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1. Introduction

Non-perturbative calculations of the phases stronglyramtting matter are hampered by the
sign problem (for a review of different approaches $ge [1]).

In the past years, however, progress in complex Langevi) @@hamics [P[B[}]]5] has led
to the hope that the full region of physical interest can @iaed. In this study we support the
complex Langevin simulations by exploring an alternatigpraach to lattice fermions at nonzero
chemical potential: the hopping parameter expansion, lwbén be formulated as a systematic
approximation to finite density QCD. The expansion is exge:tb converge at not too small quark
masses.

Historically the hopping expansion was used in the form efldop expansion (described in
detail in Sec. 3). It was used by earlier studies at LO and NBQJ[[$.[9] with the full Yang-
Mills action, also to map the phase diagram[if [Q, 11]. Imli&ts combined with strong coupling
expansion it has been possible to calculate NNLO contobstias well [I2[ 13, 141, but it has
proven quite difficult to further extend the the expansiohitgher orders.

Here we present an alternative way to introduce higherrozderections in the hopping pa-
rameter expansior] [[L5]. The approach allows calculatidngery high orders (only limited by
available computer power), while keeping the full Yang{stéction, and without having to con-
sider fermionic loops and their combinatorial factors atreaew order.

We define thex- andks-expansions below, with slightly different properties. Wgrove on
the convergence properties of the loop expansion whereffiietiee expansion parameter kN,
with N; the temporal extent of the lattice.

In section 2, we briefly describe Complex Langevin simulaioln Section 3, we first review
the loop expansion, then describe the new approaches we-cafid ks-expansion, and discuss
their implementation in the complex Langevin equation. éct®n 4 we present numerical results
gained using this approach. Finally, in Section 5 we corelud

2. Complex Langevin Simulations

The Complex Langevin approach is based on the complexditatf the Langevin equation
[Lg, [IT]. This also leads to the complexification of the fieldnifiold. The resulting process is
susceptible to numerical problems (runaway trajectosebied by using adaptive step sizpg [18]),
as well as convergence to a wrong result. Recently it hasdie®mmn that convergence is guaranteed
as long as some conditions are satisfied, such as the fagtafdzld distributions and holomorphy
of the action and the observablg} [2]. Note that there areraktypes of modifications possible
to adapt the Langevin process for a given action, which oneusa to get the process to satisfy
convergence criterig [IL9]. The method has proven usefuthieracontexts with a complex action
as well 20[21L[ 24, 29, 24].

In lattice QCD the discretised Langevin equation is writsr{2p]

Uxv — eXp{ Z iAa(EKxva+ \/Er]xva) } Uxv, (2.1)
a
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whereK,,a = —DxyaS is the drift force, e the (adaptive) stepsize, amdindependent Gaussian
noises satisfyingnyvalxva) = 20aa 0 Oy A complex action leads to a complex dridt, and
link variables take values in SL(B), losing their unitarity.

The available configuration space is thus complexified, asdd compactness. For gauge
theories this leads to an additional complication: the nwuwf gauge orbits corresponding to a
configuration is infinite. To restrict the movement of thetsys along the infinite gauge orbits
one has to modify the process, while respecting the gaugeiamce of the action and observables.
This can be very conveniently achieved with the gauge codfih(see also the revievf [R6]), which
uses non-compact gauge transformations to force the @éceatay near the unitary manifold. As
a consequence the decay of the distributions is fast, ageéedor the convergence proof. Together
with the adaptive stepsize this practically eliminatesaays.

Another requirement for the proof of convergence is the imaligphy of the action, which is
unfortunately not satisfied for QCD. This manifests in zesbthe measure, i.e. dst = 0, leading
to a meromorphic drift. Poles in the drift then might lead tang convergence of the process, as
shown in nontrivial, soluble modelf J27], while in many casiee process gives correct results in
spite of a non-holomorphic action, especially in the caskererthe non-holomorphy is due to a
Haar measure or Jacobign][19].

