define equivalence of Wilson actions as the equality of the modified correlation

functions. Basically, two Wilson actions are equivalent if their differences can be removed if

we give them a massage at their respective cutoff scales. We derive two versions of explicit

formulas that relate two equivalent Wilson actions. The concept of equivalence is applied in

the rest of the paper.

In sect. III we derive the exact renormalization group (ERG) transformation of Wilson

[1] by considering a particular type of equivalence. We derive the ERG differential equation

from our equivalence, which amounts to an integral solution to the differential equation. In

sect. IV we discuss the relation between the original formulation of ERG transformation

by Wilson and the formulation by J. Polchinski [2] which is more convenient for pertur-

bation theory. In the previous literature only passing remarks have been given on this

relation.[3][4] Our short discussion of their relation is complete and hopefully illuminating.

Sect. V prepares us for the discussion of universality in sect. VI. We generalize the definition
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of equivalence so that the exact renormalization group transformation can have fixed points.

In sect. VI, we assume a fixed point of the ERG transformation, and show that the critical

exponents defined at the fixed point are independent of the choice of cutoff functions. This

is what we mean by universality. We conclude the paper in sect. VII.

Throughout the paper we work in D-dimensional euclidean momentum space. We use

the following abbreviated notation

∫

p
≡
∫

dDp

(2π)D
, δ(p) ≡ (2π)Dδ(D)(p) (2)

II. EQUIVALENCE

Given a Wilson action S[φ], we denote the correlation functions by

〈φ(p1) · · ·φ(pn)〉S ≡
∫

[dφ]φ(p1) · · ·φ(pn) eS[φ] (3)

We consider modifying the correlation functions for high momenta without touching them

for small momenta. We define modified correlation functions by

〈〈φ(p1) · · ·φ(pn)〉〉K,kS ≡
n
∏

i=1

1

K(pi)
·
〈

exp

(

−
∫

p

k(p)

p2
1

2

δ2

δφ(p)δφ(−p)

)

φ(p1) · · ·φ(pn)
〉

S

(4)

where K(p) and k(p) are non-negative functions of p2. (We will call them cutoff functions.)

As p2 → 0, we must find

K(p) −→ 1, k(p) −→ 0 (5)

so that the correlation functions are not modified at small momenta. In addition we constrain

K(p) by

K(p)
p2→∞−→ 0 (6)

In other words K(p) is small for p2 larger than the squared cutoff momentum of the Wilson

action. The fluctuations of φ(p) with p larger than the cutoff are suppressed, and we enhance

their correlations by the large factor 1/K(p) in (4). The exponential on the right-hand side

of (4) amounts to mixing a free scalar with the propagator −k(p)/p2 to the original scalar

field φ. Since k(0) = 0, the free scalar has no dynamics of its own.

For example, we may take

K(p) = e−
p2

Λ2 (7)
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and

k(p) =
p2

Λ2
or e−

p2

Λ2

(

1− e−
p2

Λ2

)

(8)

where Λ is the momentum cutoff Λ of the Wilson action S.

In particular, for n = 2 and n = 4, (4) gives

〈〈φ(p1)φ(p2)〉〉K,kS =
1

K(p1)2

(

〈φ(p1)φ(p2)〉S −
k(p1)

p21
δ(p1 + p2)

)

(9)

〈〈φ(p1) · · ·φ(p4)〉〉K,kS =
4
∏

i=1

1

K(pi)

[

〈φ(p1) · · ·φ(p4)〉S

−〈φ(p1)φ(p2)〉S
k(p3)

p23
δ(p3 + p4)− 〈φ(p3)φ(p4)〉S

k(p1)

p21
δ(p1 + p2)

+
k(p1)

p21
δ(p1 + p2)

k(p3)

p23
δ(p3 + p4)

+(t-, u-channels)

]

(10)

For small momenta, the modified correlation functions (4) reduce to the ordinary correlation

functions (3).

Now, we would like to introduce the concept of equivalence among Wilson actions. Let

us regard two Wilson actions S1, S2 as equivalent if, with an appropriate choice of K1,2 and

k1,2, their modified correlation functions become identical for any n and momenta:

〈〈φ(p1) · · ·φ(pn)〉〉K1,k1
S1

= 〈〈φ(p1) · · ·φ(pn)〉〉K2,k2
S2

(11)

Since the functions K1,2, k1,2 keep the low energy physics intact, S1 and S2 describe the same

low energy physics. In the following we solve (11) to obtain an explicit relation between the

two actions.

