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Strange baryon spectroscopy in the relativistic quark model
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Mass spectra of strange baryons are calculated in the framework of the relativistic

quark model based on the quasipotential approach. Baryons are treated as the

relativistic quark-diquark bound systems. It is assumed that two quarks with equal

constituent masses form a diquark. The diquark excitations and its internal structure

are consistently taken into account. Calculations are performed up to rather high

orbital and radial excitations of strange baryons. On this basis the Regge trajectories

are constructed. The obtained results are compared with available experimental data

and previous predictions. It is found that all masses of the 4- and 3-star, as well as

most of the 2- and 1-star states of strange baryons with established quantum numbers

are well reproduced. The developed relativistic quark-diquark model predicts less

excited states than three-quark models of strange baryons.

PACS numbers: 14.20.Jn, 12.39.Ki, 12.39.Pn

I. INTRODUCTION

At present the extensive evidence (including lattice calculations) of the existence of di-
quark correlations in hadrons was collected. 1 It continues constantly growing with the
accumulation of new data on various properties of light and heavy hadrons [1]. Thus re-
cently several charged charmonium- and bottomonium-like states were discovered [1, 2].
They should be inevitably multiquark, at least four quark — tetraquark, states. One of the
most successful pictures of such tetraquark states is the diquark-antidiquark model [3, 4]. In
the light meson sector it has been argued for a long time that mesons forming the inverted
lightest scalar nonet can be well described as tetraquarks [5] treated as diquark-antidiquark
bound states [6, 7]. In the baryon sector it is well known that the number of observed excited
states both in the light and heavy sectors is considerably lower than the number of excited
states predicted in the three-quark picture [8–11]. The introduction of diquarks significantly
reduces this number of baryon states since in such a picture some of degrees of freedom are
frozen and thus the number of possible excitations is substantially smaller.

In our previous papers we developed the relativistic quark-diquark model of doubly heavy
[12] and heavy baryons [13, 14]. We assumed that two heavy quarks in a doubly heavy baryon
and two light quarks in a heavy baryon form a diquark. The relativistic quasipotential
equation with the QCD-motivated quark-quark interaction was solved for obtaining diquark
characteristics, such as the diquark masses and form factors. The calculation of the diquark
form factors is necessary for taking into account the diquark internal structure. For doubly
heavy diquarks [12] we considered both ground and excited states, while for light diquarks
[13] we limited ourselves by only ground state scalar and axial vector diquarks. Then the

1 A vast literature on this subject is available. Therefore we mostly refer to the recent reviews where the

references to earlier review and original papers can be found.
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baryon masses were calculated by solving the relativistic quark-diquark equation. It was
found that the heavy baryon spectra are well described in the proposed approach [13, 14].
The calculated baryon wave functions were used for the description of weak decays of the
doubly heavy and heavy baryons in Refs. [15, 16].

Here we extend our relativistic quark-diquark model for the calculation of the mass spec-
tra of strange baryons. These baryons are considered as the bound systems of a quark and
diquark, where we assume that a diquark is composed from quarks of the same constituent
mass. Thus Λ and Σ baryons contain the strange s quark and the light qq (q = u, d) diquark,
while Ξ and Ω baryons contain the light q or strange s quark and the strange ss diquark.
Our analysis of the strange baryon spectroscopy shows that it is necessary to consider both
ground and excited states of these diquarks. As the result the number of obtained baryon
states is increased, however it is still significantly less than in the three-quark approaches.
The differences become evident for the higher quark excitations in a baryon. Our goal is to
calculate the strange baryon spectra up to rather high orbital and radial excitations. On
this basis the Regge trajectories for these baryons can be constructed and their linearity can
be tested. Moreover, the comparison of the Regge trajectory slopes for strange and charmed
baryons as well as light mesons can be made.

The paper is organized as follows. In Sec. II we briefly describe our relativistic quark-
diquark model of baryons. Expressions for the quasipotentials of the quark-quark interaction
in a diquark and the quark-diquark interaction in a baryon are given which include both
the spin-independent and spin-dependent relativistic contributions. Masses and form factor
parameters of ground and excited states of diquarks are calculated. In Sec. III the mass
spectra of strange baryons are considered. The obtained results are confronted with available
experimental data and predictions of other approaches. We calculate the strange baryon
masses up to rather high orbital and radial excitations in the quark-diquark bound system.
This allows us to construct their Regge trajectories which are presented in Sec. IV. The
corresponding slopes and intercepts are determined. Finally, we give our conclusions in
Sec. V.

