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1 Introduction

The spectacular discovery of the Higgs boson [1, 2] at the Large Hadron Collider (LHC) has

put the Standard Model (SM) of elementary particles in the firm footing. Most importantly,

the mystery of the electroweak symmetry breaking [3–7] mechanism can now be solved.

The consistency of the measured decay rates of the Higgs boson to a pair of vector bosons

namely W+W−, ZZ and fermions bb, ττ with the precise predictions of the SM for the

measured Higgs boson mass of 125 GeV within the experimental uncertainty [8, 9] makes

this discovery very robust. In addition, there is a strong evidence that the discovered Higgs

boson has spin zero and even parity [10, 11]. The ongoing 13 TeV run at LHC will indeed

provide further scope to study the properties of the Higgs boson in great detail.

While the SM is complete in the sense that all of its predictions have been tested

experimentally, the model suffers from various deficiencies as it can not explain baryon

asymmetry in the Universe, dark matter, neutrino mass etc. There are several extensions

of the SM, motivated to address these issues. The minimal version of Supersymmetric

Standard Model (MSSM) [12] is one of the most elegant extensions of the SM and it

addresses the above mentioned issues. The Higgs sector of it contains a pair of Higgs

doublets which after symmetry breaking gives two CP even Higgs bosons h, H and one

CP odd (pseudo-scalar) Higgs boson (A) and two charged Higgs bosons H± [13–20] . The

predicted upper bound on the mass of the lightest Higgs boson (h) up to three loop level is
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consistent [21–23] with the recently observed Higgs boson at the LHC. The efforts to test

the predictions of MSSM or its variants have already been underway and the current run

at the LHC will shed more light on them. One of them could be to look for CP odd Higgs

boson in the gluon fusion through heavy fermions as its coupling is appreciable in the small

and moderate tan β, the ratio of vacuum expectation values vi, i = 1, 2. In addition, large

gluon flux can boost the cross section.

Since, the leading order production mechanism of the pseudo-scalar of mass mA is

through heavy quarks, the cross section is not only proportional to tan β but also square

of the strong coupling constant. Like the scalar Higgs boson in SM, the leading order

prediction of the pseudo scalar production at the hadron colliders suffers from large the-

oretical uncertainties due to renormalisation scale µR that enters in the strong coupling

constant and the factorisation scale µF in the gluon distribution functions of the protons.

Predictions based on one loop perturbative Quantum Chromodynamics (pQCD) correc-

tions [24–27] reduce these uncertainties (in the conventional range with the central scale

µ = mA/2 and mA = 200 GeV) from about 48% to 35% while increasing the LO cross

section substantially, by as large as 67%. Effective theory approach in the large top quark

mass limit provides an opportunity to go beyond NLO. Such an approach [27, 28]in the case

of scalar Higgs boson production [29–31] turned out to be the most successful one as the

finite mass effects at NNLO level were found to be within 1% [32–34]. NNLO predictions

for the production of pseudo-scalar at the hadron colliders are already available [31, 35, 36].

The NNLO correction increases the NLO cross section by about 15% and reduces the scale

uncertainties to about 15%. Due to large gluon flux at the threshold, namely when the

mass of A approaches to the partonic centre of mass energy, the cross section is domi-

nated by the presence of soft gluons. These contributions often can spoil the reliability

of the predictions based on fixed order perturbative computations. Resummation of large

logarithms resulting from soft gluons to all orders in the perturbation theory provides the

solution to this problem. The systematic predictions based on the next-to-next-to-leading

log (NNLL) resummed result [37–45] demonstrate the reliability of the approach and also

reduce the scale uncertainties.

A complete calculation at NNLO [29–31] and leading logarithms at N3LO in the thresh-

old limit [38–42] and NNLL soft gluon resummation [37] for the scalar Higgs boson pro-

duction are known for more than a decade. Recently there have been series of works on

predicting inclusive scalar Higgs boson production beyond this level. The computation of

δ(1 − z) contribution at N3LO in the threshold limit [46] was the first among them. This

was confirmed independently in [47]. Later on the sub-leading collinear logarithms were

computed in [48, 49]. Spin off of the result presented in [46] is the computation of N3LO

prediction for the Drell-Yan production [47, 50, 51] at the hadron colliders in the threshold

limit. In addition, one can obtain N3LO threshold corrections to the Higgs boson produc-

tion through bottom quark annihilation [52] and also in association with vector boson [53]

at the hadron colliders. Later, along the same direction, rapidity distribution of the Higgs

boson in gluon fusion [54], DY [54] and Higgs boson in bottom quark annihilation [55] were

obtained at threshold N3LO QCD.