We first rewrite (11) as
〈

exp

(

−
∫

p

k2(p)

p2
1

2

δ2

δφ(p)δφ(−p)

)

φ(p1) · · ·φ(pn)
〉

S2

=
n
∏

i=1

K2(pi)

K1(pi)
·
〈

exp

(

−
∫

p

k1(p)

p2
1

2

δ2

δφ(p)δφ(−p)

)

φ(p1) · · ·φ(pn)
〉

S1

(12)

Since functional integration by parts gives
〈

exp

(

−
∫

p

k(p)

p2
1

2

δ2

δφ(p)δφ(−p)

)

φ(p1) · · ·φ(pn)
〉

S

=
∫

[dφ]eS[φ] exp

(

−
∫

p

k(p)

p2
1

2

δ2

δφ(p)δφ(−p)

)

φ(p1) · · ·φ(pn)

=
∫

[dφ]φ(p1) · · ·φ(pn) exp
(

−
∫

p

k(p)

p2
1

2

δ2

δφ(p)δφ(−p)

)

eS[φ] (13)
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we obtain

∫

[dφ]

(

n
∏

i=1

φ(pi)

)

· exp
(

−
∫

p

k2(p)

p2
1

2

δ2

δφ(p)δφ(−p)

)

eS2[φ]

=
∫

[dφ]

(

n
∏

i=1

K2(pi)

K1(pi)
φ(pi)

)

· exp
(

−
∫

p

k1(p)

p2
1

2

δ2

δφ(p)δφ(−p)

)

eS1[φ] (14)

This implies that

exp

(

−
∫

p

k2(p)

p2
1

2

δ2

δφ(p)δφ(−p)

)

eS2[φ] =

[

exp

(

−
∫

p

k1(p)

p2
1

2

δ2

δφ(p)δφ(−p)

)

eS1[φ]

]

subst

(15)

where the suffix “subst” denotes the substitution of

K1(p)

K2(p)
φ(p) (16)

for φ(p) on the right-hand side. Hence, we obtain an intermediate result

eS2[φ] = exp

(

∫

p

k2(p)

p2
1

2

δ2

δφ(p)δφ(−p)

)[

exp

(

−
∫

p

k1(p)

p2
1

2

δ2

δφ(p)δφ(−p)

)

eS1[φ]

]

subst

(17)

We can rewrite this in two ways. First, noting that under the substitution (16), we must

substitute
K2(p)

K1(p)

δ

δφ(p)
(18)

for δ
δφ(p)

, we obtain the first relation

eS2[φ] = exp





∫

p

1

p2







k2(p)− k1(p)
(

K2(p)

K1(p)

)2






1

2

δ2

δφ(p)δφ(−p)



 exp
(

S1

[

K1

K2
φ
])

(19)

Note that the two actions are the same for φ(p) with small p, since the function of p2 in the

curly bracket above is negligible for small p2. In this sense the two actions differ only by

local terms.

Alternatively, we rewrite (17) as

eS2[φ] =



exp





∫

p

1

p2







k2(p)

(

K1(p)

K2(p)

)2

− k1(p)






1

2

δ2

δφ(p)δφ(−p)



 eS1[φ]





subst

(20)

Using the gaussian formula

exp

(

∫

p
A(p)

1

2

δ2

δφ(p)δφ(−p)

)

exp (S[φ])

=
∫

[dφ′] exp

(

−
∫

p

1

2A(p)
(φ′(−p)− φ(−p)) (φ′(p)− φ(p)) + S [φ′]

)

(21)
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(proven in Appendix A), we obtain the second relation

eS2[φ] =
∫

[dφ′] exp

[

−
∫

p

p2

2
(

k2(p)
(

K1(p)
K2(p)

)2 − k1(p)
)

×
(

φ′(p)− K1(p)

K2(p)
φ(p)

)(

φ′(−p)− K1(p)

K2(p)
φ(−p)

)

+ S1[φ
′]

]

(22)

We have thus obtained two explicit formulas (19, 22) relating two equivalent Wilson

actions. The remaining sections give applications of these formulas. In Appendix B we give

corresponding results for a Dirac fermion field.

III. EXACT RENORMALIZATION GROUP

Let us apply the results of the previous section to derive the exact renormalization group

transformation of K. G. Wilson. (sect. 11 of [1]) We choose











K1(p) = K
(

p

Λ

)

, k1(p) = k
(

p

Λ

)

K2(p) = K
(

p
Λe−t

)

, k2(p) = k
(

p
Λe−t

) (23)

so that the two sets of cutoff functions differ only by the choice of a momentum cutoff. We

demand that the modified correlation functions (4) be independent of the momentum cutoff:

〈〈φ(p1) · · ·φ(pn)〉〉K2,k2
S2

= 〈〈φ(p1) · · ·φ(pn)〉〉K1,k1
S1

(24)

Now, using the first formula (19), we obtain

eS2[φ] = exp







∫

p

1

p2











k
(

p

Λ
et
)

− k
(

p

Λ

)





K
(

p

Λ
et
)

K
(

p
Λ

)





2










1

2

δ2

δφ(p)δφ(−p)







× exp



S1





K
(

p
Λ

)

K
(

p
Λ
et
)φ(p)







 (25)

By denoting S1 as SΛ and S2 as SΛe−t , and taking t infinitesimal, we obtain the exact

renormalization group (ERG) differential equation

− Λ
∂

∂Λ
eSΛ[φ] =

∫

p





∆
(

p
Λ

)

K
(

p

Λ

)φ(p)
δ

δφ(p)

+
1

p2



2
∆
(

p
Λ

)