II. RELATIVISTIC QUARK-DIQUARK MODEL

For the calculations of the strange baryon spectra we employ the quasipotential approach
and quark-diquark picture of baryons which was previously used for the investigation of
the heavy baryon spectroscopy [13, 14]. In our present analysis we closely follow these
considerations. The interaction of two quarks in a diquark and the quark-diquark interaction
in a baryon are described by the diquark wave function Ψd of the bound quark-quark state
and by the baryon wave function ΨB of the bound quark-diquark state respectively, which
satisfy the quasipotential equation of the Schrödinger type [17]

(

b2(M)

2µR
− p2

2µR

)

Ψd,B(p) =
∫

d3q

(2π)3
V (p,q;M)Ψd,B(q), (1)

where the relativistic reduced mass is

µR =
M4 − (m2

1 −m2
2)

2

4M3
, (2)

and M is the bound state mass (diquark or baryon), m1,2 are the masses of quarks (q1 and
q2) which form the diquark or of the diquark (d) and quark (q) which form the baryon (B),
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and p is their relative momentum. In the center of mass system the relative momentum
squared on mass shell reads

b2(M) =
[M2 − (m1 +m2)

2][M2 − (m1 −m2)
2]

4M2
. (3)

The kernel V (p,q;M) in Eq. (1) is the quasipotential operator of the quark-quark or
quark-diquark interaction which is constructed with the help of the off-mass-shell scattering
amplitude, projected onto the positive energy states. We assume that the effective interac-
tion is the sum of the usual one-gluon exchange term and the mixture of long-range vector
and scalar linear confining potentials, where the vector confining potential contains the Pauli
term. The details can be found in Refs. [13, 14]. The resulting quasipotentials are given by
the following expressions.

(a) Quark-quark (qq) interaction in the diquark

V (p,q;M) = ū1(p)ū2(−p)V(p,q;M)u1(q)u2(−q), (4)

with

V(p,q;M) =
1

2

[

4

3
αsDµν(k)γ

µ
1 γ

ν
2 + V V

conf(k)Γ
µ
1 (k)Γ2;µ(−k) + V S

conf(k)
]

,

(b) Quark-diquark (qd) interaction in the baryon

V (p,q;M) =
〈d(P )|Jµ|d(Q)〉
2
√

Ed(p)Ed(q)
ūq(p)

4

3
αsDµν(k)γ

νuq(q)

+ψ∗

d(P )ūq(p)Jd;µΓ
µ
q (k)V

V
conf(k)uq(q)ψd(Q)

+ψ∗

d(P )ūq(p)V
S
conf(k)uq(q)ψd(Q), (5)

where αs is the QCD coupling constant, 〈d(P )|Jµ|d(Q)〉 is the vertex of the diquark-gluon
interaction which takes into account the diquark internal structure and Jd;µ is the effective
long-range vector vertex of the diquark. The diquark momenta are P = (Ed(p),−p), Q =

(Ed(q),−q) with Ed(p) =
√

p2 +M2
d . Dµν is the gluon propagator in the Coulomb gauge,

k = p− q; γµ and u(p) are the Dirac matrices and spinors, while ψd(P ) is the diquark wave
function [13]. The factor 1/2 in the quark-quark interaction accounts for the difference of
the colour factor compared to the quark-antiquark case.

The effective long-range vector vertex of the quark is defined by [17]

Γµ(k) = γµ +
iκ

2m
σµν k̃

ν , k̃ = (0,k), (6)

where κ is the anomalous chromomagnetic moment of quarks.
In the nonrelativistic limit the vector and scalar confining potentials reduce to

V V
conf(r) = (1− ε)(Ar +B),

V S
conf(r) = ε(Ar +B), (7)

where ε is the mixing coefficient. Thus in this limit the usual Cornell-like potential is
reproduced

V (r) = −4

3

αs

r
+ Ar +B, (8)
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TABLE I: Masses M and form factor parameters of diquarks.

Quark I State M ξ ζ

content nlj (MeV) (GeV) (GeV2)

ud 0 1s0 710 1.09 0.185

1 1s1 909 1.185 0.365

0 1p0 1321 1.395 0.148

0 1p1 1397 1.452 0.195

0 1p2 1475 1.595 0.173

1 1p1 1392 1.451 0.194

0 2s0 1513 1.01 0.055

1 2s1 1630 1.05 0.151

ss 0 1s1 1203 1.13 0.280

0 1p1 1608 1.03 0.208

0 2s1 1817 0.805 0.235

where we use the QCD coupling constant with freezing

αs(µ
2) =

4π

β0 ln
µ2 +M2

B

Λ2

, β0 = 11− 2

3
nf , µ =

2m1m2

m1 +m2

, (9)

with the background mass MB = 2.24
√
A = 0.95 GeV [18] and Λ = 413 MeV [19].

All parameters of the model were fixed previously from calculations of meson and baryon
properties [17]. The constituent quark masses mu = md = 0.33 GeV, ms = 0.5 GeV and
the parameters of the linear potential A = 0.18 GeV2 and B = −0.3 GeV have the usual
values of quark models. The value of the mixing coefficient of vector and scalar confining
potentials ε = −1 and the universal Pauli interaction constant κ = −1. Note that the
long-range chromomagnetic contribution to the potential, which is proportional to (1 + κ),
vanishes for the chosen value of κ = −1.

