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Abstract

We derive expressions for the neutrino mixing parameters that result from com-
plex perturbations on (1) the Majorana neutrino mass matrix (in the basis of charged
lepton mass eigenstates) and on (2) the charged lepton mass matrix, for arbitrary
initial (unperturbed) mixing matrices. In the first case, we find that the phases of
the elements of the perturbation matrix, and the initial values of the Dirac and Ma-
jorana phases, strongly impact the leading-order corrections to the neutrino mixing
parameters and phases. For experimentally compatible scenarios wherein the initial
neutrino mass matrix has u — 7 symmetry, we find that the Dirac phase can take any
value under small perturbations. Similarly, in the second case, perturbations to the
charged lepton mass matrix can generate large corrections to the mixing angles and
phases of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. As an illustration
of our generalized procedure, we apply it to a situation in which nonstandard scalar

and nonstandard vector interactions simultaneously affect neutrino oscillations.
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1 Introduction

After decades of neutrino oscillation experiments, the mixing pattern in the lepton sector
has been well established [I]. There are one small and two large mixing angles, and two
mass-squared differences that differ by a factor of 30 in the neutrino sector. Numerous
neutrino mixing scenarios have been proposed in the literature to explain such a nontrivial
mixing pattern; for a recent review, see Ref. [2]. The most attractive scenarios are those
with mixing patterns motivated by simple symmetries, such as tri-bimaximal mixing [3],
bimaximal mixing [4], and golden ratio mixing [5]. All three mixing scenarios have ;35 = 0,
o3 = 45°, and are a subset of the more general p — 7 symmetry [6, [7]. However, recent
measurements of 613 by short-baseline reactor experiments Daya Bay [§], RENO [9], Double
Chooz [10], and long-baseline accelerator experiments T2K [11], MINOS [12] strongly disfavor
013 = 0. Therefore, models with simple symmetries need additional features to explain the
observed neutrino mixing pattern.

A modified approach to explain the data is to treat the simple mixing scenarios as the
underlying model and add perturbations to accommodate the discrepancy between theoret-
ical predictions and experimental data. In Ref. [7], we took p — 7 symmetry (in the charged
lepton basis), as the underlying model, and added real perturbations to the Majorana neu-
trino mass matrices to explain the data. We found that small perturbations can cause large
corrections to 619, and the experimental data can be explained by most y — 7 symmetric
mixing scenarios with perturbations of similar magnitude.

After the discovery that the mixing angle 613 is relatively large, many scenarios without
w — 7 symmetry have been proposed [I3]. Motivated by this, and by the fact that real
perturbations have no effect on the Dirac and Majorana phases, in this paper we consider
arbitrary initial mixing for the underlying model and generalize the perturbation results to
the complex space. Under the assumption that the charged lepton mass matrix is diagonal,
we derive analytic formulas for the leading-order (LO) corrections to the three mixing angles
and the Dirac and Majorana phases. We find that the phases of the elements of the pertur-
bation matrix, and the initial values of the Dirac and Majorana phases, strongly impact the

LO corrections to the neutrino mixing parameters. We also perform a numerical study of



complex perturbations on initial neutrino mass matrices with g — 7 symmetry. We find that
the Dirac phase can take any value under small perturbations for experimentally compatible
scenarios.

Since the mixings in both the charged lepton sector and neutrino sector contribute to the
observed Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, we explore the case in which
the charged lepton mass matrix is not diagonal, and consider small complex perturbations
to the charged lepton mass matrix as well. Since the initial mixing matrix in the charged
lepton sector is unconstrained, small perturbations in the charged lepton sector could have
large effects on the 1-2 mixing in the charged lepton sector, which lead to large changes in
the mixing angles and phases in the PMNS matrix.

In addition, as an application of our generalized perturbation procedure, we study neu-
trino oscillations with matter effects from both nonstandard scalar and nonstandard vector
interactions. Nonstandard scalar interactions add small perturbations to the neutrino mass
matrix, which yield corrections to the vacuum mixing angles and mass-squared differences.
By using our formalism, we demonstrate how expressions for neutrino oscillation probabili-
ties that simultaneously depend on nonstandard scalar and nonstandard vector interactions,
can be obtained.

This paper is organized as follows. In Section 2, we work in the diagonal charged lepton
basis and derive analytic formulas for the mixing parameters that result from real and com-
plex perturbations. In Section 3, we perform a numerical analysis of complex perturbations
to neutrino mass matrices with y — 7 symmetry. In Section 4, we calculate corrections to
the three mixing angles and phases in the PMNS matrix from perturbations in the charged
lepton sector. In Section 5, we apply our perturbation results to study neutrino oscilla-
tions with both nonstandard scalar and nonstandard vector interactions. We summarize our

results in Section 6.

2 Perturbations on the neutrino mass matrix

Our goal in this section is to obtain the LO corrections to all the physical parameters under

small perturbations on the initial Majorana neutrino mass matrix assuming the charged



lepton mass matrix to be diagonal. The final (resultant) mass matrix can be written as the

sum of an initial matrix M, and a perturbation matrix F, i.e.,

€11 €12 €13
M=M,+ FE = UgﬁoUg + | €19 €29 €3] (1>

€13 €23 €33

where M, = diag(m?, m9, m3), and Uy is the initial mixing matrix.

