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Inspired by Pc(4380) and Pc(4450) recently observed by LHCb, a QCD sum rule investigation is performed,
by which they can be identified as exotic hidden-charm pentaquarks composed of an anti-charmed meson and a
charmed baryon. Our results suggest that Pc(4380) and Pc(4450) have quantum numbers JP = 3/2− and 5/2+,
respectively. Furthermore, two extra hidden-charm pentaqurks with configurations D̄Σ∗c and D̄∗Σ∗c are predicted,
which have spin-parity quantum numbers JP = 3/2− and JP = 5/2+, respectively. As an important extension,
the mass predictions of hidden-bottom pentaquarks are also given. Searches for these partners of Pc(4380) and
Pc(4450) are especially accessible at future experiments like LHCb and BelleII.

PACS numbers: 12.39.Mk, 14.20.Lq, 12.38.Lg
Keywords: Pentaquark states, QCD sum rule, Interpolating fields

Introduction.—Exploring exotic matter beyond conven-
tional hadron configurations is one of the most intriguing cur-
rent research topics of hadronic physics, and these studies will
improve our understanding of non-perturbative QCD. With
the experimental progress on this issue over the past decade,
dozens of XYZ charmonium-like states have been reported,
which provide us good opportunities to identify exotic hidden-
charm four-quark matter [1]. Facing such abundant novel phe-
nomena relevant to four-quark matter, we naturally conjec-
ture that there should exist hidden-charm pentaquark states
[2–6]. In fact, the possible hidden-charm molecular pen-
taquarks composed of an anti-charmed meson and a charmed
baryon were investigated systematically within the one bo-
son exchange model in Ref. [3]. However, the experimental
evidence of exotic hidden-charm pentaquark state has been
absent until the LHCb Collaboration’s recent observations of
two hidden-charm pentaquark resonances.

Via the Λb → J/ψpK process, LHCb observed two en-
hancements, Pc(4380) and Pc(4450), in the J/ψp invariant
mass spectrum [7], which shows that they must have hidden-
charm quantum number and isospin I = 1/2. Additionally,
their resonance parameters are measured, i.e., MPc(4380) =

4380±8±29 MeV, ΓPc(4380) = 205±18±86 MeV, MPc(4450) =

4449.8 ± 1.7 ± 2.5 MeV, and ΓPc(4450) = 39 ± 5 ± 19 MeV [7].
Later, they are studied by using the boson exchange model [8]
and the topological soliton model [9], etc.

In this letter, we give an explicit QCD sum rule investi-
gation to Pc(4380) and Pc(4450). We shall investigate the
possibility of interpreting them as hidden-charm pentaquark
configurations composed of an anti-charmed meson and a
charmed baryon: Pc(4380) can be well reproduced using a
[D̄∗Σc] structure with quantum numbers JP = 3/2−, and
Pc(4450) can be well reproduced using a mixed structure of
[D̄∗Λc] and [D̄Σ∗c] with JP = 5/2+. One notes that the “struc-
ture” here means we are using meson-baryon currents having

the color configuration [c̄dqd][εabccaqbqc], where a · · · d are
color indices, q represents up, down and strange quarks, and
c represents a charm quark. These local currents could probe
either a tightly-bound pentaquark structure or a molecular
structure composed of an anti-charmed meson and a charmed
baryon.

Besides clarifying properties of these two observed
Pc(4380) and Pc(4450) pentaquarks, in this letter we further
give theoretical predictions of two extra hidden-charm pen-
taqurks with configurations D̄Σ∗c and D̄∗Σ∗c, as partners of
Pc(4380) and Pc(4450). After the LHCb’s observation [7], ex-
perimental exploration to these predicted hidden-charm pen-
taquarks will be an intriguing research topic, of interest to
both experimentalists and theorists.