3. Hopping parameter expansions

3.1 Loop expansion

Recall the path integral formulation of QCD, where we useplagjuette actiorsyy for the
gauge fields

zz/bugﬁ S= Sy — logdetM, (3.1)

with the Wilson fermion matriM, the hopping tern@ of which we split into spatial hopping terms
Sand temporal hopping ternis

M=1-KQ=1-KS—R (3.2)
with
3
Sy =23 (M Usidpea + T 40y ) (3.3)
i&
Ry = 2K (eﬂr—4Ux,45y,x+a4 + e_ﬂr+4U);415y.xfa4) )

using the matriceE ., = (1+ y,)/2. Note that these matrices are projectors satisfjihg=rI .,
andl ., _, = 0. We then expand the fermionic part of the measure

detM = exp(Trlog(1— kQ)) = exp (—Tr i %Q”) : (3.4)
n=1

which we can rewrite noticing that we can perform the sum &mhdoop built from hopping terms
on the lattice separately, then resum the determinant fdr l@p (ignoring possible convergence
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T=1/Na

Figurel: Anillustration of the differentloops contributing to thedp expansion of the fermion determinant.

problems)
©o chS |
detM = exp| —Tr —L2 | =[]det1— kL), (3.5)
C.Szzl s © U ‘

whereC goes over all the possible loops on the lattice &ndis the length of the loop. Since
vy =0, no loop that turns back on itself needs to be considered.

In the static limit, wher& — 0, U — oo, { = 2k expu = const., all contributions vanish except
for the Polyakov loops. This is called the leading order @& lihop expansion. Next to leading
order (NLO) loops are gained by a decorating the Polyakop @h two spatial hoppings, as
illustrated in Fig[JL. NNLO contributions involve Polyak@ops with more decorations as well as
the plaquette contribution.

3.2 K expansion and ks expansion

To define an expansion which can be conveniently includetierLangevin equation, we go
back to the first step in the loop expansion

detM = exp(Trlog(1—kQ)) = exp (—Tr i %Q”) : (3.6)
n=1

In the sum only even powers of the hopping matrix contribagea trace is present. The expression
is straightforwardly generalized t9; > 1 flavors. We call this expansion theexpansion. The
fermionic observables can than be expressed in terms okgansion as

W) = TG 3 KT, @)
(n) = —%nilK”<Tr<g—SQ”1>>, (3.8)

for the chiral condensatgpy) and baryonic density, usingQ = N3N; the lattice volume.
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Alternatively, we can rewrite the fermion matrix using tlemtity

M=(1-R) (1— ﬁx@) . (3.9)
before expanding to gain the following expansion:
® N 1 n
detM = det(1—R) exanl—FSTr (ﬁ? > ) (3.10)

Since the matrix1 — R)~! is diagonal in spatial indices (and dense in temporal irg)ieadS
describes spatial hoppings, again only even powers caoigrim the sum. The first factor of the
expansion déf — R) describes the LO contribution in the static limit, also kmoas the HDQCD
approximation. This simplification happens only for Wildermions, as backtracking is forbidden,
hence the only possible loop built from temporal hoppingthéPolyakov loop. In this case the
determinant and the inverse of the matrix can be calculatatytically as follows. The inverse of
the matrix can be written as

1-R*=1-RH 14+ 1-R) -1 (3.11)

with R"+ R~ = R, R"R™ = 0 andR" (R") containing hoppings in positive (negative) temporal
directions. We can then find the inverse of the two terms bysiimple expansion (omitting spatial
coordinates)

[ee]

1-RY)y =Y (2keT _aUxadyxia,)", (3.12)

n=0

Separating the parallel transporter betwaeandy, we can easily resum the remaining factor to
give

ol g (2keNep(x)
(1-R")y =1 F,4l+(2K P if x=y (3.13)
1
— gHyy—X i
= _4(2ke") 15 (2% )NTP(X)W(x,y) if y>x
1
_ Nr +y—x i
= —I_4(2ke) 17 (2 )NTP(X)W(x,y) if y<x

whereW(x,y) is the parallel transporter betwearandy built from positive hoppingsP(x) is
the untraced Polyakov loop starting from sitéthat isP(x) = W(x,x)). The inverse of1—R") is
calculated similarly. Similar formulas were derived in Rdfl4] in an effort to develop an effective
theory for Polyakov-loops, also utilizing the strong canglexpansion for the Yang-Mills action.
The observables in thes expansion can be recovered using the defining equationsasuch
(n) =aInZ/du in straightforward calculations to yield formulas simitar(3.7).
These two expansions can be very conveniently implementedngevin simulations, as de-
tailed in the next subsection, but they have different gfifes and weaknesses. We consider a
truncated version of the expansion to orti8t.O, in which terms up ta2? are kept. We keep also
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the terms proportional to exp ), although their contribution is suppressed at lgngéout they
lead to the determinant satisfying the symmetry:

detM (1) = (detM(~p°))° (3.14)