The final mass matrix can also be written as
M =U"MUT, (2)

where U and M have the same form as Uy and M,. From neutrino oscillation experiments

we know that m; and my are nearly degenerate, so here we assume |e;;|, [0m3;| < [dm$; |.

2.1 Real case

For simplicity, we consider the real case first. The mixing matrix Uy can be written as
Uy = RgsR(l)3R(1]2 ) (3)

where R?j is the rotation matrix in the ¢ — 5 plane with a rotation angle 9%. Then Eq. ()

can be rewritten as

0 O 0
M =mi{1+ R3;R\sRY, | 0 om9, 0 (RY,)"(RY)"(RY)" + E
0 0 omd
0 0 0
=mi{l+ RRYs | R, | 0 omy, 0 (R),)" + E'| (RY)"(RY)", (4)
0 0 omd



where E' = (R)3)"(R9;)" ERY3RY3, dmY; = m) —m), and I is the 3 x 3 identity matrix. We

employ the following notation:
_ _ 0 0 _ 0 0
€1 = €11, €2 = €12Cy3 — €13S93, €3 = €12553 T €13Ca3,
0 \2 0
€4 = 622(023) + €33(893)" — €2359593

_ 0 0
€5 = €23Cyy03 T 5 (€20 — €33)S5,03 ;

2
€6 = €22(53)” + €33(Ch3)” + €235 » (5)
where ¢}, s7;, ¢3,;; and s9,;; denote cos 6]}, sin 7;, cos(26};) and sin(267;), respectively. Then
€;; = (E')i; can be written explicitly as

o 0 \2 0 \2 0 0 0
€11 = 61(013) + 56(513) T €359x135 €12 = €203 — €5513,

r_ 0 0 r_
€13 = €3Cay13 T 5(51 — €6)S9x13, €ay = €4,

6/23 = 625(1)3 + E50(1)3> 633 = 61(5(1)3) + 66(013) + 63‘9(2)><13 (6)

In order to obtain the final mixing matrix that diagonalizes M, we use a procedure that is
similar to that in Ref. [14]. We first put zeros in the 2-3 and 1-3 entries of the matrix in the
square bracket of Eq. (@) by using rotations Ras(d5;) and Ry3(d14), respectively. To LO in

O(leij|/10m3y]), we have

/ /
/. €23 . €13 (7)
23 ~ 0 13 7~ 0
oms, oms,
and the LO correction to mJ is
!

Note that since |e;;| < |dm3,], after the two rotations in the 2-3 and 1-3 planes, the matrix
in the square bracket of Eq. (@) becomes block diagonal and the 1-2 submatrix remains
unchanged to leading order. Hence we can rewrite Eq. () as

M=ml1+V F0 VT 4+ 0(|es|?/om? 9
=myl + + O(ley]*/dmy, ), 9)
0 omd

where V' = R9; R{; Ro3(0%5) R13(d15) R, and

611(012) + 622(5?2)2 - 6,12Sg><12 5/12ng12 + l(E,n - 5/22)ng12

M = ., (10)

6/12C2><12 + 5(5/11 - 6/22)8(2)><12 E11(512) + 622(012) + E1252x12 + 5m21



which can be diagonalized by the rotation Ry2(¢) with

r 0 / / 0
¢ = larctan 2€15Co512 — (€ha — €11) 9551
- / ! 0 /0 0 -
2 (€hg — €11)Coy 10 + 2€1585, 19 + 0y,

(11)
The corrections to m; and my can be written as

/ / 1
om; = % + 3 [5m81 - \/K} , (12)

where A = (0m3y)? +4(€}5)* + (e — €11)* +20m3, [26/128(2)><12 + (€3 — 6/11)0(2)x12}> and the plus
(minus) sign is for ¢ = 1 (2). The final mass matrix is diagonalized by the following mixing
matrix

U= 3833?3323( 53)R13(513)R?2312(5/)- (13)

By comparing it to the standard parametrization, we find the LO corrections to the three

mixing angles to be

6/
8015 = 6., = 13
13 0
dmg,
/ /
€
5923 — 23 23

0 0 0
€13 C130m3

r .0 ! / 0
2619012 — (€59 — €11)S9x19
! ! 0 /.0 0 7
(€he — €11)Cox1a + 2€1989, 19 + Oy

8010 =& = 5 arctan (14)

where we have ignored the next-to-leading-order correction to 62, which is O(|€;;|/|dm3;]).
For ), = 0 and 09, = 7/4, it is easy to verify that the corrections in Eq. (I4)) yield the results
of Ref. [7] for the LO corrections which were obtained using degenerate perturbation theory.
As noted in Ref. [7], the near degeneracy of m; and my (|dm3;| < [0mY;|) implies that 66,5

can be large for small perturbations (|e;| < [dm$;|).

