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Effective transverse radius of nucleon in

high-energy elastic diffractive scattering
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Abstract

High-energy elastic diffraction of nucleons is considered in the framework of the sim-

plest Regge-eikonal approximation. It is demonstrated explicitly that the effective trans-

verse radius of nucleon in this nonperturbative regime is ∼ 0.2 ÷ 0.3 fm and much less

than the transverse size of the diffractive interaction region.

Introduction

Elastic diffractive scattering of hadrons is one of the most interesting and important areas of
high-energy hadron physics: in pp collisions the fraction of elastic diffraction events in the total
number of events is very high (from more than 15% at the ISR to about 25% at the LHC).
However, the main problem related to this sector of strong interaction physics is the fact that
the characteristic distances for diffractive interaction of hadrons are of order 1 fm, so that
perturbative QCD is inapplicable. Hence, one has to search for some approaches not related
to pQCD directly, to provide at least qualitative description of the corresponding high-energy
observables.

One of the most natural theoretical frameworks which helps to deal with the nonperturbative
sector of hadron physics is Regge theory wherein interaction of hadrons is described in terms
of exchanges by reggeons (off-mass-shell and off-spin-shell composite particles). In paper [1]
a simple Regge-eikonal model for high-energy elastic diffraction of nucleons was examined. In
this model, the standard eikonal representation of the nonflip scattering amplitude [2],

Tel(s, t) = 4πs
∫ ∞

0
db2J0(b

√
−t)

e2iδ(s,b) − 1

2i
, (1)

δ(s, b) =
1

16πs

∫ ∞

0
d(−t)J0(b

√
−t)δ(s, t)

(here s and t are the Mandelstam variables and b is the impact parameter), is exploited to-
gether with the single-reggeon-exchange approximation to the eikonal (Born amplitude) in the
kinematic range s ≫ {m2

p, |t|}:

δ(s, t) = δP(s, t) =

(

i+ tg
π(αP(t)− 1)

2

)

ΓP
2(t)

(

s

s0

)αP(t)

, (2)
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where s0 = 1 GeV2 and αP(t) is the Regge trajectory of pomeron (a C-even reggeon which
absolutely dominates over other reggeons at the SPS, Tevatron, and LHC energies). More
detailes, regarding the Regge-eikonal approach, can be found in [2] or, partly, in the Appendix.

In [1] the unknown functions αP(t) and ΓP(t) are considered independent and treated with
the help of some simple test parametrizations which are fitted to the data. Formally, the used
parametrizations have provided a satisfactory description of the available experimental data
at

√
s > 500 GeV and −t < 2 GeV2. However, a question emerges about possible correlation

between the behavior of αP(t) and ΓP(t) at low t, since both the functions have a strong impact
on the t-behavior of the scattering amplitude.

Such a correlation exists and can be taken into account explicitly. As a consequence, it
becomes possible to extract from the data a valuable information concerning the effective trans-
verse radius of nucleon in the nonperturbative regime of high-energy diffractive scattering.

Structure of the pomeron Regge residue

First of all, we should note that in the framework of the Regge-eikonal approach the pomeron
exchange contribution into the eikonal of nucleon-nucleon elastic scattering appears as

δP(s, t) =

(

i+ tg
π(αP(t)− 1)

2

)

g2P(t) πα
′
P(t)

(

s

2s0

)αP(t)

, (3)

where α′
P(t) originates from the pomeron propagator (see the Appendix) and, in general, the

factor 2−αP(t)πα′
P(t) is not related to the pomeron-nucleon coupling. In literature this factor is

usually included into the corresponding Regge residue [2]: g2P(t)2
−αP(t)πα′

P(t) ≡ ΓP
2(t).

If to consider gP(t) as a nontrivial unknown function of t, then expressions (2) and (3)
are equivalent from the standpoint of description of data. However, the replacement gP(t) →
ΓP(t) degrades the physical transparency of the model since the shortened form (2) ignores the
evident correlation between the behavior of the pomeron Regge residue and the pomeron Regge
trajectory. Moreover, if the t-dependence of gP(t) is weak at low t, then usage of (2) instead of
(3) leads to loss of physical information.

Treating the high-energy elastic scattering of nucleons in the same way as the lepton-proton
elastic scattering, we define the quantity gP(0) as the effective “pomeron charge” of nucleon,
while the ratio gP(t)/gP(0) should be considered as the nucleon “pomeron form factor”. By
analogy with the extraction of the proton charge radius from the proton charge form factor, one
can extract the effective transverse “pomeron radius” of nucleon from gP(t). Hence, possible
weak t-dependence of this quantity at low t could be interpreted as the effective transverse
(quasi-)pointlikeness of nucleon in the high-energy diffractive scattering regime.