Interpretation of observed Pc(4380) and Pc(4450) states.—
As the first step, we briefly discuss how to construct lo-
cal pentaquark interpolating currents having spin J = 3/2,
flavor-octet 8F , and containing one cc̄ pair. There are two
possible color configurations, either [c̄dcd][εabcqaqbqc] or
[c̄dqd][εabccaqbqc]. These two configurations, if they are lo-
cal, can be related by the Fierz transformation as well as the
color rearrangement:

δdeεabc = δdaεebc + δdbεaec + δdcεabe . (1)

The former configuration, [c̄dcd][εabcqaqbqc], can be easily
constructed based on the results of Ref. [10] that there are
three independent local light baryon fields of flavor-octet and
having a positive parity:

NN
1 = εabcε

ABDλN
DC(qaT

A Cqb
B)γ5qc

C ,

NN
2 = εabcε

ABDλN
DC(qaT

A Cγ5qb
B)qc

C , (2)
NN

3µ = εabcε
ABDλN

DC(qaT
A Cγµγ5qb

B)γ5qc
C ,

where A · · ·D are flavor indices, and qA = (u , d , s) is the light
quark field of flavor-triplet. Together with light baryon fields
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2

having negative parity, γ5NN
1,2 and γ5NN

3µ, and the charmonium
fields:

c̄dcd [0+] , c̄dγ5cd [0−] ,
c̄dγµcd [1−] , c̄dγµγ5cd [1+] , c̄dσµνcd [1±] ,

we can construct the currents containing J = 3/2 components,
which are:

[c̄dcd][NN
3µ] , [c̄dγ5cd][NN

3µ] , [c̄dγµcd][NN
1,2] ,

[c̄dγµγ5cd][NN
1,2] , [c̄dγµcd][NN

3ν] , [c̄dγµγ5cd][NN
3ν] , (3)

[c̄dσµνcd][NN
1,2] , [c̄dσµνcd][NN

3ρ] ,

as well as their partners having opposite parities, i.e.,
[· · · ][γ5 · · · ] (such as [c̄dcd][γ5NN

3µ]). We note that their pari-
ties are a bit complicated and will be discussed later.

Besides J = 3/2 components, these currents can also con-
tain J = 1/2 and 5/2 components. The J = 1/2 components
can be safely removed in the two-point correlation functions,
which will be discussed after Eq. (20) and so we shall not con-
sider any more; to separate J = 3/2 and 5/2 components, we
need to use projection operators. For example, the current

ηN
3µν = [c̄dγ

µcd][γ5NN
3ν] , (4)

contains both spin J = 3/2 and 5/2 components:

ηN
3[µν] = [c̄dγ

µcd][γ5NN
3ν] − [c̄dγ

νcd][γ5NN
3µ] ,

ηN
3{µν} = [c̄dγ

µcd][γ5NN
3ν] + [c̄dγ

νcd][γ5NN
3µ] , (5)

where ηN
3[µν] contains both JP = 3/2+ and 3/2− components,

and ηN
3{µν} contains only the JP = 5/2+ component.

Among the currents listed in Eqs. (3) and (5), ηN
1,2µ ≡

[c̄dγµcd][NN
1,2] of JP = 3/2− couples well to the combination

of J/ψ and proton through S -wave, and ηN
3{µν} of JP = 5/2+

couples well to the combination of J/ψ and proton through
P-wave, when their quark contents are cc̄uud:

ηcc̄uud
1µ = [c̄dγµcd][εabc(uT

a Cdb)γ5uc] ,

ηcc̄uud
2µ = [c̄dγµcd][εabc(uT

a Cγ5db)uc] ,

ηcc̄uud
3{µν} = [c̄dγµcd][εabc(uT

a Cγνγ5db)uc] + {µ↔ ν} . (6)

In the following we shall use the mixed current containing
“Ioffe’s baryon current”, which couples strongly to the lowest-
lying nucleon state [11, 12]

ηcc̄uud
12µ = ηcc̄uud

1µ − ηcc̄uud
2µ , (7)

as well as ηcc̄uud
3{µν} to perform QCD sum rule analyses. However,

we shall see that the results are not useful.
Considering that the experimental observed states have

masses significantly larger than the threshold of J/ψ and pro-
ton, but close to thresholds of D/D∗ and Λc/Σc/Σ

∗
c, we shall

also construct currents belonging to the other configuration,
[c̄dqd][εabccaqbqc], and use them to perform QCD sum rule

analyses. Because currents of this type can not be systemati-
cally constructed so easily, we just choose some of them and
give their relations to ηcc̄uud

1,2µ and ηcc̄uud
3{µν} , but leave the detailed

discussions for our future studies.
We can transform the current ηcc̄uud

12µ using the Fierz trans-
formation (f.t.) and the color rearrangement (c.r.) to be

ηcc̄uud
12µ

f .t.&c.r.
−−−−−−→

1
8

JD̄∗Σc
µ +

1
8

JD̄Σ∗c
µ + · · · , (8)

where

JD̄∗Σc
µ = [c̄dγµdd][εabc(uT

a Cγνub)γνγ5cc] , (9)