2.2 Complex case

For the complex case, the most general form for Uy is

Uy = Ra3(095) U3 (875, 6°) R1a(6%,) P(69, 63) | (15)

1 Also, for the next-to-leading-order correction to 612, we obtain Eq. (14) of Ref. [7], except that ém9; in

the denominator should be replaced by §m$}) = (md + dma) — (m9 + 6my).



where

10 0 Ay 0 e,
Ros(035) =10 ¢y s% |, Us(65,0°) = 0 1 0 ;
0 —s9y b —e’s %5 0 s
0(1)2 5(1)2 0 1 0 0
R12(9?2) = _3(1)2 0(1)2 01, P( (2]7 ¢(3]) =10 €i¢g/2 0 : (16)
0 0 1 0 0 ei8/2

Because of the nonzero Majorana phases, in general, the mixing matrix would not remain
unchanged if we subtract the identity matrix multiplied by a constant from the mass matrix.
Hence we use a slightly different procedure to obtain the LO corrections for the complex

case. We rewrite the final mass matrix as
M = U MU§ + E = Uy [ Mo+ E| U], (17)

where E = ULl EUy can be explicitly written as

a be'#3/2 dei®3/2
E = | pei¢d/2 ce'?d feilod+ed)/2 [ (18)
dei®3/2  feil#5+45)/2 geids
with
a= 54(5(1]2)2 + [51(0(1]3)2 - 6£’>3(2]x13‘3i50 + 56(5(1]3)262i50](0(1]2)2 + (653(1)3‘3i50 - 626(1]3)3(2]><12 )
b= 620(1]30(2]><12 + [51(0(1)3)2 — €+ 66(3(1)3)2622‘50]0(1)25(1]2 - [635(2]><128(1)3C(1)3 + 65ng12=5’(1]3]6i50 )
¢ = eg(c)y)” + [er(cl3)” — €3sgx136i60 + 56(5?3)2€2i60](5?2)2 - (555?36i60 — e2c3)59, 15
d= (510?20?3 - 625(1)2)5?:J,‘3_i60 - 560?20(1)35(1)?ﬁi(SO + 630(1)2ng13 - 650(1)35?2 )
f= (615(1]20(1]3 + 620(1]2)5(1)367260 - 565(1]20(1)35(1]36260 + 635(1)20(2]><13 + 650(1]30(1]2 )
g = 66(6(1]3)2 + 535(2)x1367i60 + 61<<‘5(1)3)2672i50 ) (19)

Similar to the real case, we apply a unitary matrix Us to N = M, + E such that there

are zeros in the 2-3 and 1-3 entries of the matrix Ul NU;. Since |e;;] < [dm3;], to LO in



O(leij|/10mY;]), Us can be written as

1 0 513
U5 == O 1 523 ) (20)
—0f3 =05 1

where

|d‘ e~ P13
] — e o]

6_i¢23
o /]

s ~ [ — e

(21)

0

with tan g3 = :gﬂnl tan [arg(d) + ¢9/2] and tan ¢o3 = Z%f:ﬁ tan |arg(f) + % . After
3 1

0,0
37 M

block-diagonalization, the LO correction to mg is

—m3. (22)

dms = ‘mg + g

Note that the 1-2 submatrix of N remains unchanged to leading order after the block-
diagonalization. Using the procedure described in Appendix[Al we diagonalize this submatrix

using the unitary matrix

ce  sge 0
Uia(§,0) = | —see® ¢ 0], (23)
0 0 1

where

la +mY|sin(¢, — ¢p) — |cei¢g + m3| sin(¢p. — ¢p)

= arctan ; ’ 24
’ a+ 3] cos(a — ) + fec + ] cos(c — b -
1 20|
= — arctan — ’ 2
$=3 [cet% 4+ m3] cos(@e + 6 — b) — [a+ mS] cos(@a — & — &) )

with ¢, = arg(a+m?), ¢, = arg(b) + ¢3/2 and ¢, = arg(ce'®® +mY). In addition, we obtain

the LO corrections to m; and ms as

0

dmy = ‘(a +mi)c; + (ce'? + mg)sge”® — 2bsecee™| —my

dmy = ‘(a +mY)sge > + (ce®s + m3)cg + 2bsecee ™| —m). (26)




The final mixing matrix that diagonalizes M and makes the diagonal elements real and

non-negative can be written as
U =UpUsUra(§,9) P, (27)
where P = diag(eim/?’ 6iw2/2, eiw3/2)’ and

wp = —arg [(a + m?)cg + (C€i¢8 + mg)sgemqﬁ o 2b8505€i¢} ’
T e [(a +mf)sge ™ 4 (ce'® 4 mb)e + 2bsgcge‘iﬂ ,

w3 = — arg <mg + gei‘z’g) : (28)

As shown in Appendix [B], the right-multiplication of Uj2(§, ¢) does not change 6,3 and
f3. Hence, the LO corrections to #;3 and 693 come from the right-multiplication of Us.
Since d13 and do3 are suppressed by a factor of |e;|/|0m3;|, while £ and ¢ are not, the LO
corrections to #15 and the Dirac phases come from the right-multiplication of Ujs (&, ¢), and
the LO corrections to the Majorana phases come from both Uis(§, ¢) and P.