Thek is expansion is very cheap to calculate, but its convergprmgerties at nonzero chemi-
cal potential are not optimal, &has terms proportional toexp(u). The action truncated to some
order is holomorphic, so proofs of convergence (requirilsg #ast decaying distributions) apply
[B]. In the k expansion one needs to go to ordérin order to see any dependence, as the first
closed loop (the plaquette) can be formed at this order. ISilyji one needs to go to ordef in
order to sequ dependence (using the Polyakov loop), since for shortgrsltloe dependence can-
cels. As we will demonstrate below calculating high ordsrsasy in this setup, so this drawback
iS not a serious one.

In our second scheme, tixg-expansion the main part of thedependence is dealt with ana-
Iytically, therefore one expects better convergence ptigseat highu, and this is indeed satisfied,
see in Section[] 4. The price to pay is the slightly higher micakcost and the non-holomorphic
action.

3.3 k- and Ks expansion in Langevin simulations

It is useful to consider the expanded determingni (3.6) asgbdhe action. Note that the
resulting effective action is holomorphic. It has than atdbation to the drift term of the Langevin
equation [(2]1)

00

Kyva = —n;K”Tr(QMvaaQ). (3.15)

Note that this contribution is non-real, therefore we havedmplexify the theory and use complex
Langevin dynamics. (Att = O real Langevin simulations are possible by taking the ragl @f the
fermionic drift terms.)

This contribution to the drift term can be estimated usingradom vectorn; (wherei repre-
sents space-time, colour and Dirac indices), with the pt@sg(n;) =0, (n;"'n;) = J; as

Kyva = (r’*(vaaQ)s>7 S=— Z Knanlr’. (3-16)

The calculation of this term ai9LO thus requires @ multiplications with the sparse matri@ in
every timestep, when the random vector is refreshed. Inabke of thexs-expansion, the drift term
has contributions from several places. The IrftletR) term has contributions to the drift identical
to the HDQCD, as calculated ip]28]. The contribution of tkpansion is

0 1 1 n-1
Kea = — 3 KITr | == (DyiaS) | ——=S
xia nleS r(l—R( xia )[1—R} >,

00 l 1 n
Kyga = — UTr { ——(DwaR) | =—=S 3.17

for spatial and temporal links, correspondingly. Thesetrdountions are estimated using noise
vectors similarly to[(3.36). The numerical effort of tkeexpansion involves also multiplications
with (1—R)~%, calculated according t§ (3]13), as well as multiplicagigvith the spars& matrix.
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Figure 2: Dependence of the quark density (in lattice units) on thesioad the truncation of th&- and

Ks-expansions, fop = 0.7 and 11, on a 4 lattice with 8 = 5.9, k = 0.12, andNs = 2. The region where
the k-expansion breaks down for= 1.1 is indicated. The lines show the result for full QCD. Satiora

density isngagt= 2NcNf = 12.

4. Numerical results

We have used simulations on small lattices to examine the convergence properties of the
expansions. We have used two flavors of Wilson fermions With 5.9 andk = ks = 0.12, for
severalu values. We compare results with full QCD, obtained by complengevin simulations,
extending the previous results available for staggereuiters [4] to Wilson fermions. Since the
full QCD result is also obtained with Wilson fermions thesenb need to renormalize the results,
already the bare quantities of the expansions in latticésshiould converge to their full QCD
values. We plot results in lattice units. The lattice spgésmeasured using the gradient flow, as
proposed in Ref[[29]. The lattice spacing depends weaklfhemmobility of the fermions for the
heavy quark masses that we are using. For HDQCD we fingBtkab.9 andk = 0.12 corresponds
toa~ 0.12 fm, while for full QCD we finda ~ 0.114 fm.