JD̄Σ∗c
µ = [c̄dγ5dd][εabc(uT

a Cγµub)cc] . (10)

The former one, JD̄∗Σc
µ , seems to contain color-singlet D̄∗ and

Σc, which structure we denote as [D̄∗Σc]. It may be interpreted
as a tightly-bound pentaquark structure or a [D̄∗Σc] molecular
state. If there exists a state with such structures, this current
would couple strongly to it. The latter one, JD̄Σ∗c

µ , has a [D̄Σ∗c]
structure.

We can also transform the current ηcc̄uud
3{µν} to be

ηcc̄uud
3{µν}

f .t.&c.r.
−−−−−−→ −

1
8

JD̄∗Σ∗c
{µν}
−

1
8

JD̄Σ∗c
{µν}
−

3
8

JD̄∗Λc
{µν}

+ · · · , (11)

where

JD̄∗Σ∗c
{µν}

= [c̄dγµdd][εabc(uT
a Cγνub)γ5cc] + {µ↔ ν} , (12)

JD̄Σ∗c
{µν}

= [c̄dγµγ5dd][εabc(uT
a Cγνub)cc] + {µ↔ ν} , (13)

JD̄∗Λc
{µν}

= [c̄dγµud][εabc(uT
a Cγνγ5db)cc] + {µ↔ ν} . (14)

They have D̄∗Σ∗c, D̄Σ∗c and D̄∗Λc structures, respectively.
In the following, we shall use the method of QCD sum

rules [17–19, 21] to investigate ηcc̄uud
12µ and ηcc̄uud

3{µν} for the

[c̄dcd][εabcqaqbqc] structure, and JD̄∗Σc
µ , JD̄Σ∗c

µ , JD̄∗Σ∗c
{µν}

, JD̄Σ∗c
{µν}

, and

JD̄∗Λc
{µν}

for the [c̄dqd][εabccaqbqc] structure. Eqs. (8) and (11)
suggest that the structures coupled by these currents, if exist,
would naturally decay to J/ψ and proton final states: JD̄∗Σc

µ

and JD̄Σ∗c
µ couple equally to “S -wave” J/ψ and proton, and

JD̄∗Λc
{µν}

couples to “P-wave” J/ψ and proton more strongly than

JD̄∗Σ∗c
{µν}

and JD̄Σ∗c
{µν}

.
It is important to note that although these pentaquark cur-

rents have definite parities (3/2− and 5/2+), they can couple
to states of both positive and negative parities, by adding a γ5
(see discussions in Refs. [13–15] and especially in Ref. [16]):

〈0|J|B〉 = fBu(p) , (15)
〈0|J|B′〉 = fB′γ5u′(p) , (16)

where |B〉 has the same parity as J, and |B′〉 has the opposite
parity. These equations also suggest that J and γ5J can couple
to the same state, and so the partners of these currents having
opposite parities can also be used, such as γ5η

cc̄uud
12µ , but they

just lead to the same sum rule results.
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In this paper we shall use the non-γ5 couplings, Eq. (15),
and the couplings for JD̄∗Σc

µ and JD̄∗Σ∗c
{µν}

are:

〈0|JD̄∗Σc
µ |[D̄∗Σc]〉 = fD̄∗Σc

uµ(p) , (17)

〈0|JD̄∗Σ∗c
{µν}
|[D̄∗Σ∗c]〉 = fD̄∗Σ∗c u{µν}(p) . (18)

The formulae are similar for ηcc̄uud
12µ , ηcc̄uud

3{µν} , JD̄Σ∗c
µ , JD̄Σ∗c

{µν}
, and

JD̄∗Λc
{µν}

, which we shall not repeat. Then the two-point correla-
tion functions can be written as:

ΠD̄∗Σc
µν

(
q2

)
= i

∫
d4xeiq·x〈0|T

[
JD̄∗Σc
µ (x)J̄D̄∗Σc

ν (0)
]
|0〉

=

(
qµqν
q2 − gµν

)
(q/ + M[D̄∗Σc])Π

D̄∗Σc
(
q2

)
+ · · · , (19)

Π
D̄∗Σ∗c
µνρσ

(
q2

)
= i

∫
d4xeiq·x〈0|T

[
JD̄∗Σ∗c
{µν}

(x)J̄D̄∗Σ∗c
{ρσ}

(0)
]
|0〉

=
(
gµρgνσ + gµσgνρ

)
(q/ + M[D̄∗Σ∗c])Π

D̄∗Σ∗c
(
q2

)
+ · · · ,(20)

where the spin 1/2 components are all contained in · · · , such
as qµqν(q/ + m)ΠD̄∗Σc

1/2

(
q2

)
, etc..