By comparing U to the standard parametrization, we obtain the LO corrections to the

three mixing angles:

0 0_ 40
d|cSycos(60 — % — b)) |f]s% cos(60 + 5% — 6ys)

063 = . . 29
13 |m§ — mYe—2id1s| |m§ — mYe—2i¢2s| (29)
0 0_ .0
5o — st cos(5 + d1g) | f]edy cos(Z55 — ) (30)
B = " g — e o] [ — mle 70|
9+2
3012 = ancsin i (8 +€) — s (26 sin(2€) sin> 220 g9, (31)
where #; denotes tan ;. The LO corrections to the three phases can be written as
Apy = —2(a+ ) +wy —wrq, (33)
A¢3 = —25 + w3 — wq . (34)



where

tan 09, tan & sin(¢9/2 + ¢)

— _arct :
“ R 09, tan & cos(49/2 + ¢)

(35)

and

tan £ sin(¢9/2 + ¢)

= t ‘
[ = arctan tan 6, + tan & cos(¢9/2 + ¢)

(36)

From Eq. (31), we see that d0;5 varies from —¢ to +& depending on the initial Majorana
phase ¢9 and the perturbation phase ¢. Since & and ¢ depend only on the ratios of linear
combinations of €;;’s and dm3;, large corrections to 65 and the Dirac and Majorana phases
are possible even for small perturbations. However, corrections can be small in special cases,
e.g., if ¢9 is close to 180° for the inverted hierarchy, ¢ approaches 90° and ¢ is suppressed
by a factor of |e;|/(m3 + m7), so that the corrections to 612 and the Dirac and Majorana
phases are also small.

Note that the corrections in the complex case are strongly dependent on the phases of

€5, and the initial values of the Dirac and Majorana phases. If we take €;;’s to be real, and

set 00 = ¢ = ¢3 = 0 in Egs. 29), B0) and (3I)), we recover Eq. (I4).

3 Perturbations to ¢ — 7 symmetry

As an illustration of our analytic results, we study perturbations on initial neutrino mass
matrices with y—7 symmetry. There are four classes of mixing with g — 7 symmetry [7]: (a)
00, = 45°,0%, = 0; (b) 03, = 45°, 0% = 0; (c) 63, = 45°, 0% = 90°; (d) 69 = 45°, 6 = £90°.
In Ref. [15], it was shown that the initial class (a) can be perturbed to class (d) for a specific
model. Here we reproduce the results of Ref. [I5] by applying our general perturbation
formulas. The complex neutrino mass matrix of Ref. [I5] can be written (in our phase

convention) as

1 + 25/// 0 0 26/ 6// _6//*
M = mo 0 5" _(1 + 5///) + my 5" 0 0 , (37)
O _ (1 _'_ 6///) 5/// _5//* O 0

10



where mg is a common mass parameter, 0", §’ are real and [0'|, |§”| < [0”'|. We treat the
first term on the right-hand side of Eq. (37) as the initial mass matrix and the second term
as the perturbation. The initial mass matrix has class (a) u — 7 symmetry. In the standard
parametrization, we have 695 = I, 60, = 093 = ¢} = 0 and ¢} = 7. The three initial masses

are m{ = m9 = mg(1 + 26"), and m3 = my. In this case, Eq. (I9) is greatly simplified:

a = 2mgd’, b= v2mgRe (8") | c=f=g=0, d =ivV2meIm (6") . (38)

From Eqs. (21)), (24) and (25]), we find
_Im(d")
13 ~ ’

\/55///

Then the final mixing matrix can be written as

$»=0, fz%arctan\/?%iz/«;”). (39)

o3 =0, &

™

U = Ras(7) P(0, 7) Rz (013) a2 (€) (40)
T T
= R23(1)U13(513> 5)312(5)})(@ ).
Hence, the final mixing angles and the Dirac phase are
oo 1 V2Re (6") ~ Im(d") oo
923—1, 912—§arctanT, 913—W, 5—5, (41)

as in Ref. [I5]. Note that the initial class (a) is perturbed to class (d), and that the large
change of the Dirac phase § coincides with the deviation of ;5 from 0.

The general form of the neutrino mass matrix with class (d) 4 — 7 symmetry and its
associated generalized CP symmetry has been recognized in Ref. [16], and deviations from
it were discussed in Ref. [I17]. It has been shown in Ref. [16] that the general forms of the

neutrino mass matrices with class (a) and (d) g — 7 symmetry are (in our phase convention)

r oy -y w oor —r
My=|vy 2z —w], and Mg=1| »r s —v |, (42)
-y —w oz —r* —v 5"

respectively. Here z, y, z, w, r, s are complex and u, v are real. Hence, any perturbation
matrix of the form
Re(err) — iIm(x) €12 —€5y + 2iIm(y)
E= €12 €22 Re(e3) + ilm(w) | » (43)
—€7y + 2ilm(y) Re(egs) +ilm(w) €5y — 2iIm(2)

11



Table 1: Best-fit values and 20 ranges of the oscillation parameters [18], with dm? = m2 —m?

and Am? = m32 — (m? +m3)/2.