K
(

p
Λ

)k
(

p

Λ

)

− Λ
∂

∂Λ
k
(

p

Λ

)





1

2

δ2

δφ(p)δφ(−p)



 eSΛ[φ] (26)
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where we define

∆
(

p

Λ

)

≡ Λ
∂

∂Λ
K
(

p

Λ

)

(27)

This amounts to (11.8) of ref. [1]. For the particular choice

k(p) = K(p) (1−K(p)) (28)

(26) gets simplified to

− Λ
∂

∂Λ
eSΛ[φ] =

∫

p





∆
(

p
Λ

)

K
(

p
Λ

)φ(p)
δ

δφ(p)
+

∆
(

p
Λ

)

p2
1

2

δ2

δφ(p)δφ(−p)



 eSΛ[φ] (29)

This was introduced first by J. Polchinski.[2]

Alternatively, we can use the second formula (22) which gives

eSΛe−t [φ] =
∫

[dφ′] exp











−
∫

p

p2

k
(

p

Λ
et
)

K( p

Λ)
2

K( p

Λ
et)

2 − k
(

p

Λ

)

×1
2



φ′(p)−
K
(

p
Λ

)

K
(

p
Λ
et
)φ(p)







φ′(−p)−
K
(

p
Λ

)

K
(

p
Λ
et
)φ(−p)



+ SΛ[φ
′]



 (30)

This is a well known integral solution of the ERG differential equation (26). (This is discussed

in details, for example, in [5].) Though mathematically equivalent, our starting point (24) of

this section is easier to understand than the differential equation (26) or its integral solution

(30).

Earlier in ref. [6] it was observed that renormalized correlation functions of QED can be

constructed out of correlation functions of its Wilson action: the modified correlation func-

tions (4) coincide with renormalized correlation functions. Cutoff independent correlation

functions have been also discussed by O. J. Rosten.[7]

IV. POLCHINSKI VS. WILSON

As a second application, we consider










K1(p) = K
(

p

Λ

)

, k1(p) = k
(

p

Λ

)

K2(p) = K ′

(

p
Λ

)

, k2(p) = k′
(

p
Λ

)

≡ K ′

(

p
Λ

) (

1−K ′

(

p
Λ

)) (31)

Note that k2 follows Polchinski’s convention (28), which is convenient for perturbative ap-

plications. Given a solution S1 of the ERG differential equation (26) with K1, k1, we wish

to construct an equivalent S2 that solves (29) with K2, k2.

7



As has been shown in the previous section, the modified correlation functions are inde-

pendent of Λ, if the Wilson action satisfies (26). Hence, if S1 and S2 are equivalent at a

particular Λ, they give the same modified correlation functions at any Λ. In the following

let us choose Λ = 1, and demand S1 and S2 give the same modified correlation functions.

Using (19) and denoting S1 as S and S2 as S ′, we obtain

eS
′[φ] = exp





∫

p

1

p2



k′(p)− k(p)
(

K ′(p)

K(p)

)2




1

2

δ2

δφ(p)δφ(−p)



 exp
[

S
[

K

K ′
φ
]]

(32)

A particularly simple result follows if we choose K ′ satisfying

k′(p) = k(p)

(

K ′(p)

K(p)

)2

(33)

This gives

K ′(p) =
K(p)

K(p)2 + k(p)
·K(p) (34)

With this choice, we obtain

S ′[φ] = S

[

K2 + k

K
φ

]

(35)

so that the two equivalent actions are simply related by a linear change of field variables.

For the particular choice of made in sec. 11 of [1]

K(p) = e−p
2

, k(p) = p2 (36)

we obtain

K ′(p) =
1

1 + p2e2p2
(37)

V. ERG FOR FIXED POINTS

We now apply the results of sect. II to show the universality of critical exponents at

a fixed point of the ERG transformation, by which we mean the independence of critical

exponents on the choice of cutoff functions K, k. For the ERG transformation to have a

fixed point, we must change the transformation given in sect. III in two ways:[1] first by

adopting a dimensionless notation, and second by introducing an anomalous dimension to

the scalar field. (We elaborate more on these points in Appendix C.) After these changes,

the Wilson action St depends on t such that

〈〈

φ(p1e
∆t) · · ·φ(pne∆t)

〉〉K,k

St+∆t

= e∆t·n(−
D+2

2
+γ) 〈〈φ(p1) · · ·φ(pn)〉〉K,kSt

(38)
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for the same cutoff functionsK(p), k(p) independent of t. This is the new form of equivalence

between St and St+∆t: their modified correlation functions are the same up to a scale

transformation. On the right-hand side, −D+2
2

gives the canonical mass dimension of the

field φ(p) (since this is the Fourier transform, we obtain D−2
2
− D = −D+2

2
), and γ is the

anomalous dimension, taken for simplicity as a t-independent constant.