First we calculate masses and form factors of the diquarks. The quasipotential equation
(1) is solved numerically for the complete relativistic potential which depends on the diquark
mass in a complicated highly nonlinear way [13]. In our approach we assume that diquarks
in strange baryons are formed by the constituent quarks of the same mass, i.e. we consider
only the ud, uu, dd and ss diquarks. Note that the ground state ud diquark can be both in
scalar and axial vector state, while the ground state diquarks composed from quarks of the
same flavour uu, dd and ss can be only in the axial vector state due to the Pauli principle.
The obtained masses of the ground and excited states of diquarks are presented in Table I.
The diquark state is characterized by the quark content, isospin I, radial quantum number
n = 1, 2, 3 . . ., orbital momentum l = s, p and total angular momentum j = 0, 1, 2 (the
diquark spin). In this table we also give the values of the parameters ξ and ζ . They enter
the vertex 〈d(P )|Jµ|d(Q)〉 of the diquark-gluon interaction (5) which is parameterized by
the form factor

F (r) = 1− e−ξr−ζr2, (10)

that takes the internal diquark structure into account [13].
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Next we calculate the masses of heavy baryons as the bound states of a quark and
diquark. The quark-diquark potential is the sum of spin-independent and spin-dependent
parts [13, 14]

V (r) = VSI(r) + VSD(r). (11)

The spin-independent VSI(r) part is given by

VSI(r) = V̂Coul(r) + Vconf(r) +
1

EdEq

{

1

2
(E2

q −m2
q + E2

d −M2
d )
[

V̂Coul(r) + V V
conf(r)

]

+
1

4
∆
[

2VCoul(r) + V V
conf(r)

]

+ V̂ ′

Coul(r)
L2

2r

}

+
1

Eq(Eq +mq)

{

−(E2
q −m2

q)V
S
conf(r)

+
1

4
∆

(

V̂Coul(r)− Vconf(r)− 2

[

Eq −mq

2mq
− (1 + κ)

Eq +mq

2mq

]

V V
conf(r)

)}

, (12)

where the diquark and quark energies are defined by their on-mass-shell values [13]

Ed =
M2 −m2

q +M2
d

2M
, Eq =

M2 −M2
d +m2

q

2M
.

Here ∆ is the Laplace operator, and V̂Coul(r) is the smeared Coulomb potential which ac-
counts for the diquark internal structure

V̂Coul(r) = −4

3
αs
F (r)

r
.

The spin-dependent potential has the following form [14]

VSD(r) = a1 LSd + a2 LSq + b

[

−SdSq +
3

r2
(Sdr)(Sqr)

]

+ cSdSq, (13)

where L is the orbital angular momentum; Sd and Sq are the diquark and quark spin
operators, respectively. The first two terms are the spin-orbit interactions, the third one is
the tensor interaction and the last one is the spin-spin interaction. The coefficients a1, a2,
b and c are expressed through the corresponding derivatives of the smeared Coulomb and
confining potentials:

a1 =
1

Md(Ed +Md)

1

r

[

Md

Ed

V̂ ′

Coul(r)− V ′

conf(r)

]

+
1

EdEq

1

r

[

V̂ ′

Coul(r) +
Ed

Md

(

Ed −Md

Eq +mq

+
Eq −mq

Ed +Md

)

V ′S
conf(r)

]

, (14)

a2 =
1

EdEq

1

r

{

V̂ ′

Coul(r)−
[

Eq −mq

2mq
− (1 + κ)

Eq +mq

2mq

]

V ′V
conf(r)

}

+
1

Eq(Eq +mq)

1

r

{

V̂ ′

Coul(r)− V ′

conf(r)− 2

[

Eq −mq

2mq
− (1 + κ)

Eq +mq

2mq

]

V ′V
conf(r)

}

,

(15)

b =
1

3

1

EdEq

{

1

r
V̂ ′

Coul(r)− V̂ ′′

Coul(r)

}

, (16)
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c =
2

3

1

EdEq
∆V̂Coul(r). (17)

Note that both the one-gluon exchange and confining potentials contribute to the quark-
diquark spin-orbit interaction. The presence of the spin-orbit LSq and of the tensor terms
in the quark-diquark potential (14)–(16) leads to a mixing of states with the same total
angular momentum J and parity P but different diquark angular momentum (L+ Sd). We
consider such mixing in the same way as in the case of doubly heavy baryons [12].

III. STRANGE BARYON MASSES

We solve numerically the quasipotential equation with the nonperturbative account for
the relativistic dynamics both of quarks and diquarks. The calculated values of the ground
and excited state baryon masses are presented in Tables II–VIII in comparison with available
experimental data [1]. In the first column we show the baryon total spin J and parity P . In
the next three columns experimental candidates are listed with their status and measured
mass. In the fifth column we give the states of the quark-diquark system in a baryon and the
quark-quark state in a diquark for which the following notations are used: NLnlj , where we
first show the radial quantum number in the quark-diquark bound system (N = 1, 2, 3 . . .)
and its orbital momentum by a capital letter (L = S, P,D . . .), then the radial quantum
number of two quarks in a diquark (n = 1, 2, 3 . . .), their orbital momentum by a lowercase
letter (l = s, p, d . . .) and their total momentum j (the diquark spin) in the subscript. Finally,
in the last column our predictions for baryon masses are presented.

From Tables II–VIII we see that most of the observed 3- and 4-star states of strange
baryons can be well described as ground and excited states of the quark-diquark bound
system in which diquark is in the ground either scalar or axial vector state. However not all
of these experimental states can be reproduced. Main deviations from this picture are found
in the Λ sector which is better studied experimentally. Indeed the observed 1

2

−

4-star states

Λ(1405) and Λ(1670); 3
2

−

4-star states Λ(1520) and Λ(1690); 1
2

+
3-star states Λ(1600) and

Λ(1810) as well as 5
2

+
4-star Λ(1820) and 3-star Λ(2110) cannot be simultaneously described

in such a simple picture since their mass differences (about 200 MeV) are too small to be
attributed to the radial excitations in the quark-diquark bound system amounting to about
500 MeV. Therefore the consideration of excitations inside diquarks is necessary. As we can
see from Tables II–VIII the account of diquark excitations allows us to describe all these
states and, as a result, to get good agreement of the obtained predictions with data.