Parameter 012(°) 015(°) 093(°) | 6m2(10~%eV?) | |Am?|(10~3eV?)
Normal hierarchy | 33.7721 | 8.8070 7% | 41.4%57 7.547050 2.43%013
Inverted hierarchy | 33.7721 | 8.9170:% | 42.4%53 7.5470:35 2.387013

perturbs the initial mass matrix with class (a) g — 7 symmetry to class (d) p — 7 symmetry.

We now perform a numerical search to find perturbations that fit the experimental data
for initial neutrino mass matrices with p — 7 symmetry. We select class (d) and scan 69,
and 0, over the range [0,90°]. Since the initial mass matrices of classes (a), (b) and (c)
do not depend on §°, the perturbation results of class (d) will cover the other classes, e.g.,
the perturbation results for bimaximal mixing would be the same as that of class (d) with
6%, = 0 and 69, = 45°. Since we work in the basis in which the charged lepton mass matrix is
diagonal, the mixing matrix in the neutrino sector is the same as the observed PMNS matrix.
We also choose m; = 0 for the normal hierarchy (or ms = 0 for the inverted hierarchy), so
the best-fit values from the global fit in Table [Il define the other two final masses and the
three final mixing angles.

We characterize the size of the perturbation as the root-mean-square (RMS) value of the

perturbations,

TL[ETE S e
ERMS — [9 ]Z ’]5 d , (44)

where ¢ and j sum over neutrino flavors. egyg is determined by the three initial masses, two
initial Majorana phases, two final Majorana phases and one final Dirac phase.

The initial Dirac phase in class (d) is fixed to be £90°. To evaluate the change in the
Dirac phase due to the perturbations, we fix 6% = 45° and scan over § and 69, to find the
minimum RMS value of the perturbation, efilly, that results in the best-fit parameters. The
results for §° = 90° are shown in Fig. [l The results for 6° = —90° (or 270°) are symmetric

to those of §° = 90° with § — 360° — §. From Fig. [I, we see that for %, < 20° it is possible

for the final Dirac phase to have any value under small perturbations (egirs < 10 meV), ie.,

12
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Figure 1: Iso-efily contours in the (6%, d) plane that give the best-fit parameters for p — 7
symmetry with 09, = 69, = 45°,§° = 90°. The left panel is for the normal hierarchy with

my = 0 and the right panel is for the inverted hierarchy with ms = 0.

the correction to the Dirac phase can be large for small perturbations.

4 Perturbations in the charged lepton sector

In the basis in which the charged lepton mass matrix is not diagonal, the observed PMNS
mixing matrix is

Upnns = UjU,, (45)

where U; and U, are the mixing matrices in the charged lepton and neutrino sectors, respec-

tively. For an arbitrary charged lepton mass matrix M;, we have
—2
(M) M; = UM, ()1, (46)

where M; = diag (me, m,,, m,).
Suppose the charged lepton mass matrix is also the result of small perturbations to an

initial mass matrix, i.e., M; = M + E;, where (E;); = €.; and |e};| < m,. If the initial

13



mixing matrix in the charged lepton sector is UY, i.e.,
(MzO)TMlO = Ulo(m)z(Ulo)T’ (47)
then to LO, we get

(M) My = U (MP*(U))' + (M) By + ETMY
—
= O [M" + N () (48)
where N' = (U))" [(M?)TE, + ETMP] U. Note that since U} is unconstrained, the size of

each element of the N' matrix could be of order m.|el].

If (Mlo)2 + N'is diagonalized by a unitary matrix U}, i.e.,

(m2)2 + Nfl Nfz Nfza mi 0 0
—
M+ N' = (NV11)* (m}))? + Ni N =Us| 0 my 0 (Us)'
(IV13)* (N33)* (m)? + Niz 0 0 m2
(49)
then the PMNS matrix can be written as
Upuns = (UPU)TUY = (U5)TUy (50)

where Uy = (UP)'U) has the most general form of Eq. (I5). Since Nj; ~ m,|el;|, the 2-3
and 1-3 mixing angles in Uj are suppressed by a factor of N};/m2 ~ |e;|/m,. To LO in

O(|e};|/m-), Uj can be parametrized as

1 0 0 1 0 Ol idhs cos 6!, sin 0l,e~ %2 ()
Ui=10 1 Shae i 0 1 0 —sinflyeis  cosl, 0],
0 —0byei®s 1 —dl,ei®s 0 1 0 0 1
(51)
where
G NG Ny
13 ™ m2 "’ 23 ™ m2 '

2| N,
mi + N£2 - Nfl

(52)

1
0, ~ 3 arctan

14



and ¢;; ~ —arg Nilj.
If 0., is also very small, the LO corrections to the three mixing angles in the PMNS

matrix are
0013 = _91125(2)3 COS(5O - ¢l12) - 5%30(2)3 COS(5O - ¢l13) )
8025 = —6hy COS Py — 15595175 cos(8° — @ls) + 01,ch4t T cos(6” — ¢ly)
1
0019 = CT(éllgsgg cos (;5113 — 91120(2)3 cos ¢l12) ) (53)
13

However, in general, since N}; ~ m|e;|, and if |e};| ~ m? /m, = 6 MeV, 6}, could be very
large, which will give large corrections to the mixing angles in the PMNS matrix. Thus, the
situation in the charged sector is similar to that in the neutrino sector: the near degeneracy
of m, and m,, (on the scale of m,) can lead to large corrections in 1-2 space.