A milestone in this direction was achieved by Anastasiou et. al. who have now accom-
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plished the complete N3LO prediction [56] of the scalar Higgs boson production through

gluon fusion at the hadron colliders in the effective theory. These third order corrections

increase the cross section by a few percent, about 2% and reduce the scale uncertainty by

about 2%. Using these predictions, it is now possible to obtain the soft gluon resummation

at N3LL, see [51, 57].

While the next step in the wish list is to obtain the N3LO predictions for the pseudo-

scalar production through gluon fusion, the first task in this direction is to obtain the

threshold enhanced cross section at N3LO level. One of the crucial ingredients is the form

factor of the effective composite operators that couple to pseudo-scalar, computed between

partonic states. One and two loop results for them between gluon states were computed for

NNLO production cross section [35, 36, 58], the analytical results up to two loop level can

be found in [58]. These were computed in dimensional regularisation where the space time

dimension is d = 4 + ǫ. Threshold corrections to pseudo-scalar production at N3LO level

requires the knowledge of the form factors up to three loop level. We also need to know one

and two loop corrections computed to desired accuracy in ǫ, namely up to ǫ2 for one loop

and up to ǫ at two loops. In [59], we obtained the three loop form factors of the effective

composite operators between quark and gluon states at three loop level along with the lower

order ones to desired accuracies in ǫ. In the present article we will describe how threshold

corrections at N3LO level can be obtained from the formalism developed in [40, 41] using

the available information on recently computed three loop form factor of the pseudo scalar

Higgs boson [59], the universal soft-collinear distribution [50] and operator renormalisation

constant [59–61] and the mass factorisation kernels [62, 63] known to three loop level. In

addition, we compute third order correction to the N -independent part of the resummed

cross section [64, 65] using our formalism [40, 41]. We also present the numerical impact

of our findings with a brief conclusion.

The underlying effective theory is discussed in the Sec. 2. This is followed by a short

description of the formalism which has been employed to compute the soft-plus-virtual

cross section in Sec. 3. We present the analytical results of these findings in the Sec. 4

up to N3LO in QCD. In Sec. 5, the N-independent parts of the threshold resummed cross

section in Mellin space have been presented up to third order in QCD. Before making

concluding remarks, in Sec. 6 we demonstrate the numerical implications of the fixed order

soft-plus-virtual cross sections to N3LO at LHC.

2 The Effective Lagrangian

A pseudo-scalar couples to gluons only indirectly through a virtual heavy quark loop which

can be integrated out in the infinite quark mass limit. The effective Lagrangian [66]

describing the interaction between pseudo-scalar χA and the QCD particles in the infinitely

large top quark mass limit is given by

LA
eff = χA(x)

[

− 1

8
CGOG(x)−

1

2
CJOJ(x)

]

(2.1)
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where the two operators are defined as

OG(x) = Gµν
a G̃ρσ

a ≡ ǫµνρσG
µν
a Gρσ

a , OJ (x) = ∂µ
(

ψ̄γµγ5ψ
)

. (2.2)

The Wilson coefficients CG and CJ of the two operators are the consequences of integrating

out the heavy quark loop in effective theory. CG does not receive any QCD corrections

beyond one loop because of Adler-Bardeen theorem, whereas CJ starts only at second order

in the strong coupling constant. These Wilson coefficients are given by [66]

CG = −as2
5

4G
1

2

F cotβ ,

CJ = −
[

asCF

(

3

2
− 3 ln

µ2R
m2

t

)

+ a2sC
(2)
J + · · ·

]

CG . (2.3)

The symbols Gµν
a and ψ represent gluonic field strength tensor and quark field, respectively.