In Tables IX–XII we compare the results of our model with previous predictions in various
theoretical approaches. The strange baryons were treated in a relativized version of the
quark potential model in Ref. [20]. The relativistically covariant quark model based on the
Bethe-Salpeter equation with instantaneous two- and three-body forces was employed in
Ref. [21]. In Ref. [22] the relativistic quark model with the interquark interaction arising
from the meson exchange was used. The authors of Ref. [23] made their calculations of
baryon masses below 2 GeV in the relativistic interacting quark-diquark model with the
Gürsey and Radicati-inspired exchange interaction. Note that in contrast to our approach,
all possible types of ground-state scalar and axial vector diquarks, including qs (q = u or d),
were used in Ref. [23], but excitations of diquarks were not considered. Finally, the results
of lattice calculations with two light dynamical chirally improved quarks corresponding to
pion masses between 255 and 596 MeV [24] are given.
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TABLE II: Masses of the positive-parity Λ states (in MeV).

Experiment [1] Theory

JP State Status Mass NLnlj Mass
1
2

+
Λ **** 1115.683 ± 0.006 1S1s0 1115

Λ(1600) *** 1560 − 1600 2S1s0 1615

Λ(1710) * 1713 ± 13

Λ(1810) *** 1750 − 1810 1P1p1 1901

1S2s0 1972

1P1p0 1986

1P1p2 2042

3S1s0 2099

1P1p1 2205

2P1p0 2431

2S2s0 2433

4S1s0 2546

2P1p1 2559

2P1p2 2657

2P1p1 2687
3
2

+
Λ(1890) **** 1850 − 1890 1D1s0 1854

1P1p2 1976

1P1p0 2130

1P1p1 2184

1P1p2 2202

1P1p1 2212

2D1s0 2289

2P1p0 2623

2P1p2 2629

2P1p1 2690

2P1p1 2697

2P1p2 2701
5
2

+
Λ(1820) **** 1815 − 1820 1D1s0 1825

Λ(2110) *** 2090 − 2110 1P1p2 2098

1P1p2 2221

1P1p1 2255

2D1s0 2258

2P1p2 2683

2P1p2 2724

2P1p1 2746
7
2

+
Λ(2020) * ≈ 2020 1P1p2 2251

1G1s0 2471

1F1p0 2626

2P1p2 2744
9
2

+
Λ(2350) *** 2340 − 2350 1G1s0 2360
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TABLE III: Masses of the negative-parity Λ states (in MeV).

Experiment [1] Theory

JP State Status Mass NLnlj Mass
1
2

−

Λ(1405) **** 1405.1+1.3
−1.0 1P1s0 1406

Λ(1670) **** 1660 − 1670 1S1p1 1667

Λ(1800) *** 1720 − 1800 1S1p0 1733

2P1s0 1927

2S1p0 2197

1P2s0 2218

3P1s0 2274

2S1p1 2290

1D1p1 2427

1D1p2 2491

3S1p0 2707
3
2

−

Λ(1520) **** 1519.5 ± 1.0 1P1s0 1549

Λ(1690) **** 1685 − 1690 1S1p2 1693

1S1p1 1812

Λ(2050) * 2056 ± 22 2P1s0 2035

1P2s0 2319

Λ(2325) * ≈ 2325 2S1p2 2322

2S1p1 2392

3P1s0 2454

1D1p0 2468

1D1p1 2523

1D1p1 2546

1D1p2 2594

1D1p2 2622
5
2

−

Λ(1830) **** 1810 − 1830 1S1p2 1861

1F1s0 2136

1D1p0 2350

2S1p2 2441

1D1p1 2549

1D1p1 2560

1D1p2 2625

1D1p2 2639
7
2

−

Λ(2100) **** 2090 − 2100 1F1s0 2097

1D1p1 2583

1D1p2 2625

1D1p2 2639
9
2

−

1D1p2 2665

1H1s0 2738
11
2

−

1H1s0 2605
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TABLE IV: Masses of the positive-parity Σ states (in MeV).

Experiment [1] Theory

JP State Status Mass NLnlj Mass
1
2

+
Σ **** 1189.37 ± 0.07 1S1s1 1187

Σ(1660) *** 1630 − 1660 2S1s1 1711

Σ(1770) * ≈ 1770 1P1p1 1922

Σ(1880) * ≈ 1880 1D1s1 1983

1S2s1 2028

1P1p1 2180

3S1s1 2292

2D1s1 2472

2P1p1 2515

2S2s1 2530

2P1p1 2647

1D2s1 2672

4S1s1 2740
3
2

+
Σ(1385) **** 1382.80 ± 0.35 1S1s1 1381

Σ(1730) * 1727 ± 27

Σ(1840) * ≈ 1840 2S1s1 1862

Σ(1940) * 1941 ± 18 1D1s1 2025

Σ(2080) ** ≈ 2080 1D1s1 2076

1S2s1 2096

1P1p1 2157

1P1p1 2186

3S1s1 2347

2D1s1 2465

2D1s1 2483

2S2s1 2584

2P1p1 2640

2P1p1 2654
5
2

+
Σ(1915) **** 1900 − 1915 1D1s1 1991

Σ(2070) * ≈ 2070 1D1s1 2062

1P1p1 2221

2D1s1 2459

2D1s1 2485

2P1p1 2701
7
2

+
Σ(2030) **** 2025 − 2030 1D1s1 2033

2D1s1 2470

1G1s1 2619
9
2

+
1G1s1 2548

1G1s1 2619
11
2

+
1G1s1 2529
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TABLE V: Masses of the negative-parity Σ states (in MeV).