For large 6',, the analytical expressions for the corrections to the mixing angles in the
PMNS matrix are cumbersome. Here, as an illustration, we consider the very simple scenario
in which

cosfl, sindl, 0
U= | —sind, costl, 0] (54)
0 0 1

Then from Eq. (B0), the final mixing angles in the PMNS matrix are given by

C13C23 = 0(1]30(2]3 ) (55)

5%3 = (5(1]3)2(0112)2 + (5(2]3)2(0(1]3)2(5112)2 - 23(1)30(1)35(2]33llzcl12 cos 6" ) (56)

0%35%2 = [(0320?33(1)2 - 3320?20(2)3)2 + (332)2(5(1)2)2(3(1)3)2(5(2)3)2
+ 231123?25(1)3383(01120(1)33?2 - 31120(1)20(2)3) CO8 50} ) (57)

where ¢, denotes cosf,, and s, denotes siné',. As an example, if 0}, is the Cabibbo
angle and the initial PMNS matrix has bimaximal symmetry (6%, = 45°, 6% = 0), then the
resulting 015 and 63 are consistent with the observed values to within 2o.

There are eight parameters in Eqgs. (B5), (B0) and (57). We use the best-fit values in

Table [l for the normal hierarchy to fix 65, 013 and 6a3. Then for given values of 69, and 6°,
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Figure 2: Dependence of 69; on 69, for small perturbations in the charged lepton sector when
Ul is given by Eq. (54)), and the three mixing angles in the PMNS matrix are fixed by the
best-fit values of the global fit in Table [I] for the normal hierarchy.

the other three unknown parameters 69;, 6, and 69, are determined by the three equations.
First, we obtain 69, from Eq. (55) for a given 6%. Note that the constraints on 63 and 69,
are symmetric for fixed #13 and fy3, which can be seen from Fig. Bl Then we scan 6., from
[—90°,90°] to find solutions to Eq. (B6) for a given §°. For each solution of 6,, we obtain
6%, from Eq. (57) by scanning 6%, from [—90°,90°]. Note that we only scan the first and
fourth quadrants of 6, [6%,], because Eq. (56) [Eq. (517)] is only sensitive to the relative sign
between the cosine and sine of 6%, [09,]. Once we obtain 69,, 6}, and 69, for given values of
6%, and §°, the resulting PMNS matrix is completely determined (except for the diagonal
Majorana phase matrix) from Eqgs. (B0), (54) and (I5). By comparing the PMNS matrix
with the standard parametrization, the resulting Dirac phase ¢ is also obtained for given
values of 093 and §°. The dependence of 6,, 6% and § on §° for different values of 0, is
shown in Fig. Bl From Figs. Pl and Bl we see that the initial mixing angles and the initial
Dirac phase can be very different from their observed values in the PMNS matrix due to
small perturbations in the charged lepton sector.

Generally, perturbations in both the charged lepton and neutrino sectors will be present.
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In this case, one must first use the procedure described in this section to find the corrections
to the initial PMNS matrix from perturbations in the charged lepton sector alone, then use
the new PMNS matrix to rotate to the basis in which the final charged lepton mass matrix is
diagonal, and ultimately use the procedure described in Section 2 to find the final corrections

to the parameters in the PMNS matrix from perturbations in the neutrino sector.

5 Neutrino oscillations with nonstandard interactions

We now apply our generalized perturbation procedure to a phenomenological study of neu-
trino oscillations that are affected by nonstandard scalar and nonstandard vector interactions
simultaneously.

As v, propagate in matter, they scatter on electrons via the V-A interaction. This is

described by the MSW potential [19], which is added to the vacuum oscillation Hamiltonian:

m? 0 0 V2GEN, 0 0
1
H = 2 T
2EVU 0 mi 0 |U+ 0 0 0], (58)
0 0 m? 0 00

where G is the Fermi constant, N, is the electron number density in the medium, and U
and m; are the mixing matrix and eigenmasses in vacuum, respectively.