Let us solve (38) to obtain St+∆t in terms of St. Following the same line of arguments

given in sect. II, we obtain

eSt+∆t[φ] = exp

(

∫

p

k(p)

p2
1

2

δ2

δφ(p)δφ(−p)

)[

exp

(

−
∫

p

k(p)

p2
1

2

δ2

δφ(p)δφ(−p)

)

eSt[φ]

]

subst

(39)

where “subst” stands for the substitution of

e∆t(
D+2

2
−γ) K(p)

K(pe∆t)
φ(pe∆t) (40)

for φ(p). Since this substitution implies the substitution of

e∆t(D−
D+2

2
+γ)K(pe∆t)

K(p)

δ

δφ(pe∆t)
(41)

for δ
δφ(p)

, we obtain

eSt+∆t[φ] = exp

[

∫

p

1

p2

(

k(p)− k(pe−∆t)
K(p)2

K(pe−∆t)2
e∆t·2γ

)

1

2

δ2

δφ(p)δφ(−p)

]

[

eSt[φ]
]

subst
(42)

Taking ∆t infinitesimal, we obtain the ERG differential equation

∂te
St[φ] =

∫

p

[(

∆(p)

K(p)
+
D + 2

2
− γ

)

φ(p) + pµ
∂φ(p)

∂pµ

]

δ

δφ(p)
eSt[φ]

+
∫

p

1

p2

(

2
∆(p)

K(p)
k(p) + 2p2

dk(p)

dp2
− 2γk(p)

)

1

2

δ2

δφ(p)δφ(−p)e
St[φ] (43)

For Polchinski’s choice

k(p) = K(p) (1−K(p)) (44)

this gets simplified to

∂te
St[φ] =

∫

p

[(

∆(p)

K(p)
+
D + 2

2
− γ

)

φ(p) + pµ
∂φ(p)

∂pµ

]

δ

δφ(p)
eSt[φ]

+
∫

p

1

p2
{∆(p)− 2γK(p) (1−K(p))} 1

2

δ2

δφ(p)δφ(−p)e
St[φ] (45)

which is given in [5]. For Wilson’s choice

K(p) = e−p
2

, k(p) = p2 (46)
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(43) gives

∂te
St[φ] =

∫

p

[

D

2
φ(p) + pµ

∂φ(p)

∂pµ

]

δ

δφ(p)
eSt[φ]

+
∫

p

(

1− γ + 2p2
)

(

φ(p)
δ

δφ(p)
+

δ2

δφ(p)δφ(−p)

)

eSt[φ] (47)

which reproduces (11.17) of [1] under the identification

dρ(t)

dt
= 1− γ (48)

Now, the anomalous dimension γ is chosen for the existence of a fixed point action S∗

that satisfies

∫

p

[(

∆(p)

K(p)
+
D + 2

2
− γ

)

φ(p) + pµ
∂φ(p)

∂pµ

]

δ

δφ(p)
eS

∗[φ]

+
∫

p

1

p2

(

2
∆(p)

K(p)
k(p) + 2p2

dk(p)

dp2
− 2γk(p)

)

1

2

δ2

δφ(p)δφ(−p)e
S∗[φ] = 0 (49)

At the fixed point, the correlation functions obey the scaling law:

〈〈

φ(p1e
t) · · ·φ(pnet)

〉〉K,k

S∗
= etn(−

D+2

2
+γ) 〈〈φ(p1) · · ·φ(pn)〉〉K,kS∗ (50)

Only for specific choices of γ, (49) has an acceptable solution. For example, if we assume

S∗ to be quadratic in φ, the solution becomes non-local unless γ = 0,−1,−2, · · ·. We then

obtain

S∗ = −1
2

∫

p

p2(1−γ)

ZK(p)2 + k(p)p2(−γ)
φ(p)φ(−p) (51)

which gives

〈〈φ(p)φ(q)〉〉K,kS∗ =
Z

p2(1−γ)
δ(p+ q) (52)

where Z is an arbitrary positive constant. (This is discussed in Appendix of [1].)

VI. UNIVERSALITY OF CRITICAL EXPONENTS

We now discuss universality of critical exponents at an arbitrary fixed point S∗ of the ERG

transformation, reviewed in the previous section. Universality within the ERG formalism

has been shown in ref. [8]; our discussion below has the merit of conciseness. (In Appendix

D we derive those results of [8] relevant to the present paper.)
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S∗ depends on K, k, but we know from sect. II that for any choice of K, k there is an

equivalent action that gives the same modified correlation functions. (19) gives the equivalent

action S ′∗ for K ′, k′ as

eS
′∗[φ] = exp

[

∫

p

1

p2

(

k′(p)
K(p)2

K ′(p)2
− k(p)

)

1

2

δ2

δφ(p)δφ(−p)

]

exp
(

S∗

[

K

K ′
φ
])

(53)

Since the integrand of the exponent vanishes at p2 = 0, S∗ and S ′∗ differ by local terms.

Since

〈〈φ(p1) · · ·φ(pn)〉〉K
′,k′

S′∗ = 〈〈φ(p1) · · ·φ(pn)〉〉K,kS∗ (54)

the anomalous dimension γ is independent of the choice of K, k.