Experiment [1] Theory

JP State Status Mass NLnlj Mass
1
2

−

Σ(1620) * ≈ 1620 1P1s1 1620

1S1p1 1693

Σ(1750) *** 1730 − 1750 1P1s1 1747

Σ(1900) * 1900 ± 21 2P1s1 2115

Σ(2000) * ≈ 2000 2P1s1 2198

2S1p1 2202

1P2s1 2289

1D1p1 2381

1P2s1 2427

3P1s1 2630

3P1s1 2634

3S1p1 2742
3
2

−

Σ(1580) * ≈ 1580

Σ(1670) *** 1665 − 1670 1P1s1 1706

1P1s1 1731

Σ(1940) *** 1900 − 1940 1S1p1 1856

2P1s1 2175

2P1s1 2203

2S1p1 2300

1F1s1 2409

1P2s1 2410

1P2s1 2430

1D1p1 2494

1D1p1 2513

3P1s1 2623

3P1s1 2637
5
2

−

Σ(1775) **** 1770 − 1775 1P1s1 1757

2P1s1 2214

1F1s1 2347

1P2s1 2459

1F1s1 2475

1D1p1 2516

1D1p1 2524

3P1s1 2644
7
2

−

Σ(2100) * ≈ 2100 1F1s1 2259

1F1s1 2349

1D1p1 2545
9
2

−

1F1s1 2289
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TABLE VI: Masses of the positive-parity Ξ states (in MeV).

Experiment [1] Theory

JP State Status Mass NLnlj Mass
1
2

+
Ξ **** 1321.71 ± 0.07 1S1s1 1330

2S1s1 1886

1D1s1 1993

1P1p1 2012

1S2s1 2091

1P1p1 2142

3S1s1 2367

2S2s1 2456

2D1s1 2510

1D2s1 2565

2P1p1 2598

2P1p1 2624
3
2

+
Ξ(1530) **** 1531.80 ± 0.32 1S1s1 1518

2S1s1 1966

1D1s1 2100

1S2s1 2121

1D1s1 2122

1P1p1 2144

1P1p1 2149

3S1s1 2421

2S2s1 2491

2D1s1 2597

2P1p1 2640

2D1s1 2663

2P1p1 2664
5
2

+
1D1s1 2108

1D1s1 2147

1P1p1 2213

2D1s1 2605

2D1s1 2630
7
2

+
1D1s1 2189

2D1s1 2686

From these tables we see that our diquark model predicts appreciably less states than
the three-quark approaches. The differences become apparent with the growth of the orbital
and radial excitations in the baryon. Our results turn out to be competitive with their
predictions for the masses of the well established (4- and 3-star) resonances, which agree
well with experimental data. For the less established (1- and 2-star) states situation is more
complicated.
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TABLE VII: Masses of the negative-parity Ξ states (in MeV).

Experiment [1] Theory

JP State Status Mass NLnlj Mass
1
2

−

1P1s1 1682

1P1s1 1758

1S1p1 1839

2P1s1 2160

2S1p1 2210

2P1s1 2233

1P2s1 2261

1D1p1 2346

1P2s1 2347
3
2

−

1P1s1 1764

Ξ(1820) *** 1823 ± 5 1P1s1 1798

1S1p1 1904

2P1s1 2245

2P1s1 2252

1P2s1 2350

1P2s1 2352

1F1s1 2400

1D1p1 2482

1D1p1 2506
5
2

−

1P1s1 1853

2P1s1 2333

1P2s1 2411

1F1s1 2455

1D1p1 2489

1D1p1 2545

1F1s1 2569
7
2

−

1F1s1 2460

1F1s1 2474

1D1p1 2611
9
2

−

1F1s1 2502

First we discuss results for the Λ sector. It is necessary to emphasis that the experimental
mass of the 1

2

−

4-star Λ(1405) is naturally reproduced if this state is considered as the first
orbital excitation 1P in the strange quark-light scalar (1s0) diquark picture of Λ baryons.
The rather low mass of this state represents difficulties for most of the three-quark models
[20–22], which predict its mass about 100 MeV higher than experimental value. There are

no theoretical candidates for the 1
2

+
1-star Λ(1710) state. The mass of the 7

2

+
1-star Λ(2020)

state is predicted somewhat heavier by all models. Other 1-star Λ states are well described.
In the Σ sector all considered approaches cannot accommodate the 3

2

−

1-star Σ(1580)
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TABLE VIII: Masses of the Ω states (in MeV).