GF stands for the Fermi constant and cotβ is the mixing angle in the Two-Higgs-Doublet

model. mA and mt symbolise the masses of the pseudo-scalar and top quark (heavy quark),

respectively. The strong coupling constant as ≡ as
(

µ2R
)

is renormalised at the mass scale

µR and is related to the unrenormalised one, âs ≡ ĝ2s/16π
2, through

âsSǫ =

(

µ2

µ2R

)ǫ/2

Zasas (2.4)

with Sǫ = exp [(γE − ln 4π)ǫ/2] and the scale µ is introduced to keep the unrenormalized

strong coupling constant dimensionless in d = 4+ ǫ space-time dimensions. The renormal-

isation constant Zas up to O(a3s) is given by

Zas = 1 + as

[

2

ǫ
β0

]

+ a2s

[

4

ǫ2
β20 +

1

ǫ
β1

]

+ a3s

[

8

ǫ3
β30 +

14

3ǫ2
β0β1 +

2

3ǫ
β2

]

. (2.5)

The coefficient of the QCD β function βi are given by [67]

β0 =
11

3
CA − 2

3
nf ,

β1 =
34

3
C2
A − 2nfCF − 10

3
nfCA ,

β2 =
2857

54
C3
A − 1415

54
C2
Anf +

79

54
CAn

2
f +

11

9
CFn

2
f −

205

18
CFCAnf + C2

Fnf (2.6)

with the SU(N) QCD color factors

CA = N, CF =
N2 − 1

2N
. (2.7)

nf is the number of active light quark flavors.

3 Threshold Corrections

The inclusive cross-section for the production of a colorless pseudo scalar at the hadron

colliders can be computed using

σA(τ,m2
A) = σA,(0)(µ2R)

∑

a,b=q,q̄,g

∫ 1

τ
dy Φab(y, µ

2
F )∆

A
ab

(

τ

y
,m2

A, µ
2
R, µ

2
F

)

(3.1)
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where, the born cross section at the parton level including the finite top mass dependence

is given by

σA,(0)(µ2R) =
π
√
2GF

16
a2scot

2β
∣

∣τAf(τA)
∣

∣

2
. (3.2)

Here τA = 4m2
t /m

2
A and the function f(τA) is given by

f(τA) =







arcsin2 1√
τA

τA ≥ 1 ,

−1
4

(

ln 1−
√
1−τA

1+
√
1−τA

+ iπ
)2

τA < 1 .
(3.3)

while the parton flux is given by

Φab(y, µ
2
F ) =

∫ 1

y

dx

x
fa(x, µ

2
F )fb

(y

x
, µ2F

)

, (3.4)

where, fa and fb are the parton distribution functions (PDFs) of the initial state partons

a and b, renormalised at the factorisation scale µF . Here, ∆A
ab

(

τ
y ,m

2
A, µ

2
R, µ

2
F

)

are the

partonic level cross sections, for the subprocess initiated by the partons a and b, computed

after performing the overall operator UV renormalisation at scale µR and mass factorisation

at a scale µF . The variable τ is defined as q2/s with q2 = m2
A.

The goal of this article is to study the impact of the soft gluon contributions to the

pseudo-scalar production cross section at hadron colliders. The infrared safe contribution

is obtained by adding the soft part of the cross section to the ultraviolet (UV) renormalised

virtual part and performing the mass factorisation using appropriate counter terms. This

combination is often called the soft-plus-virtual (SV) cross section whereas the remaining

portion is known as hard part. Thus, we write the partonic cross section as

∆A
ab(z, q

2, µ2R, µ
2
F ) = ∆A,SV

ab (z, q2, µ2R, µ
2
F ) +∆A,hard

ab (z, q2, µ2R, µ
2
F ) (3.5)

with z ≡ q2/ŝ = τ/(x1x2) . The threshold contributions ∆A,SV
ab (z, q2, µ2R, µ

2
F ) contains only

the distributions of kind δ(1 − z) and Di, where the latter one is defined through

Di ≡
[

lni(1− z)

1− z

]

+

. (3.6)

On the other hand, the hard part ∆A,hard
ab contains all the terms regular in z. The SV

cross-section in z-space is computed in d = 4 + ǫ dimensions, as formulated for the first

time in [40, 41], using

∆A,SV
g (z, q2, µ2R, µ

2
F ) = C exp

(

ΨA
g

(

z, q2, µ2R, µ
2
F , ǫ
)

)∣

∣

∣

ǫ=0
(3.7)

where, ΨA
g

(

z, q2, µ2R, µ
2
F , ǫ
)

is a finite distribution and C is the Mellin convolution defined

as

Cef(z) = δ(1 − z) +
1

1!
f(z) +

1

2!
f(z)⊗ f(z) + · · · . (3.8)
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Here ⊗ represents Mellin convolution and f(z) is a distribution of the kind δ(1−z) and Di.