One can also use the γ5 couplings, Eq. (16). The resulting
two-point correlation functions are similar to Eqs. (19) and
(20), but with (q/ + MX) replaced by (−q/ + MX), where X is
either [D̄∗Σc] or [D̄∗Σ∗c]. This difference would tell us the par-
ity of X. We note that the result does not change when using
γ5JD̄∗Σc

µ and γ5JD̄∗Σ∗c
{µν}

having opposite parities. Technically, in
the following analyses we use the terms proportional to 1×gµν
and 1× gµρgνσ to evaluate the mass of X, which are then com-
pared with those proportional to q/ × gµν and q/ × gµρgνσ to
determine its parity.

We follow Ref. [21] and obtain M[D̄∗Σc] and M[D̄∗Σ∗c] through:

M2
X(s0,MB) =

∫ s0

s<
e−s/M2

BρX(s)sds∫ s0

s<
e−s/M2

BρX(s)ds
, (21)

where ρX(s) is the QCD spectral density which we evaluate up
to dimension eight, including the perturbative term, the quark
condensate 〈q̄q〉, the gluon condensate 〈g2

sGG〉, the quark-
gluon mixed condensate 〈gsq̄σGq〉, and their combinations
〈q̄q〉2 and 〈q̄q〉〈gsq̄σGq〉. The full expressions are lengthy and
will not be shown here. We use the values listed in Ref. [21]
for these condensates and the charm quark mass (see also
Refs. [22–30]).

There are two free parameters in Eq. (21): the Borel mass
MB and the threshold value s0. We use two criteria to con-
strain the Borel mass MB. One criterion is to require that the
dimension eight term be less than 10% to determine its lower
limit Mmin

B :

Convergence (CVG) ≡

∣∣∣∣∣∣∣Π
X
〈q̄q〉〈gsq̄σGq〉(∞,MB)

ΠX(∞,MB)

∣∣∣∣∣∣∣ ≤ 10% , (22)

and the other criterion is to require that the pole contribution
(PC) be larger than 10% to determine its upper limit Mmax

B :

PC ≡
ΠX(s0,MB)
ΠX(∞,MB)

≥ 10% . (23)

Altogether we obtain a Borel window Mmin
B < MB < Mmax

B for
a fixed threshold value s0. To determine s0, we require that
both the s0 dependence and the MB dependence of the mass
prediction be the weakest.

We perform QCD sum rule analyses using ηcc̄uud
12µ and ηcc̄uud

3{µν}

of the [c̄dcd][εabcqaqbqc] configuration, but the results are not
useful, because the spectral density ρ[J/ψN]

3/2 (s) obtained using
ηcc̄uud

12µ is too simple: it only contains the q/ × gµν part but no
1 × gµν part, and moreover, this q/ × gµν part only contains
the perturbative term and 〈g2

sGG〉. There are also many terms
missing in the spectral density ρ[J/ψN]

5/2 (s) obtained using ηcc̄uud
3{µν} :

its q/×gµρgνσ part only contains the perturbative term, 〈g2
sGG〉,

〈q̄q〉2 and 〈q̄q〉〈gsq̄σGq〉, but its 1 × gµρgνσ part only contains
〈q̄q〉 and 〈gsq̄σGq〉. This makes bad OPE convergence and
leads to unreliable results.
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FIG. 1: The variation of M[D̄∗Σc],3/2− with respect to the threshold
value s0 (left) and the Borel mass MB (right). In the left figure, the
long-dashed, solid and short-dashed curves are obtained by fixing
M2

B = 3.9, 4.1 and 4.3 GeV2, respectively. In the right figure, the
long-dashed, solid and short-dashed curves are obtained for s0 = 19,
21 and 23 GeV2, respectively.

We also perform QCD sum rule analyses using JD̄∗Σc
µ , JD̄Σ∗c

µ ,

JD̄∗Σ∗c
{µν}

, JD̄Σ∗c
{µν}

, and JD̄∗Λc
{µν}

of the [c̄dqd][εabccaqbqc] configuration.