Experiment [1] Theory Theory

JP State Status Mass NLnlj Mass JP NLnlj Mass
1
2

+
1D1s1 2301 1

2

−

1P1s1 1941

2P1s1 2463

1P2s1 2580
3
2

+
Ω **** 1672.45 ± 0.29 1S1s1 1678 3

2

−

1P1s1 2038

2S1s1 2173 2P1s1 2537

1S2s1 2304 1P2s1 2636

1D1s1 2332

3S1s1 2671
5
2

+
1D1s1 2401 5

2

−

1F1s1 2653
7
2

+
1D1s1 2369 7

2

−

1F1s1 2599
9
2

−

1F1s1 2649

state. The predicted lowest mass 3
2

−

state corresponds to the 3-star Σ(1670) state. We

have no candidate for the 3
2

+
1-star Σ(1730) state in our model. The calculated masses of

the 1-star 1
2

+
Σ(1770), 1

2

−

Σ(1900) and 7
2

−

Σ(2100) candidates are by more than 100 MeV
heavier than experimentally measured masses. All other known 2- and 1-star Σ states are
described with reasonable accuracy.

In the Ξ sector only three (two 4- and one 3-star) states and in the Ω sector only one
(4-star) state of the observed baryons have established quantum numbers. They are well
described by our model. We have at least one candidate for each of the other eight Ξ
(three of them have 3-stars) and three Ω (one of them has 3-stars) states given in PDG
Listings [1] with the predicted masses close to the experimental values. However it will be
too speculative to assign the quantum numbers to these states only on the basis of their
masses. More experimental and theoretical input is needed.

IV. REGGE TRAJECTORIES OF STRANGE BARYONS

In the presented analysis we calculated masses of orbitally excited strange baryons up to
rather high orbital excitation numbers: up to L = 5 in the quark-diquark bound system,
where diquark is in the ground state. This makes it possible to construct the strange baryon
Regge trajectories:

J = αM2 + α0, (18)

where α is the slope and α0 is the intercept.
In Figs. 1-3 we plot the Regge trajectories in the (J,M2) plane for strange baryons with

natural (P = (−1)J−1/2) and unnatural (P = (−1)J+1/2) parities. The masses calculated
in our model are shown by diamonds. Available experimental data are given by dots with
error bars and corresponding baryon names. Straight lines were obtained by the χ2 fit of
calculated values. The fitted slopes and intercepts of the Regge trajectories are given in
Table XIII. We see that the calculated strange baryon masses lie on the linear trajectories.
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TABLE IX: Comparison of theoretical predictions and experimental data for the masses of the Λ

states (in MeV).

Experiment [1] Theory

JP State Status Mass Our [20] [21] [22] [23] [24]
1
2

+
Λ **** 1115.683 ± 0.006 1115 1115 1108 1136 1116 1149 ± 18

Λ(1600) *** 1560 − 1600 1615 1680 1677 1625 1518 1807 ± 94

Λ(1710) * 1713 ± 13

Λ(1810) *** 1750 − 1810 1901 1830 1747 1799 1666 2112 ± 54

1972 1910 1898 1955 2137 ± 69

1986 2010 2077 1960

2042 2105 2099

2099 2120 2132
3
2

+
Λ(1890) **** 1850 − 1890 1854 1900 1823 1896 1991 ± 103

1976 1960 1952 2058 ± 139

2130 1995 2045 2481 ± 111

2184 2050 2087

2202 2080 2133
5
2

+
Λ(1820) **** 1815 − 1820 1825 1890 1834 1896

Λ(2110) *** 2090 − 2110 2098 2035 1999

2221 2115 2078

2255 2115 2127

2258 2180 2150
7
2

+
Λ(2020) * ≈ 2020 2251 2120 2130

2471 2331
9
2

+
Λ(2350) *** 2340 − 2350 2360 2340

1
2

−

Λ(1405) **** 1405.1+1.3
−1.0 1406 1550 1524 1556 1431 1416 ± 81

Λ(1670) **** 1660 − 1670 1667 1615 1630 1682 1443 1546 ± 110

Λ(1800) *** 1720 − 1800 1733 1675 1816 1778 1650 1713 ± 116

1927 2015 2011 1732 2075 ± 249

2197 2095 2076 1785

2218 2160 2117 1854
3
2

−

Λ(1520) **** 1519.5 ± 1.0 1549 1545 1508 1556 1431 1751 ± 40

Λ(1690) **** 1685 − 1690 1693 1645 1662 1682 1443 2203 ± 106

1812 1770 1775 1650 2381 ± 87

Λ(2050) * 2056 ± 22 2035 2030 1987 1732

2319 2110 2090 1785

Λ(2325) * ≈ 2325 2322 2185 2147 1854

2392 2230 2259 1928

2454 2290 2275 1969

2468 2313
5
2

−

Λ(1830) **** 1810 − 1830 1861 1775 1828 1778 1785

2136 2180 2080

2350 2250 2179
7
2

−

Λ(2100) **** 2090 − 2100 2097 2150 2090

2583 2230 2227
9
2

−

2665 2370
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TABLE X: Comparison of theoretical predictions and experimental data for the masses of the Σ

states (in MeV).