Now, the anomalous dimension γ is not the only critical exponent defined at the fixed

point S∗. The other exponents appear as scale dimensions of local composite operators.[1]

A composite operator Oy(p) with momentum p is a functional of φ satisfying

〈〈

Oy(pet)φ(p1et) · · ·φ(pnet)
〉〉K,k

S∗
= et{−y+n(−D+2

2
+γ)} 〈〈Oy(p)φ(p1) · · ·φ(pn)〉〉K,kS∗ (55)

where the modified correlation functions are defined by

〈〈Oy(p)φ(p1) · · ·φ(pn)〉〉K,kS∗

≡
n
∏

i=1

1

K(pi)
·
〈

Oy(p) exp
(

−
∫

p

k(p)

p2
1

2

δ2

δφ(p)δφ(−p)

)

φ(p1) · · ·φ(pn)
〉

S∗

(56)

and −y is the scale dimension of Oy. (The scale dimension of Oy(x) =
∫

p e
ipxOy(p) in coordi-

nate space is D−y.) For the equivalent fixed point action S ′∗ with K ′, k′, the corresponding

composite operator has the same modified correlation functions:

〈〈Oy(p)φ(p1) · · ·φ(pn)〉〉K,kS∗ =
〈〈

O′

y(p)φ(p1) · · ·φ(pn)
〉〉K ′,k′

S′∗
(57)

This gives O′

y(p) as

O′

y(p)e
S′∗[φ] = exp

(

∫

p

1

p2

(

k′(p)
K(p)2

K ′(p)2
− k(p)

)

1

2

δ2

δφ(p)δφ(−p)

)

[

Oy(p)eS
∗[φ]
]

subst
(58)

where “subst” implies substitution of

K(p)

K ′(p)
φ(p) (59)

into φ(p). The scale dimension y is thus independent of the choice of K, k. We conclude

that all the critical exponents are independent of K, k.

Before closing this section, we would like to discuss two issues related to the fixed point

action S∗.
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A. Ambiguity of the fixed point action

Given K, k, and an appropriate choice of γ, the fixed point solution S∗ of the ERG

differential equation is still not unique. This is because normalization of the scalar field can

be arbitrary.

Given S∗, we can construct S∗

Z satisfying

〈〈φ(p1) · · ·φ(pn)〉〉K,kS∗
Z

= Z
n
2 〈〈φ(p1) · · ·φ(pn)〉〉K,kS∗ (60)

To obtain S∗

Z , we set K2 =
√
ZK1 and k2 = k1 in (19). We then get

eS
∗
Z
[φ] = exp

(

− (Z − 1)
∫

p

k(p)

p2
1

2

δ2

δφ(p)δφ(−p)

)

e
S∗
[

φ√
Z

]

(61)

For example, the Z-dependence of the gaussian fixed point (γ = 0) is given by

SG,Z [φ] = −
1

2

∫

p

p2

ZK(p)2 + k(p)
φ(p)φ(−p) (62)

Taking Z = 1 + 2ǫ, where ǫ is infinitesimal, we obtain

S∗

1+2ǫ[φ]− S∗[φ] = ǫN ∗[φ] (63)

where

N ∗[φ] ≡ −
∫

p

{

φ(p)
δS∗

δφ(p)
+
k(p)

p2

(

δS∗

δφ(p)

δS∗

δφ(−p) +
δ2S∗

δφ(p)δφ(−p)

)}

(64)

is a local composite operator satisfying

〈〈N ∗[φ]φ(p1) · · ·φ(pn)〉〉K,kS∗ = n 〈〈φ(p1) · · ·φ(pn)〉〉K,kS∗ (65)

Obviously, N ∗[φ], called an equation-of-motion operator in [5], has scale dimension 0.

B. Universal fixed point action?

We have shown that the modified correlation functions are universal up to normalization

of the scalar field. We now ask if there is a universal Wilson action S∗

univ that gives the

universal modified correlation functions as its unmodified correlation functions:

〈φ(p1) · · ·φ(pn)〉S∗
univ

= 〈〈φ(p1) · · ·φ(pn)〉〉K,kS∗ (66)
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This implies

eS
∗
univ

[φ] =

[

exp

(

−1
2

∫

p

k(p)

p2
δ2

δφ(p)δφ(−p)

)

eS
∗[φ]

]

subst

(67)

where S∗ is the fixed point action for K, k, and “subst” denotes substitution of

K(p)φ(p) (68)

for φ(p). The above result is obtained from (19) by setting

K2 = 1, k2 = 0 (69)

We expect that the right-hand side is independent of K, k, i.e., S∗

univ has no cutoff. But we

know that the use of a cutoff is essential for Wilson actions, and there must be something

wrong with S∗

univ.