The subscript g signifies the gluon initiated production of the pseudo-scalar. The equivalent

formalism of the SV approximation is in the Mellin (or N -moment) space, where instead

of distributions in z the dominant contributions come from the continuous functions of

the variable N (see [64, 65]) and the threshold limit of z → 1 is translated to N → ∞.

The ΨA
g

(

z, q2, µ2R, µ
2
F , ǫ
)

is constructed from the form factors FA
g (âs, Q

2, µ2, ǫ) with Q2 =

−q2, the overall operator UV renormalisation constant ZA
g (âs, µ

2
R, µ

2, ǫ), the soft-collinear

distribution ΦA
g (âs, q

2, µ2, z, ǫ) arising from the real radiations in the partonic subprocesses

and the mass factorisation kernels Γgg(âs, µ
2
F , µ

2, z, ǫ). In terms of the above-mentioned

quantities it takes the following form, as presented in [41, 50, 52]

ΨA
g

(

z, q2, µ2R, µ
2
F , ǫ
)

=

(

ln
[

ZA
g (âs, µ

2
R, µ

2, ǫ)
]2

+ ln
∣

∣

∣FA
g (âs, Q

2, µ2, ǫ)
∣

∣

∣

2
)

δ(1− z)

+ 2ΦA
g (âs, q

2, µ2, z, ǫ) − 2C lnΓgg(âs, µ
2
F , µ

2, z, ǫ) . (3.9)

In the subsequent sections, we will demonstrate the methodology to get these ingredients

to compute the SV cross section of pseudo-scalar production at N3LO.

3.1 The Form Factor

The quark and gluon form factors represent the QCD loop corrections to the transition

matrix element from an on-shell quark-antiquark pair or two gluons to a color-neutral

operator O. For the pseudo-scalar production through gluon fusion, we need to consider

two operators OG and OJ , defined in Eq. (2.2), which yield in total two form factors. The

unrenormalised gluon form factors at O(âns ) are defined [59] through

F̂G,(n)
g ≡ 〈M̂G,(0)

g |M̂G,(n)
g 〉

〈M̂G,(0)
g |M̂G,(0)

g 〉
, F̂J,(n)

g ≡ 〈M̂G,(0)
g |M̂J,(n+1)

g 〉
〈M̂G,(0)

g |M̂J,(1)
g 〉

(3.10)

where, n = 0, 1, 2, 3, . . . . In the above expressions |M̂λ,(n)
g 〉 (λ = G, J) is the O(âns )

contribution to the unrenormalised matrix element described by the bare operator [Oλ]B .

In terms of these quantities, the full matrix element and the full form factors can be written

as a series expansion in âs as

|Mλ
g 〉 ≡

∞
∑

n=0

ânsS
n
ǫ |M̂λ,(n)

g 〉 , Fλ
g ≡

∞
∑

n=0

[

âns

(

Q2

µ2

)n ǫ
2

Sn
ǫ F̂λ,(n)

g

]

, (3.11)

where Q2 = −2 p1.p2 = −q2 and pi (p2i = 0) are the momenta of the external on-shell

gluons. Note that |M̂J,(n)
g 〉 starts at n = 1 i.e. from one loop level.

The form factor for the production of a pseudo-scalar through gluon fusion, F̂A,(n)
g ,

can be written in terms of the two individual form factors, Eq. (3.11), as follows:

FA
g = FG

g +

(

ZGJ

ZGG
+

4CJ

CG

ZJJ

ZGG

)

FJ
g

〈M̂G,(0)
g |M̂J,(1)

g 〉
〈M̂G,(0)

g |M̂G,(0)
g 〉

. (3.12)
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In the above expression, the quantities Zij(i, j = G, J) are the overall operator renormal-

isation constants which are required to introduce in the context of UV renormalisation.

These are are discussed in our recent article [59] in great detail. The ingredients of the

form factor FA
g , namely, FG

g and FJ
g have been calculated up to three loop level by some of

us and presented in the same article [59]. Using those results we obtain the three loop form

factor for the pseudo-scalar production through gluon fusion. In this section, we present

the unrenormalized form factors F̂A,(n)
g up to three loop where the components are defined

through the expansion

FA
g ≡

∞
∑

n=0

[

âns

(

Q2

µ2

)n ǫ
2

Sn
ǫ F̂A,(n)

g

]

. (3.13)

We present the unrenormalized results for the choice of the scale µ2R = µ2F = q2 as follows:

F̂A,(1)
g = CA

{

− 8

ǫ2
+ 4 + ζ2 + ǫ

(

− 6− 7

3
ζ3

)

+ ǫ2

(

7− ζ2
2

+
47

80
ζ22

)

+ ǫ3

(

− 15

2

+
3

4
ζ2 +

7

6
ζ3 +

7

24
ζ2ζ3 −

31

20
ζ5

)

+ ǫ4

(

31

4
− 7

8
ζ2 −

47

160
ζ22 +

949

4480
ζ32 − 7

4
ζ3 −

49

144
ζ23

)

+ ǫ5

(

− 63

8
+

15

16
ζ2 +

141

320
ζ22 +

49

24
ζ3 −

7

48
ζ2ζ3 +

329

1920
ζ22ζ3 +

31

40
ζ5 +

31

160
ζ2ζ5

− 127

112
ζ7

)

+ ǫ6

(

127

16
− 31

32
ζ2 −

329

640
ζ22 − 949

8960
ζ32 +

55779

716800
ζ42 − 35

16
ζ3 +

7

32
ζ2ζ3

+
49

288
ζ23 +

49

1152
ζ2ζ

2
3 − 93

80
ζ5 −

217

480
ζ3ζ5

)

+ ǫ7

(

− 255

32
+

63

64
ζ2 +

141

256
ζ22 +

2847

17920
ζ32

+
217

96
ζ3 −

49

192
ζ2ζ3 −

329

3840
ζ22ζ3 +

949

15360
ζ32ζ3 −

49

192
ζ23 − 343

10368
ζ33 +

217

160
ζ5

− 31

320
ζ2ζ5 +

1457

12800
ζ22ζ5 +

127

224
ζ7 +

127

896
ζ2ζ7 −

511

576
ζ9

)}

,

F̂A,(2)
g = CFnf

{

− 80

3
+ 6 ln

(

q2

m2
t

)

+ 8ζ3 + ǫ

(

2827

36
− 9 ln

(

q2

m2
t

)

− 19

6
ζ2 −

8

3
ζ22

− 64

3
ζ3

)

+ ǫ2

(

− 70577

432
+

21

2
ln

(

q2

m2
t

)

+
1037

72
ζ2 −

3

4
ln

(

q2

m2
t

)

ζ2 +
64

9
ζ22 +

455

9
ζ3

− 10

3
ζ2ζ3 + 8ζ5

)

+ ǫ3

(

1523629

5184
− 45

4
ln

(

q2

m2
t

)

− 14975

432
ζ2 +

9

8
ln

(

q2

m2
t

)

ζ2

− 70997

4320
ζ22 +

22

35
ζ32 − 3292

27
ζ3 +

7

4
ln

(

q2

m2
t

)

ζ3 +
80

9
ζ2ζ3 + 15ζ23 − 64

3
ζ5

)

+ ǫ4

(

− 30487661

62208
+

93

8
ln

(

q2

m2
t

)

+
43217

648
ζ2 −

21

16
ln

(

q2

m2
t

)

ζ2 +
1991659

51840
ζ22

− 141

320
ln

(

q2

m2
t

)

ζ22 − 176

105
ζ32 +

694231

2592
ζ3 −

21

8
ln

(

q2

m2
t

)

ζ3 −
9757

432
ζ2ζ3 −

1681

180
ζ22ζ3
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− 40ζ23 +
8851

180
ζ5 − 2ζ2ζ5 −

127

8
ζ7

)}

+CAnf

{

− 8

3ǫ3
+

20

9ǫ2
+

(

106

27
+ 2ζ2

)

1

ǫ

− 1591

81
− 5

3
ζ2 −

74

9
ζ3 + ǫ

(

24107

486
− 23

18
ζ2 +

51

20
ζ22 +

383

27
ζ3

)

+ ǫ2

(

− 146147

1458

+
799

108
ζ2 −

329

72
ζ22 − 1436

81
ζ3 +

25

6
ζ2ζ3 −

271

30
ζ5

)

+ ǫ3

(

6333061

34992
− 11531

648
ζ2 +

1499

240
ζ22

+
253

1680
ζ32 +

19415

972
ζ3 −

235

36
ζ2ζ3 −

1153

108
ζ23 +

535

36
ζ5

)