Here, we use JD̄∗Σc
µ [3/2−], defined in Eq. (9), as an example,

whose sum rule has reasonable working regions. We calcu-
late its spectral density, ρ[D̄∗Σc]

3/2 (s), and use its 1 × gµν part to
evaluate the mass of [D̄∗Σc], denoted as M[D̄∗Σc]. We show
its variation with respect to the threshold value s0 in the left
panel of Fig. 1. We quickly notice that this dependence is the
weakest around s0 ∼ 18 GeV2, and the MB dependence is the
weakest around s0 ∼ 24 GeV2. Accordingly, we choose the
region 19 GeV2 ≤ s0 ≤ 23 GeV2 as our working region. The
corresponding Borel window is 3.9 GeV2 ≤ M2

B ≤ 4.3 GeV2

for s0 = 21 GeV2. We also show the variations of M[D̄∗Σc] with
respect to the Borel mass MB in the right panel of Fig. 1, in
a broader region 2.5 GeV2 ≤ M2

B ≤ 5.0 GeV2, while these
curves are more stable inside the Borel window. We obtain
the following numerical results:

M[D̄∗Σc] = 4.37+0.19
−0.12 GeV , (24)
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where the central value corresponds to MB = 4.1 GeV2 and
s0 = 21 GeV2, and the uncertainty comes from the Borel mass
MB, the threshold value s0, the charm quark mass and the var-
ious condensates [21]. Finally, we find that the q/ × gµν part of
the spectral density ρ[D̄∗Σc]

3/2 (s) is very similar to the 1×gµν part.

This means that [D̄∗Σc] has the same parity as JD̄∗Σc
µ [3/2−],

that is negative:

M[D̄∗Σc],3/2− = 4.37+0.19
−0.12 GeV . (25)

This value is consistent with the experimental mass of
Pc(4380) [7], and supports it as a [D̄∗Σc] hidden-charm pen-
taquark with quantum numbers JP = 3/2−.

The masses obtained using JD̄Σ∗c
{µν}

[5/2+] and JD̄∗Λc
{µν}

[5/2+], de-
fined in Eqs. (13) and (14), depend much on the threshold
value s0 and so are not useful. However, the following mixed
current of JD̄Σ∗c

{µν}
and JD̄∗Λc

{µν}
gives a reliable mass sum rule:

JD̄Σ∗c&D̄∗Λc

{µν}
= sin θ × JD̄Σ∗c

{µν}
+ cos θ × JD̄∗Λc

{µν}
, (26)

when the mixing angle θ is fine-tuned to be −51 ± 5◦, and the
hadron mass can be extracted as

M[D̄Σ∗c&D̄∗Λc],5/2+ = 4.47+0.20
−0.13 GeV , (27)

with 20 GeV2 ≤ s0 ≤ 24 GeV2 and 3.2 GeV2 ≤ M2
B ≤ 3.5

GeV2. This value is consistent with the experimental mass of
Pc(4450) [7], and supports it as an admixture of [D̄∗Λc] and
[D̄Σ∗c] with quantum numbers JP = 5/2+. Accordingly to its
internal structure described by JD̄Σ∗c&D̄∗Λc , we suggest its main
decay modes include P-wave D̄∗Λc and D̄Σ∗c besides J/ψN.

The prediction of extra hidden-charm pentaquarks.— The
tetraquark family can give us some information about the pen-
taquark family. To date, there are already six members in the
family of the electrically charged states: X(3900)±, X(4020)±,
X(4050)±, X(4250)±, X(4430)± [23], and Zc(4200)+ [31].
They all contain at least four quarks, and can be described
using the eight independent tetraquark currents with quan-
tum numbers IG JPC = 1+1+−, which represent internal struc-
tures of these states in the method of QCD sum rules (see
Refs. [20, 21] and references therein). While, there are many
independent pentaquark currents having quantum numbers
J = 3/2 and J = 5/2, the more complicated internal structures
of pentaquark suggesting that there may be more pentaquark
states besides Pc(4380) and Pc(4450).