Let us first consider the example of the gaussian fixed point given by

SG[φ] = −
1

2

∫

p

p2

K(p)2 + k(p)
φ(p)φ(−p) (70)

This gives the modified two-point function

〈〈φ(p)φ(q)〉〉K,kSG
=

1

p2
δ(p+ q) (71)

(67) indeed gives an action free from a cutoff:

SG,univ[φ] = −
1

2

∫

p
p2φ(p)φ(−p) (72)

For interacting theories, though, we expect (67) makes no sense. Let us look at this a

little more closely. As K2, k2, we choose











K2(p) = K−t(p) ≡ K(pe−t)

k2(p) = k−t(p) ≡ k(pe−t)
(73)

In the limit t→ +∞, we obtain (69):

lim
t→+∞

K−t(p) = 1, lim
t→+∞

k−t(p) = 0 (74)

We then define S∗

−t so that

〈〈φ(p1) · · ·φ(pn)〉〉K−t,k−t

S∗
−t

= 〈〈φ(p1) · · ·φ(pn)〉〉K,kS∗ (75)
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S∗

−t is related to S∗ by the ERG transformation of sect. III. Since the momentum cutoff

of S∗ is of order 1 (we are using the dimensionless convention), that of S∗

−t is of order et.

Hence, S∗

univ has the infinite momentum cutoff. We then expect that the terms of S∗

univ to

have divergent coefficients.

Thus, there is no fixed point action S∗

univ that gives the correlation functions without

modification.

VII. CONCLUDING REMARKS

We have introduced the concept of equivalence among Wilson actions. Our equivalence is

physically more transparent than the other formulations of the exact renormalization group

via differential equations or integral formulas. In particular we have applied our equivalence

to obtain a simple proof of universality of critical exponents within the ERG formalism.

Appendix A: Gaussian Formula

In this appendix we prove the formula

exp

[

∫

p
A(p)

1

2

δ2

δφ(p)δφ(−p)

]

exp [S[φ]]

=
∫

[dφ′] exp

[

−
∫

p

1

2A(p)
φ′(−p)φ′(p) + S [φ+ φ′]

]

(A1)

Though the following proof requires the positivity of A(p), we expect the formula to remain

valid as long as both hand sides make sense. The left-hand side makes sense for any A(p),

and the right-hand side makes sense even if A(p) < 0 for some p as long as convergence of

functional integration is provided by the Wilson action S.

It is easy to understand this formula in terms of Feynman graphs. The right-hand side

implies the coupling of a scalar field φ′ whose propagator is A(p). Contracting the pairs of

φ′, we obtain the left-hand side. More formally, we can prove the equality by comparing the

generating functionals of both hand sides for arbitrary source J(p). Let us first compute the

generating functional of the left-hand side:

eWL[J ] ≡
∫

[dφ] exp
[
∫

p
J(−p)φ(p)

]

exp

[

∫

p
A(p)

1

2

δ2

δφ(p)δφ(−p)

]

exp [S[φ]] (A2)
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Integrating this by parts, we obtain

eWL[J ] =
∫

[dφ] exp [S[φ]] exp

[

∫

p
A(p)

1

2

δ2

δφ(p)δφ(−p)

]

exp
[∫

p
J(−p)φ(p)

]

=
∫

[dφ] exp
[

S[φ] +
∫

p

(

J(−p)φ(p) + 1

2
J(−p)A(p)J(p)

)]

(A3)

We next compute the generating functional of the right-hand side:

eWR[J ] ≡
∫

[dφ] exp
[∫

p
J(−p)φ(p)

]

×
∫

[dφ′] exp

[

−1
2

∫

p

1

A(p)
φ′(p)φ′(−p) + S[φ+ φ′]

]

(A4)

We first shift φ′ by −φ, and then shift φ by +φ′ to obtain

eWR[J ] =
∫

[dφ][dφ′] exp
[∫

p
J(−p) (φ(p) + φ′(p))

]

× exp

[

−1
2

∫

p

1

A(p)
φ(p)φ(−p) + S[φ′]

]

=
∫

[dφ] exp

[

∫

p

(

− 1

2A(p)
φ(p)φ(−p) + J(−p)φ(p)

)]

×
∫

[dφ′] exp
[∫

p
J(−p)φ′(p) + S[φ′]

]

(A5)

If A(p) is positive, we can perform the gaussian integral over φ to obtain

eWR[J ] =
∫

[dφ′] exp
[

1

2

∫

p
J(−p)A(p)J(p) +

∫

p
J(−p)φ′(p) + S[φ′]

]

(A6)

We thus obtain

WL[J ] = WR[J ] (A7)

for arbitrary J . This proves the gaussian formula (A1).

Finally, shifting φ′ by −φ, we rewrite (A1) as

exp

[

∫

p
A(p)

1

2

δ2

δφ(p)δφ(−p)

]

exp [S[φ]]

=
∫

[dφ′] exp

[

−
∫

p

1

2A(p)
(φ′(−p)− φ(−p)) (φ′(p)− φ(p)) + S [φ′]

]

(A8)

This is the form used in section II.
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Appendix B: Equivalence of Fermionic Wilson Actions

For a Dirac spinor field ψ and its complex conjugate ψ̄, we define modified correlation

functions by

〈〈

ψ(p1) · · ·ψ(pn)ψ̄(qn) · · · ψ̄(q1)
〉〉K,k

S
≡

n
∏

i=1

1

K(pi)K(qi)