In Fig.[2 we show the quark number density as a function of tieroof thek- and k-
expansions for two different values, comparing to the full QCD result. We see that at thallsm
chemical potentiaju = 0.7 both expansions behave similarly, with convergence ardba k1°
order. At the higher chemical potential value, thexpansion breaks down, as expected.

We observe good convergence of the series to the full QCDesalurlhis is a non-trivial
agreement which supports both the expansion and the full Q@3 means in particular in the
case of thex expansion, that we must obtain the correct value also inG@D. This apparently
means that the non-holomorphicity of the action for full QSMot a problem (at least for the case
where thex expansion converges).

In Fig.[3 we see similar behavior for the chiral condensatktha spatial plaquette average.



Hopping parameter expansion using the Complex Langeviatamqu Dénes Sexty

5.8 T T T T T T T T , T
T 061 f full QCD p=1.1
| o | i K expansion u=1.1 --=-—
56 Y X x = K¢ expansion p=1.1 - ©
° b3 3 * 0.605 . full QCD u=0.7
% 54 " 1 ] K expansion p=0.7 -
g 6ol , dé_ 06 | Kg expap/slon p=0.7 - o
i : 5 —o—® € © = g o | & @ ©
3 full QCD p=0.7 mmmmm = X -
o L 4
= 5 K expansion pu=0.7 - % 0.595 . é ko) % b X
E agl : Ks €xpansion p=0.7 o S N <
S 81, . full QCD p=1.1 @ 059 L oX 43
4°4 K expansion p=1.1 ---#-- 29 4_,:-?9
4.6 *Bfg-?z Noz2 Ks expansion p=1.1 - o - . 520'12 No=2
k=0. F~ K exp. instable at p=1.1 2 b4 ' F _ K exp. instable at p=1.1
4.4 L | .- | | C 0.585 [, | | | =
0 10 20 30 40 50 0 10 20 30 40 50
n, order of the expansion (up to k" terms included) n, order of the expansion (up to k" terms included)

Figure3: Dependence of the chiral condensate and the spatial ptagwetrage (in lattice units) on the order
of the truncation of the&- andks-expansions, fop = 0.7 and 11, on a 4 lattice with = 5.9, k = 0.12,
andN; = 2. The region where thg-expansion breaks down far= 1.1 is indicated. The lines show the
result for full QCD.
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Figure4: The density ak = 0.14 on a 4 lattice for theks-expansion and full QCD.

While the convergence appears quite quick at 0.12, at large this might not be the case,
see Fig[J where we show the performance ofthexpansion ak = 0.14. These results suggest
that the convergence radius of tkgexpansion is belowk = 0.14 atu = 0.9. The convergence
radius seems to be independent of the lattice size, howkvEig.[§ we show the convergence of
the density on a®Blattice. This lattice system has a temperature below therdaement transition.
We see that density grows about a factor of 3 as one changebé¢hgcal potential frony = 0.7
to u = 0.8, which is a sign of the rapid onset transition. One obsetivastheks expansion still
performs well in this region.

5. Conclusions

In this study we have presented the novel implementatiorieeohopping expansion for the
complex Langevin equation which are called and ks expansion. They allow calculations at
very high, previously impossible orders. This allows theedi observation of the convergence of
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Figure5: The density ak = 0.12 on a 8 lattice for theks-expansion and full QCD for chemical potential
u =0.7andu =0.8.

the series to the full QCD result. We use the complex Langegimation to circumvent the sign
problem of these theories at finite chemical potential. Venasfurther approximation other than
the hopping expansion, the gauge action is kept intact iticodar, thus our method can also be
used as a test ground for other effective models.

Our expansions have different merits: thexpansion is cheap and has a holomorphic action,
but its convergence properties are bad at large chemicahpials. Theks expansion is slightly
more expensive numerically, but has improved convergermgepties also at high chemical poten-
tials.

We performed simulations of the expansions and observed goavergence to full QCD at
not too highk parameters. This convergence supports both the expandetheufull theory, as
the agreement shows that the non-holomorphy of the fullrihbas apparently no impact on the
results, at least in the parameter range where the conwagenbserved.

The first results indicate that at least the onset transitidgght be within the reach of this
method in the cold and dense region of the QCD phase diagmaruither studies are required at
low temperatures on large lattices.
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