As well, let us remind that although QCD itself does not predict the behavior of αP(t) in
the diffraction domain (0 < −t < 2 GeV2), this function is expected to satisfy the following
conditions [2, 3]:

dnαP

dtn
> 0 (n = 1, 2, ... ; t < 0) , lim

t→−∞
αP(t) = 1 . (4)

The first condition originates from the dispersion relations for Regge trajectories (if not more
than one subtraction is needed), and the second one follows from the natural presumption that
at high values of the transferred momentum the exchange by pomeron turns, due to asymptotic
freedom, into the exchange by 2 noninteracting gluons which can be considered in the same
way as the exchange by 2 photons. At high energies such Born amplitudes behave as ∼ s1 [4].

Thus, if the effective transverse radius of nucleon is small, then, in view of restrictions
(4), the t-dependence of eikonal (3) is determined mainly by the Herglotz function αP(t).
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Consequently, the quality of description of the differential cross-section dσ
dt

= |T (s,t)|2
16πs2

becomes
extremely sensitive to the quantitative behavior of αP(t) at low negative t. Such a sensitivity
implies that the procedure of fitting αP(t) and gP(0) to experimental angular distributions in
a wide enough kinematic range could be considered as implicit extraction of these quantities
from the data.

Fitting to the experimental data

Let us reconsider the model from [1], having singled out the factor 2−αP(t)πα′
P(t) in the Regge

residue, as in (3):

αP(t) = 1 +
αP(0)− 1

1− t
τa

, ΓP(t) → gP(t) =
gP(0)

(1− agt)2
, (5)

The results of fitting αP(t) and gP(t) to the experimental differential cross-sections at
√
s >

500 GeV and 0.005 GeV2 < −t < 2 GeV2 [5] are presented in Tabs. 1, 2, and 3 and Fig. 1.
The deviation of the model predictions from the pp elastic scattering data in the dip region at√
s = 62.5 GeV [6] can be explained by the noticeable contribution of secondary reggeons into

the real part of the eikonal. Detailed discussion of this matter can be found in [1].

Parameter Value

αP(0)− 1 0.109± 0.017
τa (0.535± 0.057) GeV2

gP(0) (13.8± 2.3) GeV
ag (0.23± 0.07) GeV−2

Table 1: The parameter values obtained via fitting to the high-energy differential cross-section
data.

√
s, GeV Number of points χ2

546 (p̄ p; UA1, UA4, CDF) 231 253
630 (p̄ p; UA4) 17 11
1800 (p̄ p; E710) 51 16
7000 (p p; TOTEM, ATLAS) 201 188
Total 500 468

Table 2: The quality of description of the data [5] on the angular distributions of nucleon-
nucleon scattering.

The D0 data [7] were not included into the fitting procedure, since they have a normalization
uncertainty about 14.4%. If to multiply them by factor 0.92, the description quality becomes
much better (see Tab. 4). The same can be said regarding the unrenormalized CDF data at√
s = 1800 GeV [8] which are inconsistent with the E-710 data.

Justification for usage of the parametrization for αP(t)

Before making any physical conclusions on the fitting results, we should discuss our choice of
parametrization for αP(t).
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√
s, GeV σtot, mb σel, mb B, GeV−2

62.5 43.0± 4.4 7.4± 1.2 14.5± 0.8
200 53.3± 3.8 10.2± 1.2 16.0± 0.8
546 63.8± 3.3 13.2± 1.0 17.3± 0.9
1800 78.5± 3.4 17.8± 1.0 19.1± 1.0
7000 98.4± 5.4 24.5± 1.8 21.4± 1.1
8000 100.5± 5.7 25.3± 1.9 21.6± 1.1
13000 108.6± 6.9 28.2± 2.5 22.5± 1.2
14000 109.9± 7.1 28.6± 2.5 22.6± 1.2
32000 124.9± 9.7 34.1± 3.7 24.2± 1.4
100000 148.0± 14.1 42.8± 5.6 26.6± 1.7

Table 3: Predictions for the pp total and elastic cross-sections and the forward logarithmic
slope of the corresponding differential cross-sections.

√
s, GeV Number of points χ2

1960 (p̄ p; D0) 17 55
1960 (p̄ p; D0, multiplied by 0.92) 17 29
1800 (p̄ p; CDF) 26 178
1800 (p̄ p; CDF, multiplied by 0.88) 26 45

Table 4: The quality of description of the data [7, 8] not included into the fitting procedure.