×
〈

ψ(p1) · · ·ψ(pn) exp


−
∫

p

←−
δ

δψ(p)

k(p)

p/

−→
δ

δψ̄(−p)



 ψ̄(qn) · · · ψ̄(q1)
〉

S

(B1)

so that
〈〈

ψ(p)ψ̄(q)
〉〉K,k

S
=

1

K(p)2

[

〈

ψ(p)ψ̄(q)
〉

S
− k(p)

p/
δ(p+ q)

]

(B2)

Two Wilson actions S1,2 are equivalent if K1,2 and k1,2 exist so that

〈〈

ψ(p1) · · ·ψ(pn)ψ̄(qn) · · · ψ̄(q1)
〉〉K1,k1

S1

=
〈〈

ψ(p1) · · ·ψ(pn)ψ̄(qn) · · · ψ̄(q1)
〉〉K2,k2

S2

(B3)

The formula analogous to (22) is given by

eS2[ψ,ψ̄] =
∫

[dψ′dψ̄′] exp

[

−
∫

p

(

ψ̄′(−p)− K1(p)

K2(p)
ψ̄(−p)

)

p/

k2(p)
K1(p)2

K2(p)2
− k1(p)

×
(

ψ′(p)− K1(p)

K2(p)
ψ(p)

)

+ S[ψ′, ψ̄′]

]

(B4)

The formula analogous to (19) is somewhat more complicated to write down. Denoting

Aab(p) ≡
(

1

p/

)

ab

(

k2(p)− k1(p)
K2(p)

2

K1(p)2

)

(B5)

we obtain

eS2[ψ,ψ̄] = Tr



exp





∫

p

←−
δ

δψ(p)
A(p)

−→
δ

δψ̄(−p)



 exp
(

S1

[

K1

K2

ψ,
K1

K2

ψ̄
])



 (B6)

≡
∞
∑

n=0

(−)n
n!

∫

p1,···,pn

n
∏

i=1

Aaibi(pi)

×
−→
δ

δψ̄bn(−pn)
· · ·

−→
δ

δψ̄b1(−p1)
exp

(

S1

[

K1

K2
ψ,
K1

K2
ψ̄
])

←−
δ

δψa1(p1)
· · ·

←−
δ

δψan(pn)
(B7)

where the spinor indices are summed over. The exponential implies contraction of ψ(p)ψ̄(q)

by A(p)δ(p+ q).

16



Appendix C: Derivation of (38)

In this appendix we provide more details behind the new form of equivalence (38). Start-

ing from the original equivalence (24), we obtain (38) in two steps: first by rescaling dimen-

sionful quantities, and second by introducing an anomalous dimension of the scalar field.

1. Rescaling

We first rewrite the equivalence (24) by rescaling dimensionful quantities such as momenta

and field variables. Note that K1 and K2 differ only by a rescaling of momentum

K2(pe
−t) = K1(p) . (C1)

Likewise, we have

k2(pe
−t) = k1(p) . (C2)

We wish to rewrite S2 in such a way that its cutoff functions become K1, k1.

For this purpose, we introduce a rescaled field variable

φ̄(p) ≡ e−t
D+2

2 φ(pe−t) (C3)

so that
δ

δφ̄(p)
= e−t

D−2

2
δ

δφ(pe−t)
. (C4)

We then define

S̄2[φ̄] ≡ S2[φ] . (C5)

In other words S̄2[φ] is obtained from S2[φ] by substituting et
D+2

2 φ(pet) for φ(p). For example,

given

S2[φ] = −
1

2

∫

p

p2

K2(p)
φ(p)φ(−p) , (C6)

we obtain

S̄2[φ] = −
1

2

∫

p

p2

K2(p)
et(D+2)φ(pet)φ(−pet)

= −1
2

∫

p

p2

K2(pe−t)
φ(p)φ(−p) = −1

2

∫

p

p2

K1(p)
φ(p)φ(−p) . (C7)

17



We rewrite the left-hand side of (24) as

〈〈φ(p1) · · ·φ(pn)〉〉K2,k2
S2

= ent
D+2

2

〈〈

φ̄(p1e
t) · · · φ̄(pnet)

〉〉K2,k2

S2

= ent
D+2

2

n
∏

i=1

1

K2(pi)
·
〈

exp

(

−
∫

p

k2(p)

p2
1

2

δ2

δφ(p)δφ(−p)

)

×φ̄(p1et) · · · φ̄(pnet)
〉

S2[φ]
. (C8)

Using (C2) and (C4), we obtain

∫

p

k2(p)

p2
δ2

δφ(p)δφ(−p) = e−t(D−2)
∫

p

k2(pe
−t)

p2
δ2

δφ(pe−t)δφ(−pe−t)

=
∫

p

k1(p)

p2
δ2

δφ̄(p)δφ̄(−p) . (C9)

Hence, using (C1), we obtain

〈〈φ(p1) · · ·φ(pn)〉〉K2,k2
S2

= ent
D+2

2

n
∏

i=1

1

K1(piet)
·
〈

exp

(

−
∫

p

k1(p)

p2
1

2

δ2

δφ̄(p)δφ̄(−p)

)

× φ̄(p1et) · · · φ̄(pnet)
〉

S2[φ]
(C10)

Using (C5) and rewriting integration variables φ̄ as φ, we obtain

〈〈φ(p1) · · ·φ(pn)〉〉K2,k2
S2

= ent
D+2

2

〈〈

φ(p1e
t) · · ·φ(pnet)

〉〉K1,k1

S̄2

(C11)

Thus, by rescaling, S2 has been converted to S̄2 with the cutoff functions K1, k1.