+ ǫ4

(

− 128493871

419904

+
133237

3888
ζ2 −

21533

2592
ζ22 +

649

1440
ζ32 − 156127

5832
ζ3 +

215

27
ζ2ζ3 +

517

80
ζ22ζ3 +

14675

648
ζ23

− 2204

135
ζ5 +

171

40
ζ2ζ5 +

229

336
ζ7

)}

+C

A

{

32

ǫ4
+

44

3ǫ3
+

(

− 422

9
− 4ζ2

)

1

ǫ2
+

(

890

27

− 11ζ2 +
50

3
ζ3

)

1

ǫ
+

3835

81
+

115

6
ζ2 −

21

5
ζ22 +

11

9
ζ3 + ǫ

(

− 213817

972
− 103

18
ζ2 +

77

120
ζ22

+
1103

54
ζ3 −

23

6
ζ2ζ3 −

71

10
ζ5

)

+ ǫ2

(

6102745

11664
− 991

27
ζ2 −

2183

240
ζ22 +

2313

280
ζ32 − 8836

81
ζ3

− 55

12
ζ2ζ3 +

901

36
ζ23 +

341

60
ζ5

)

+ ǫ3

(

− 142142401

139968
+

75881

648
ζ2 +

79819

2160
ζ22 − 2057

480
ζ32

+
606035

1944
ζ3 −

251

72
ζ2ζ3 −

1291

80
ζ22ζ3 −

5137

216
ζ23 +

14459

360
ζ5 +

313

40
ζ2ζ5 −

3169

28
ζ7

)

+ ǫ4

(

2999987401

1679616
− 1943429

7776
ζ2 −

15707

160
ζ22 − 35177

20160
ζ32 +

50419

1600
ζ42 − 16593479

23328
ζ3

+
1169

27
ζ2ζ3 +

22781

1440
ζ22ζ3 +

93731

1296
ζ23 − 1547

144
ζ2ζ

2
3 − 8137

54
ζ5 −

1001

80
ζ2ζ5 +

845

24
ζ3ζ5

− 33

2
ζ5,3 +

56155

672
ζ7

)}

,

F̂A,(3)
g = nfC

()
J

{

− 2 + 3ǫ

}

+CFn

f

{(

− 640

9
+ 16 ln

(

q2

m2
t

)

+
64

3
ζ3

)

1

ǫ
+

7901

27

− 24 ln

(

q2

m2
t

)

− 32

3
ζ2 −

112

15
ζ22 − 848

9
ζ3

}

+C

Fnf

{

457

6
+ 104ζ3 − 160ζ5

}

+C

Anf

{

64

3ǫ5
− 32

81ǫ4
+

(

− 18752

243
− 376

27
ζ2

)

1

ǫ3
+

(

36416

243
− 1700

81
ζ2 +

2072

27
ζ3

)

1

ǫ2

+

(

62642

2187
+

22088

243
ζ2 −

2453

90
ζ22 − 3988

81
ζ3

)

1

ǫ
− 14655809

13122
− 60548

729
ζ2 +

917

60
ζ22

− 772

27
ζ3 −

439

9
ζ2ζ3 +

3238

45
ζ5

}

+CAn

f

{

− 128

81ǫ4
+

640

243ǫ3
+

(

128

27
+

80

27
ζ2

)

1

ǫ2
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+

(

− 93088

2187
− 400

81
ζ2 −

1328

81
ζ3

)

1

ǫ
+

1066349

6561
− 56

27
ζ2 +

797

135
ζ22 +

13768

243
ζ3

}

+CACFnf

{

− 16

9ǫ3
+

(

5980

27
− 48 ln

(

q2

m2
t

)

− 640

9
ζ3

)

1

ǫ2
+

(

− 20377

81

− 16 ln

(

q2

m2
t

)

+
86

3
ζ2 +

352

15
ζ22 +

1744

27
ζ3

)

1

ǫ
+ 72 ln

(

q2

m2
t

)

− 587705

972
− 551

6
ζ2

+ 12 ln

(

q2

m2
t

)

ζ2 −
96

5
ζ22 +

12386

81
ζ3 + 48ζ2ζ3 +

32

9
ζ5

}

+C

A

{

− 256

3ǫ6
− 352

3ǫ5

+
16144

81ǫ4
+

(

22864

243
+

2068

27
ζ2 −

176

3
ζ3

)

1

ǫ3
+

(

− 172844

243
− 1630

81
ζ2 +

494

45
ζ22

− 836

27
ζ3

)

1

ǫ2
+

(

2327399

2187
− 71438

243
ζ2 +

3751

180
ζ22 − 842

9
ζ3 +

170

9
ζ2ζ3 +

1756

15
ζ5

)

1

ǫ

+
16531853

26244
+

918931

1458
ζ2 +

27251

1080
ζ22 − 22523

270
ζ32 − 51580

243
ζ3 +

77

18
ζ2ζ3 −

1766

9
ζ23

+
20911

45
ζ5

}

. (3.14)

The results up to two loop level is consistent with the existing ones [58] and the three loop

result is the new one. These are required in the context of computing SV cross-section

which is discussed below.