New physics beyond the Standard Model can be probed by studying model-independent
nonstandard interactions in neutrino oscillation experiments; for a recent review see Ref. [20].
Most studies of nonstandard interactions are focused on the vector interaction, which can

be described by effective four-fermion operators of the form

Ly ens [7a”(1 =2 ] [f1,(1 £9°) f] + hec., (59)

Gr
R
where f = u, d, e is a charged fermion field, and exﬁ are dimensionless parameters that denote
the strength of the deviation from the standard interactions. Similar to the MSW term, the
matter effect due to the nonstandard vector interaction modifies the oscillation Hamiltonian
by additional potential terms, v2GpN ffxﬁ-

In addition, consider nonstandard scalar interactions, which may arise from a Lagrangian
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Figure 3: Dependence of 6}, (top), 69, (middle) and § (bottom) on §° for different values of
69, for small perturbations in the charged lepton sector when U} is given by Eq. (54)), and
the three mixing angles in the PMNS matrix are fixed by the best-fit values of the global fit

in Table [ for the normal hierarchy.
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of the form
Ls=NDvp0+ N\ ffo, (60)

where ¢ is a new scalar field, and A\%* and A s are dimensionless coupling constants for neu-
trinos and charged fermions, respectively. In a mean field approximation, the nonstandard
scalar interaction will shift elements of the neutrino mass matrix by [21],

\eB

€ap ~ mLiAfo, (61)

where my is the mass of the scalar field, Ny is the number density of the charged fermion f,
which is assumed to be nonrelativistic.

Tests of the inverse square law of the gravitational force put stringent m,-dependent limits
on the coupling of a new scalar field to the nucleon field [22]. For m, in the range, 107 eV to

10719 eV, the current experimental upper limit of Ay varies from 102! to 10722 [23]. Since

A Ay Ny 1076 eV'\?
~ 0.4 2
w0y (%) () (i) () @

and Ny ~ 1N4/em® ~ 10'° eV? on Earth and Ny ~ 100N, /cm?® ~ 102 eV? in the solar core

where most solar neutrinos are produced, in these environments, a ), of order 1072 gives a
mass shift of order 1 meV for mg = 107% eV. Such €,5 values are possible for much smaller
values of \, when m, < 107 eV.

In the presence of both nonstandard scalar and nonstandard vector interactions, the

effective Hamiltonian for neutrino oscillations can be written as

100 e Cop €
1
Hefy :ﬁMiffMEff+‘/§GFNe 00 0|+V2GeNs el e e | (63)
000 e e ey,

where the effective mass matrix has the form

m; 0 0 €11 €12 €13
MEff =U" 0 mg O o + | €2 €2 en| - (64)
0 0 mg €13 €23 €33

We apply our generalized perturbation procedure to the study of both nonstandard scalar

and nonstandard vector interactions. By incorporating the the corrections to the vacuum
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oscillation parameters (arising from the scalar interaction) into the nonstandard vector in-
teraction formulas, we immediately obtain new formulas for oscillation probabilities with
both nonstandard scalar and nonstandard vector interactions. Taking the oscillations of v,

in long baseline experiments as an example, the result for the v, survival probability is [24]

5 AmglL]

P, ~1- 53,3 [sin 1L

Ami L 2/2GrN.E Gin? Am3, L

Am2, 0 T AE

— |€l‘¢/7'| COS QSL/TSQng [S%X%(\/EGFNGL) sin 4C§><23

V2GpN,L “in Amj L 2vV2GpN.E , Amj, L

65
2 2F Amz, S g | (69)

+ (|€;‘jp,| - |€7"/T|)S§><2302><23 [

where Am3, = m3 — m3, sayi; = sin 20, caxyj = cos 26;;, and gb}fT = arg EL/T. After replacing
AmZ, — Am3, + 2(mzdmgz — midmy) and a3 — Oa3 + 0623, where the shifts in m; and a3
can be easily obtained from our perturbation results in Section 2, the new formula for both

nonstandard scalar and nonstandard vector interactions is as follows:

.o Am3 L

Pu~1— 55 0, {81112 Tg]
. o Am3 L (m3dmz —mydmy)L . Am3, L
—2003 sin 46053 sin’ 4;’71 — 5F 53,93 il 2;’71
C AmZ L 2V2GrN.E . , Am? L
— le | cos @) S2x23 | 55,95(V2GpN,L) sin 2; + 4C5 03 A, sin? 4;71
\/§GFN6L . Am2 L 2\/§GFN6E . Am2 L

+ (leyal = 1€7,1) 8323223 [ 5 sin 221 2 A, sin® 4;71 . (66)

We see that cancellations between the nonstandard scalar and vector terms are possible, a

study of which is beyond the scope of this paper.

6 Summary

We introduced a generalized procedure to study complex perturbations on Majorana neutrino
mass matrices. In the charged lepton basis, we derived analytic formulas for the corrections
to the three mixing angles, and the Dirac and Majorana phases for arbitrary initial mixing.
Since m; and my are nearly degenerate, the corrections to 615 and the Dirac and Majorana

phases could be very large. We performed a numerical analysis on the mass matrices with
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1 — 7 symmetry to illustrate our analytical results, and found that the final Dirac phase can
take any value under small perturbations.

We also studied the scenario in which the charged lepton mass matrix is not diagonal,
and considered perturbations on the charged lepton mass matrix. We found that small
perturbations in the charged lepton sector give small mixing in the 1-3 and 2-3 sectors, but
the mixing in the 1-2 sector could be potentially large due to the near degeneracy of m, and
m,, (on the scale of m,), which could lead to large corrections to all three mixing angles in
the PMNS matrix.