We can now write (24) as

ent
D+2

2

〈〈

φ(p1e
t) · · ·φ(pnet)

〉〉K1,k1

S̄2

= 〈〈φ(p1) · · ·φ(pn)〉〉K1,k1
S1

(C12)

Replacing t by ∆t, we obtain

〈〈

φ(p1e
∆t) · · ·φ(pne∆t)

〉〉K1,k1

S̄2

= e−∆t·nD+2

2 〈〈φ(p1) · · ·φ(pn)〉〉K1,k1
S1

(C13)

By writing S1 as St and S̄2 as St+∆t, we obtain (38) for γ = 0.

2. Anomalous dimension

Given a Wilson action S[φ], we can construct an action SZ [φ] whose modified correlation

functions differ only by normalization of the field:

〈〈φ(p1) · · ·φ(pn)〉〉K,kSZ
= Z

n
2 〈〈φ(p1) · · ·φ(pn)〉〉K,kS (C14)
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To obtain SZ , we set K2 =
√
Z K1 and k2 = k1 in (19). We then get

exp (SZ [φ]) = exp

(

−(Z − 1)
∫

p

k(p)

p2
1

2

δ2

δφ(p)δφ(−p)

)

exp

(

S

[

φ√
Z

])

(C15)

(We have used the same transformation for the fixed point action in sect. VIA.)

Given S̄2, we construct S ′

2 such that

〈〈φ(p1) · · ·φ(pn)〉〉K1,k1
S′
2

= enγ∆t 〈〈φ(p1) · · ·φ(pn)〉〉K1,k1
S̄2

(C16)

where γ is an arbitrary constant. Then, (C13) becomes

〈〈

φ(p1e
∆t) · · ·φ(pne∆t)

〉〉K1,k1

S′
2

= e∆t·n(−
D+2

2
+γ) 〈〈φ(p1) · · ·φ(pn)〉〉K1,k1

S1
(C17)

This gives (38), which defines the renormalization group transformation with an anomalous

dimension.

Note that we have introduced an anomalous dimension γ by hand. A particular γ must

be chosen for the new renormalization group transformation to have a fixed point.

Appendix D: Relation to the results of Latorre and Morris

In [8] Latorre and Morris have shown that the change of a cutoff function can be com-

pensated by a change of field variables. We would like to explain briefly how their result

can be reproduced from the results of the present paper.

The relation between two equivalent actions S1 (with K1, k1) and S2 (with K2, k2) has

been given by (19). Choosing











K1 = K, k1 = k,

K2 = K + δK, k2 = k + δk,
(D1)

where δK and δk are infinitesimal, we obtain from (19)

(S2[φ]− S1[φ]) e
S1[φ] ≃

∫

p

δ

δφ(p)

[

θ(p) eS1[φ]
]

, (D2)

where

θ(p) ≡ −δK(p)

K(p)
φ(p) +

1

p2

(

1

2
δk(p)− k(p)δK(p)

K(p)

)

δS1

δφ(−p) . (D3)

In deriving (D2), we have taken only the terms first order in δK or δk, and we have ignored

a field independent constant. (D2) gives the change of the action under an infinitesimal
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change of φ(p) by θ(p). Upon the choice of the Polchinski convention k = K(1 −K), (D3)

reduces to

θ(p) = −δK(p)

2p2

(

δS1

δφ(−p) +
2p2

K(p)
φ(p)

)

(D4)

which reproduces (3.15) of [8].

In addition Latorre and Morris have shown that the ERG transformation is also a change

of variables. Our ERG differential equation (43) can be rewritten as

∂te
St[φ] =

∫

p

δ

δφ(p)

[

Ψt(p) e
St[φ]

]

, (D5)

where

Ψt(p) ≡
(

D + 2

2
− γ + ∆(p)

K(p)

)

φ(p) + pµ
∂φ(p)

∂pµ

+
1

p2

(

∆(p)

K(p)
k(p) + p2

dk(p)

dp2
− γk(p)

)

δSt
δφ(−p) . (D6)

Thus, ∂tSt is the change of the action by an infinitesimal change of φ(p) by Ψt(p). Upon

the choice k = K(1−K), the above reduces to

Ψt(p) =

(

D + 2

2
− γ + ∆(p)

K(p)

)

φ(p) + pµ
∂φ(p)

∂pµ
+

1

p2

(

1

2
∆(p)− γK(p)(1−K(p))

)

δSt
δφ(−p)

(D7)

which reproduces (2.3) of [8] if γ = 0.
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