First, the essential nonlinearity of αP(t) from (5), which, in fact, is not related to this
concrete expression, but follows from restrictions (4), seems to be in contradiction with the
observed approximate linearity of the Chew-Frautschi plots for secondary reggeons. However,
we would like to point out that such a linear behavior of secondaries takes place at t > 0 and,
in principle, it is not guaranteed for t < 0. Moreover, it was determined in the framework of

the BFKL approach [9] that secondary Regge trajectories behave as αR(t) =
(

8αs(
√
−t)

3π

)1/2
+

O(α5/6
s (

√
−t)) at high negative t, where αs(µ) is the QCD running coupling. Hence, in view of

rather high slopes of the corresponding Chew-Frautschi plots in the resonance region, we have
a very simple alternative: either secondary Regge trajectories are essentially nonlinear in the
diffraction domain, or they are not monotonic functions in the interval −∞ < t < 0. Detailed
discussion of this matter can be found in [10].

Second, we should ascertain that the obtained smallness of ag (see Tab. 1) is not related
directly to the chosen specific parametrization for αP(t), since this is crucial for the main
conclusion of the paper. If to consider a simple generalization of (5),

α
(k)
P (t) = 1 +

α
(k)
P (0)− 1

(

1− t

τ
(k)
a

)k , g
(k)
P (t) =

g
(k)
P (0)

(1− a
(k)
g t)2

, (6)

where k takes on integer and half-integer values (parametrization (5) corresponds to k = 1),
then it is possible to provide a satisfactory description of the data in a few cases of this series
(see Tab. 5). The description for k = 1/2 and k ≥ 3 is unsatisfactory. For any k > 1, we find
that a(k)g < a(1)g . Thus, the conclusion we make below is not related to specific form (5) of αP(t)
only.

At the very end of this section we would like to note that although in this paper we restricted
ourselves by the simplest test parametrizations, the quantities αP(t) and gP(t) should, in general,
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be treated as unknown functions in the framework of the considered model. Namely, any
expression for αP(t) could be used which is analytic at t < 0 and satisfies conditions (4).
Certainly, it should provide a satisfactory description of the available data as well.
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Figure 1: The high-energy evolution of the nucleon-nucleon elastic scattering observables. The
dashed lines correspond to the value ag = 0 instead of ag = 0.23 GeV−2.

Discussion

Now let us analyze the produced outcomes.
So, the description of the nucleon-nucleon diffractive pattern in the considered kinematic

range is satisfactory. The replacement of the fitted value of ag by ag = 0, which implies neglec-
tion of the nucleon shape, disfigures the differential cross-sections (see the dashed lines in Fig.
1). However, this distortion decreases with energy and becomes not catastrophic already at the
LHC energies. It is a consequence of the fact that although we did not fix the nucleon transverse
radius, it has turned out rather small. Indeed, the form factor gP(t)/gP(0) = (1 − agt)

−2 cor-
responds to a certain effective transverse distribution in the impact parameter representation:
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Parameter k = 3/2 k = 2 k = 5/2

α
(k)
P (0)− 1 0.108± 0.017 0.108± 0.017 0.108± 0.017

τ (k)a (0.708± 0.079) GeV2 (0.874± 0.100) GeV2 (1.040± 0.125) GeV2

g
(k)
P (0) (13.1± 2.2) GeV (12.6± 2.0) GeV (12.3± 2.0) GeV
a(k)g (0.167± 0.075) GeV−2 (0.120± 0.077) GeV−2 (0.085± 0.080) GeV−2

χ2/D.o.F. 0.915 0.93 0.97

Table 5: The fitting results for different variants of parametrization (6).

f(b) = (4πa3g)
−1bK1(b/ag), where K1(x) is the modified Bessel function. The effective trans-

verse radius of nucleon obtained via average over this distribution,
√
< b2 > ∼ 0.2÷ 0.3 fm, is

noticeably smaller than the effective transverse size of the diffractive interaction region (in the
considered interval of the collision energy

√
2B > 1 fm, B is the forward logarithmic slope of

dσ/dt which increases with energy). Such a difference could be interpreted as if pomeron was
coupled to a very small zone inside nucleon. Hence, we come to the main conclusion:

• The quantitative evolution of the nucleon-nucleon elastic diffractive scattering observ-
ables at ultrahigh energies is determined mainly by the behavior of the pomeron Regge
trajectory αP(t) and the value of the effective “pomeron charge” gP(0) of nucleon and
rather weakly depends on the nucleon shape.

The examined single-reggeon-exchange eikonal approximation is expected to be valid at least
in the interval 0.2 TeV ≤ √

s ≤ 14 TeV. Therefore, the forthcoming TOTEM measurements
(as well as desirable analogous measurements at the RHIC) could decrease the uncertainties
of the model degrees of freedom and, thus, improve the phenomenological estimations as for
the nucleon effective transverse radius, so for the pomeron Regge trajectory and the pomeron
charge of nucleon.
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Appendix. Regge approximation for Born amplitude

The eikonal representation (1) itself implies just a replacement of the unknown function of two
variables, T (s, t), by another one, δ(s, t). The key assumption is that the eikonal is proportional
(with high accuracy) to some effective relativistic quasi-potential of two-hadron interaction.
According to the Van Hove interpretation of such a quasi-potential as the “sum” over all
single-meson exchanges in the t-channel [11], the eikonal can be represented as