Experiment [1] Theory

JP State Status Mass Our [20] [21] [22] [23] [24]
1
2

+
Σ **** 1189.37 ± 0.07 1187 1190 1190 1180 1211 1216 ± 15

Σ(1660) *** 1630 − 1660 1711 1720 1760 1616 1546 2069 ± 74

Σ(1770) * ≈ 1770 1922 1915 1947 1911 1668 2149 ± 66

Σ(1880) * ≈ 1880 1983 1970 2009 1801 2335 ± 63

2028 2005 2052

2180 2030 2098

2292 2105 2138

2472 2195
3
2

+
Σ(1385) **** 1382.80 ± 0.35 1381 1370 1411 1389 1334 1471 ± 23

Σ(1730) * 1727 ± 27 1920 1896 1865 1439

Σ(1840) * ≈ 1840 1862 1970 1961 1924 2194 ± 81

Σ(1940) * 1941 ± 18 2025 2010 2011 2250 ± 79

Σ(2080) ** ≈ 2080 2076 2030 2044 2468 ± 67

2096 2045 2062

2157 2085 2103

2186 2115 2112
5
2

+
Σ(1915) **** 1900 − 1915 1991 1995 1956 2061

Σ(2070) * ≈ 2070 2062 2030 2027

2221 2095 2071
7
2

+
Σ(2030) **** 2025 − 2030 2033 2060 2070

2470 2125 2161
1
2

−

Σ(1620) * ≈ 1620 1620 1630 1628 1677 1753 1603 ± 38

1693 1675 1771 1736 1868 1718 ± 58

Σ(1750) *** 1730 − 1750 1747 1695 1798 1759 1895 1730 ± 34

Σ(1900) * 1900 ± 21 2115 2110 2111 2478 ± 104

Σ(2000) * ≈ 2000 2198 2155 2136

2202 2165 2251

2289 2205 2264

2381 2260 2288
3
2

−

Σ(1580) * ≈ 1580

Σ(1670) *** 1665 − 1670 1706 1655 1669 1677 1753 1736 ± 40

1731 1750 1728 1736 1868 1861 ± 20

Σ(1940) *** 1900 − 1940 1856 1755 1781 1759 1895 2297 ± 122

2175 2120 2139 2394 ± 74

2203 2185 2171

2300 2200 2203
5
2

−

Σ(1775) **** 1770 − 1775 1757 1755 1770 1736 1753

2214 2205 2174

2347 2250 2226
7
2

−

Σ(2100) * ≈ 2100 2259 2245 2236

2349 2285
9
2

−

2289 2325
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TABLE XI: Comparison of theoretical predictions and experimental data for the masses of the Ξ

states (in MeV).

Experiment [1] Theory

JP State Status Mass Our [20] [21] [22] [23] [24]
1
2

+
Ξ **** 1321.71 ± 0.07 1330 1305 1310 1348 1317 1303 ± 13

1886 1840 1876 1805 1772 2178 ± 48

1993 2040 2062 1868 2231 ± 44

2012 2100 2131 1874 2408 ± 45

2091 2130 2176

2142 2150 2215

2367 2230 2249
3
2

+
Ξ(1530) **** 1531.80 ± 0.32 1518 1505 1539 1528 1552 1553 ± 18

1966 2045 1988 1653 2228 ± 44

2100 2065 2076 2398 ± 52

2121 2115 2128 2574 ± 52

2122 2165 2170

2144 2170 2175

2149 2210 2219

2421 2230 2257
5
2

+
2108 2045 2013

2147 2165 2141

2213 2230 2197
7
2

+
2189 2180 2169

1
2

−

1682 1755 1770 1716 ± 43

1758 1810 1922 1837 ± 28

1839 1835 1938 1844 ± 43

2160 2225 2241 2758 ± 78

2210 2285 2266

2233 2300 2387

2261 2320 2411
3
2

−

1764 1785 1780 1792 1861 1894 ± 38

Ξ(1820) *** 1823 ± 5 1798 1880 1873 1971 1906 ± 29

1904 1895 1924 2426 ± 73

2245 2240 2246 2497 ± 61

2252 2305 2284

2350 2330 2353

2352 2340 2384
5
2

−

1853 1900 1955 1881

2333 2345 2292

2411 2350 2409
7
2

−

2460 2355 2320

2474 2425
9
2

−

2502 2505
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TABLE XII: Comparison of theoretical predictions and experimental data for the masses of the Ω

states (in MeV).

Experiment [1] Theory

JP State Status Mass Our [20] [21] [23] [24]
1
2

+
2301 2220 2232 2350 ± 63

2255 2256 2481 ± 51
3
2

+
Ω **** 1672.45 ± 0.29 1678 1635 1636 1672 1642 ± 17

2173 2165 2177 2470 ± 49

2304 2280 2236

2332 2345 2287
5
2

+
2401 2280 2253

2345 2312
7
2

+
2369 2295 2292

1
2

−

1941 1950 1992 1944 ± 56

2463 2410 2456 2716 ± 118

2580 2490 2498
3
2

−

2038 2000 1976 2049 ± 32

2537 2440 2446 2755 ± 67

2636 2495 2507
5
2

−

2653 2490 2528
7
2

−

2599 2531
9
2

−

2649 2606

TABLE XIII: Fitted parameters α, α0 for the slope and intercept of the (J,M2) Regge trajectories

of strange baryons.