In this paper we use the pentaquark currents JD̄Σ∗c
µ [3/2−] and

JD̄∗Σ∗c
{µν}

[5/2+], defined in Eqs. (9) and (12), to perform QCD
sum rule analyses. Other currents of the same configuration
([c̄dqd][εabccaqbqc]) will be investigated in our future studies,
where we shall do a systematical study in order to fully under-
stand them. The mass obtained using JD̄Σ∗c

µ [3/2−] is

M[D̄Σ∗c],3/2− = 4.45+0.17
−0.13 GeV , (28)

and the mass obtained using JD̄∗Σ∗c
{µν}

[5/2+] is

M[D̄∗Σ∗c],5/2+ = 4.59+0.17
−0.12 GeV . (29)

Hence, we predict that there is the probability of a [D̄Σ∗c]
hidden-charm pentaquark having mass 4.45+0.17

−0.13 GeV and
quantum numbers JP = 3/2− and a [D̄∗Σ∗c] pentaquark having
mass 4.59+0.17

−0.12 GeV and JP = 5/2+. Accordingly to their inter-

nal structures described by JD̄Σ∗c
µ and JD̄∗Σ∗c

{µν}
, we suggest that the

former one [D̄Σ∗c] mainly decay into S -wave D̄Σ∗c and J/ψN
and the latter one [D̄∗Σ∗c] mainly decay into P-wave D̄∗Σc and
J/ψN.

If the hidden-charm pentaquarks exist in nature, there
should be hidden-bottom pentaquarks with antibottom meson
and bottom baryon components, which are as the partners of
Pc(4380) and Pc(4450). Employing the previously obtained
formalism, we further predict the masses of these possible
hidden-bottom pentaquarks, i.e.,

M[B̄∗Σb],3/2− = 11.55+0.23
−0.14 GeV , (30)

M[B̄Σ∗b&B̄∗Λb],5/2+ = 11.66+0.28
−0.27 GeV . (31)

The former one [B̄∗Σb] mainly will decay into S -wave
Υ(1S )N/Υ(2S )N and may decay into B̄∗Σb, and the latter one
[B̄Σ∗b&B̄∗Λb] mainly decay into P-wave B̄Σ∗b, B̄∗Λb, Υ(1S )N,
and Υ(2S )N. These results provide valuable information for
experimental exploration of these hidden-bottom pentaquarks.

Conclusion.— In summary, the observation of Pc(4380)
and Pc(4450) by LHCb [7] has opened a new window for
studying hidden-charm exotic pentaquark states.

In this letter, we have performed a QCD sum rule inves-
tigation, by which Pc(4380) and Pc(4450) are identified as
hidden-charm pentaquark states composed of an anti-charmed
meson and a charmed baryon. We use JD̄∗Σc

µ to perform QCD
sum rule analysis and the result shown in Eq. (25) supports
Pc(4380) as a [D̄∗Σc] hidden-charm pentaquark with quantum
numbers JP = 3/2−. We use the mixed current JD̄Σ∗c&D̄∗Λc

to perform QCD sum rule analysis, and the result shown in
Eq. (27) implies a possible mixed hidden-charm pentaquark
structure of Pc(4450), as an admixture of [D̄∗Λc] and [D̄Σ∗c]
with quantum numbers JP = 5/2+, and its main decay modes
include P-wave D̄∗Λc and D̄Σ∗c besides J/ψN.

Besides them, a) we use other two independent currents
JD̄Σ∗c
µ and JD̄∗Σ∗c

{µν}
to perform QCD sum rule analyses, and pre-

dict there may be a [D̄Σ∗c] hidden-charm pentaquark having
mass 4.45+0.17

−0.13 GeV and quantum numbers JP = 3/2−, and a
[D̄∗Σ∗c] hidden-charm pentaquark having mass 4.59+0.17

−0.12 GeV
and JP = 5/2+; b) we predict two hidden-bottom pentaquarks,
as partners of Pc(4380) and Pc(4450). We also discuss their
possible decay modes according to their internal structures de-
scribed by pentaquark interpolating currents.

All these states/structures have a [c̄dqd][εabccaqbqc] color
configuration, could probe either a tightly-bound pentaquark
structure or a molecular structure composed of an anti-
charmed meson and a charmed baryon. We shall test more
structures, such as the antiquark-diquark-diquark configura-
tion, εabc[c̄a][εbdecdqe][εc f gq f qg], in our future studies.

In the near future, further experimental and theoretical
study of hidden-charm/hidden-bottom (molecular) pentaquark
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will still be important, especially with the running of LHC at
13 TeV and forthcoming BelleII.
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