δ =
∞
∑

j=0

∑

Mj

J (f1,j,Mj)
α1...αj

(p1,∆)
D

α1...αj ,β1...βj

(Mj)
(∆)

m2
j −∆2

J
(f2,j,Mj)
β1...βj

(p2,−∆) , (A.1)

where
D

α1...αj,β1...βj
(Mj)

m2
j
−∆2 is the propagator of spin-j meson particle, m2

j = M2
j −iMjΓj (Mj and Γj are

the meson mass and decay width), J
(f,j,Mj)
α1...αj are the corresponding meson currents of interacting

hadrons (index f denotes the sort of the hadron), ∆ is the transferred 4-momentum, p1 and
p2 are the 4-momenta of the incoming particles, and symbol

∑

Mj
denotes the summing over
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all of spin-j mesons with different masses (which, in what further, will be transformed into the
summing over reggeons).

Obviously, in the kinematic range (p1 + p2)
2 ≡ s ≫ {|p21,2|, |∆2|, |(p1,2∆)|} the eikonal can

be approximated by the following expression:

δ(s, t) =
∞
∑

j=0

∑

Mj

h(j,Mj)(t)

m2
j − t

(

s

2

)j

, (A.2)

where t ≡ ∆2, h(j,Mj)(t) ≡ f (f1,j,Mj)(p21,∆
2, (p1∆))f (f2,j,Mj)(p22,∆

2,−(p2∆)), and f (f,j,Mj) is the

structure function at the tensor structure pα1 ...pαj
in the current J

(f,j,Mj)
α1...αj (p,∆).

Now let us introduce the single-meson-exchange amplitudes of definite signature:

δ±(s, t) =
∞
∑

j=0

∑

Mj

(1± e−iπj)
h(j,Mj)(t)

m2
j − t

(

s

2

)j

. (A.3)

If m2
j and h(j,Mj)(t) at even and odd j are the values of some analytic functions which are

holomorphic at Re j > −1
2
and behave as O(ek|j|), k < π, at j → ∞, then, under the Carlson

theorem [12], the unilocal analytic continuation of (A.3) into the region of complex j is possible
(the Regge hypothesis [2]). We denote these functions by m2

±(j) and h±(j, t), respectively. Via
the Sommerfeld-Watson transform [2, 13], we replace the sum over j in (A.3) by the integral
over the contour C encircling the real positive half-axis on the complex j-plane, including the
point j = 0, in such a way that the half-axis is on the right:

δ±(s, t) =
1

2i

∮

C

dj

sin(πj)

∑

m±

(∓1− e−iπj)
h±(j, t)

m2
±(j)− t

(

s

2

)j

. (A.4)

According to our assumption, the only sources of the integrand singularities in the region
Re j > −1

2
are the zeros of the functions sin(πj) and m2

±(j)− t. Hence, deforming the contour
C to the axis Re j = −1

2
(the behavior of h±(j, t) at j → ∞ and Re j > −1

2
should allow such

a deformation), we obtain

δ±(s, t) =
1

2i

∫ − 1
2
+i∞

− 1
2
−i∞

dj

sin(πj)

∑

m±

(∓1 − e−iπj)
h±(j, t)

m2
±(j)− t

(

s

2

)j

+

+
∑

n

∓1− e−iπα±
n (t)

sin(πα±
n (t))

πdα±
n (t)

dt
h±(α

±
n (t), t)

(

s

2

)α±
n (t)

, (A.5)

where the functions α±
n (t) are the roots of the equations m2

±(j) − t = 0 and, thus, they
correspond to the eikonal poles in the complex j-plane. These poles are called Regge poles,
and the functions α±

n (t) are called Regge trajectories.
At high enough values of s the background integral contribution is negligible. As the

functions h± can be factorized into two factors related to each of the interacting hadrons, so
we come to the following expression for the eikonal:

δ±(s, t) =
∑

n

ξ±(α
±
n (t)) g

(1)±
n (t)g(2)±n (t)

πdα±
n

dt

(

s

2s0

)α±
n (t)

, (A.6)

where s0 is some scale determined a priori (for example, s0 = 1 GeV2) and related directly
to the factors g(i)n (t) which should be interpreted as the effective couplings of reggeons to the

colliding particles. ξ±(α) are the so-called reggeon signature factors: ξ+(α) = i+ tgπ(α−1)
2

and

ξ−(α) = i− ctgπ(α−1)
2

.
The last formula (which is valid, as well, for inelastic scattering 2 → 2 and for reactions with

off-shell particles), together with the eikonal representation (1) of the scattering amplitude, is
the essence of the Regge-eikonal approach [2].
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