Baryon α (GeV−2) α0 Baryon α (GeV−2) α0

Λ (1
2

+
) 0.923 ± 0.016 −0.648 ± 0.057 Λ (1

2

−

) 0.732 ± 0.018 −0.951 ± 0.074

Σ (1
2

+
) 0.799 ± 0.029 −0.676 ± 0.100 Σ (3

2

+
) 0.897 ± 0.010 −0.225 ± 0.037

Ξ (1
2

+
) 0.694 ± 0.007 −0.721 ± 0.024 Ξ (3

2

+
) 0.769 ± 0.032 −0.249 ± 0.098

Ω (3
2

+
) 0.712 ± 0.002 −0.504 ± 0.007

The natural parity Λ Regge trajectory is the best studied experimentally. There are five
well established (four 4-star and one 3-star) states [1] on this trajectory. The masses of these
states calculated in our model agree well with data. Using the constructed Regge trajectory
we can predict the mass of the 11

2

−

Λ state to be about 2605 MeV (see Table III). This state
could contribute to the Λ(2585) bumps observed with the mass ≈ 2585 MeV [1]. Each of
the Σ Regge trajectories contains three well established states [1], well fitting to the strait
lines. Other trajectories are less motivated experimentally and contain at most two well
established states.

Using the values of the slopes and intercepts of the Regge trajectories of the 3
2

+
strange

baryons we can test the validity of the relations between them proposed in the literature
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M2

J

M2

J
(a) (b)

FIG. 1: The (J,M2) Regge trajectories for the Λ baryons with natural (a) and unnatural (b)

parities. Diamonds are predicted masses. Available experimental data are given by dots with

particle names; M2 is in GeV2.

M2

J

M2

J
(a) (b)

FIG. 2: Same as in Fig. 1 for the Σ baryons.

(see e.g. [25–27] and references therein). It is easy to check that the additivity of inverse
slopes

1

α(Σ∗)
+

1

α(Ω)
=

2

α(Ξ∗)
, (19)

factorization of slopes
α(Σ∗)α(Ω) = α2(Ξ∗), (20)

and additivity of intercepts
α0(Σ

∗) + α0(Ω) = 2α0(Ξ
∗), (21)

are well satisfied. Indeed, in the left hand side of Eq. (19) we get 2.52 ± 0.02 and in the
right hand side 2.60 ± 0.11; for Eq. (20) the corresponding values are 0.639 ± 0.010 and
0.592± 0.050, while for Eq. (21) they are −0.729± 0.044 and −0.498± 0.196.

We can also compare the calculated slopes of the strange baryon Regge trajectories with
our previous results for the slopes of heavy baryons [14] and light mesons [19]. Such com-
parison shows that the strange baryon slopes lie just in between the corresponding slopes
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M2

J

M2

J
(a) (b)

FIG. 3: Same as in Fig. 1 for the Ξ baryons.

of light mesons and charmed baryons. Moreover they follow the same pattern as the slopes
of heavy baryons: the slope decreases with the increase of the diquark mass as well as with
the increase of the parent baryon mass.

V. CONCLUSIONS

The mass spectra of strange baryons were calculated in the framework of the relativis-
tic quark model based on the quasipotential approach. The quark-diquark picture, which
had been previously successfully applied for the investigation of the spectroscopy of heavy
baryons [13, 14], was extended to the strange baryons. Such approach allows one to re-
duce very complicated relativistic three-body problem to the subsequent solutions of two
two-body problems. It is assumed that the baryon is the bound quark-diquark system,
where two quarks with equal constituent masses form a diquark. The diquarks are not
treated to be the point-like objects. Instead their internal structure is taken into account
by the introduction of the form factors expressed in terms of the diquark wave functions.
The diquark masses and form factors were calculated using the solutions of the relativistic
quasipotential equation with the kernel which nonperturbatively accounts for the relativistic
effects. It was found that for the correct description of the strange baryon mass spectra it
is necessary to consider not only the ground state scalar and axial vector diquarks, as we
did in our previous study of heavy baryon spectroscopy [14], but also their first orbital and
radial excitations. The ground state and excited baryon masses were obtained by solving
the relativistic quark-diquark quasipotential equation. Note that in our analysis we did not
make any new assumptions about the quark interaction in baryons or introduce any new
parameters. The values of all parameters were taken from previous considerations of meson
properties. This significantly increases the reliability and predictive power of our approach.
The masses of strange baryons were calculated up to rather high orbital and radial excita-
tions. This allowed us to construct the Regge trajectories which were found to be linear.
The validity of the proposed relations between the Regge slopes and intercepts was tested.

The obtained results were compared with available experimental data [1] and previous
predictions within different theoretical approaches [20–24]. We found that all 4- and 3-star
states of strange baryons with established quantum numbers are well reproduced in our
model as well as most of the 2- and 1-star states. Possible candidates for the experimentally
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observed states with unknown quantum numbers can be identified. We emphasize that the
experimental mass of the Λ(1405) is naturally reproduced in our model, while its rather low
mass presents some difficulties for most of the three-quark models [20–22]. It is necessary
to note that our quark-diquark picture predicts less excited states of strange baryons than
the three-body approaches. The distinctions become apparent for higher baryon excitations.
However the number of predicted strange baryon states still significantly exceeds the number
of observed ones. Thus the experimental determination of the quantum numbers of the
already observed Ξ and Ω excited states as well as the further search for the missing excited
states of strange baryons represents highly promising and important problem.
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