In addition, we showed that using our generalized perturbation procedure, it is straight-
forward to study neutrino oscillations with both nonstandard scalar and nonstandard vector

interactions.

Acknowledgements. We are grateful to R. Sawyer for useful discussions. This research
was supported by the DOE under Grant No. de-sc0010504' and by the Kavli Institute for
Theoretical Physics under NSF Grant No. PHY11-25915.

A Diagonalization of a 2 x 2 complex symmetric matrix

We show how to diagonalize a 2 x 2 complex symmetric matrix

a b laei®a  |blei®r
= = | | (67)
b ¢ |blei®e |c|ete
so that
mi 0
U'MU = : (68)
0 mo
where my, mo are non-negative real numbers, and U is an unitary matrix.
First, we diagonalize M with a unitary matrix V' of the form
¢ Se€
v C ], (69)
—s¢€® ¢
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where ¢ and s¢ denote cos § and sin &, respectively:

acg + csge*® — 2bsecee’? (ae™ — ce'®)sece + b(c; — 57)

VIMY = o | | (70)
(ae™ — ce')sece + b(cg — s57)  asze”? + cc + 2bsecee™
The diagonalization condition is
(ae™" — ce™)sece + b(c; — s53) =0, (71)
which implies the phase ¢ is
5 avotan lal5i0(60 = 1) = lesinfox 61 -
|a] cos(@a — @) + |c| cos(de — )
and the mixing angle £ is
1 2|b|
¢ = —arctan . 73
3 T cos(dn + 6= ) — lal cosla — & — o0 )
Also, the two eigenvalues can be written as
my = |ac; + csge®™® — 2bsecee™|
my = |asie™™ + ccf + 2bsecee ™| (74)
The final unitary matrix that diagonalizes M is
eiw1/2 0
U=V ' , (75)
0 6zw2/2
where
wy = —arg (ac; + csge™® — 2bsecee’®) |
wy = —arg (asie > + cc + 2bsecee ™) . (76)

B Right-multiplication
We calculate the change of mixing parameters when a general initial mixing matrix Uy (see
Eq. I5) is multiplied by the following unitary matrix from the right:

Ce sge”@ 0
Ua(§,9) = | —see™® ¢ 0] - (77)
0 0 1
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Multiplying Uy on the right by U, yields

1 0 0
U = Ros(03;)U3(05, ") Ri2(6],) | 0 €52 0 | Ura(€, 0)

0 0 952

- ~ 43 (5093
0 0 * 1= —i(6Y—32) 0
c13C12 C13575€" 2 e 2 )313
ot = 50 = ~ 50 ¢8 ¢g
_ 0 0 .0 i 0 A 0 0 & _io0\ %2 i% 0 .0
= — (93512 — S33573C12€ (co3CTy — s5357357,€™ )e' € 2 Ci3593 , (78)

¢9

0
0 & 0 0/~ _id0 0 i 0 0 O« ,i6%\ 3 0
33512 — Ca3513C12€ (—59307Ty — C3381357,€™ )e' 2

93
e’ 0130(2)3

where

Chy = 0(1)206 - 5(1)25§€i¢g;2¢ (79)
and

Sz = S12Ce + C(l]zs’ﬁeﬁ(gzzq5 (80)

are complex. Comparing U to the standard parametrization, we find that
923 == ‘983 5 ‘913 — 9?3 y (81)

and

2 P9 +20

1 (82)

015 = arcsin(|Sys|) = arcsin \/sin2(9?2 + &) — sin(26Y,) sin(2¢€) sin

Note that after the right-multiplication the phases of the resulting mixing matrix are not

in the standard form. Defining

N tan 09, tan & sin(¢9/2 + ¢)

a = arg(Cqp) = — arctan , 83
18(Crz) ' 1 — tan 6%, tan € cos(¢y/2 + ¢) (83)
- tan & sin(¢9/2 + ¢)
= arg(S;2) = arctan , 84
f = arg(Sp) : tan 6% + tan & cos(¢9/2 + ¢) (84)
we can write U as
0 |/ o 0 |Q i(ﬁ—ﬁ) —i(&o—ﬁ) 0
ci3Chzle ch3|Sizle’ 2 € 275713
~ ) ~ ) ~ ) ~ . .49 69
U= _C(2]3|Sl2|62ﬁ - 5(2)35(1]3|Cl2|el(50+a) (0(2)3|Cl2|6_m - 5(2)35(1]3|512|el(50_5))6272 62730(1)35(2)3
- . ~ ) ~ ) ~ ) 49 - $9
Sg3|512‘625 - 0(2)33(1)3|Cl2|€l(60+a) (_3(2)3‘012‘6_W - 0833(1)3‘512|€Z(60_6))6Z72 62730(1)30(2)3
(85)
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On removing the unphysical phases ¢. = o and ¢, = ¢, = 3 from the rows, the phases
in the second and third columns match the form of the standard parametrization, with the

Majorana phases shifted by

Ay = =2(a+ f), (86)
Aps = 20, (87)

and the Dirac phase shifted by
Ad=a—[. (88)
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