The form factor FA
g (âs, Q

2, µ2, ǫ) satisfies the KG-differential equation [68–72] which

is a direct consequence of the facts that QCD amplitudes exhibit factorisation property,

gauge and renormalisation group (RG) invariances:

Q2 d

dQ2
lnFA

g (âs, Q
2, µ2, ǫ) =

1

2

[

KA
g

(

âs,
µ2R
µ2
, ǫ

)

+GA
g

(

âs,
Q2

µ2R
,
µ2R
µ2
, ǫ

)]

. (3.15)

In the above expression, all the poles in dimensional regularisation parameter ǫ are captured

in the Q2 independent function KA
g and the quantities which are finite as ǫ → 0 are

encapsulated in GA
g . The solutions of the KG equation in the desired form is given in [40]

as (see also [50, 52])

lnFA
g (âs, Q

2, µ2, ǫ) =

∞
∑

i=1

âis

(

Q2

µ2

)i ǫ
2

Si
ǫL̂A

g,i(ǫ) (3.16)

with

L̂A
g,1(ǫ) =

1

ǫ2

{

− 2AA
g,1

}

+
1

ǫ

{

GA
g,1(ǫ)

}

,

L̂A
g,2(ǫ) =

1

ǫ3

{

β0A
A
g,1

}

+
1

ǫ2

{

− 1

2
AA

g,2 − β0G
A
g,1(ǫ)

}

+
1

ǫ

{

1

2
GA

g,2(ǫ)

}

,

L̂A
g,3(ǫ) =

1

ǫ4

{

− 8

9
β20A

A
g,1

}

+
1

ǫ3

{

2

9
β1A

A
g,1 +

8

9
β0A

A
g,2 +

4

3
β20G

A
g,1(ǫ)

}
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+
1

ǫ2

{

− 2

9
AA

g,3 −
1

3
β1G

A
g,1(ǫ)−

4

3
β0G

A
g,2(ǫ)

}

+
1

ǫ

{

1

3
GA

g,3(ǫ)

}

. (3.17)

AA
g ’s are called the cusp anomalous dimensions. The constants GA

g,i’s are the coefficients

of ais in the following expansions:

GA
g

(

âs,
Q2

µ2R
,
µ2R
µ2
, ǫ

)

= GA
g

(

as(Q
2), 1, ǫ

)

+

∫ 1

Q2

µ2
R

dx

x
AA

g (as(xµ
2
R))

=

∞
∑

i=1

ais(Q
2)GA

g,i(ǫ) +

∫ 1

Q2

µ2
R

dx

x
AA

g (as(xµ
2
R)) . (3.18)

However, the solutions of the logarithm of the form factor involves the unknown functions

GA
g,i which are observed to fulfil [58, 73] the following decomposition in terms of collinear

(BA
g ), soft (f

A
g ) and UV (γAg ) anomalous dimensions:

GA
g,i(ǫ) = 2

(

BA
g,i − γAg,i

)

+ fAg,i + CA
g,i +

∞
∑

k=1

ǫkgA,k
g,i , (3.19)

where, the constants CA
g,i are given by [41]

CA
g,1 = 0 ,

CA
g,2 = −2β0g

A,1
g,1 ,

CA
g,3 = −2β1g

A,1
g,1 − 2β0

(

gA,1
g,2 + 2β0g

A,2
g,1

)

. (3.20)

In the above expressions, XA
g,i with X = A,B, f and γAg,i are defined through the series

expansion in powers of as:

XA
g ≡

∞
∑

i=1

aisX
A
g,i , and γAg ≡

∞
∑

i=1

aisγ
A
g,i . (3.21)

fAg ’s are introduced for the first time in the article [58] where it is shown to fulfil the

maximally non-Abelian property up to two loop level whose validity is reconfirmed in [73]

at three loop level. Moreover, due to universality of the quantities denoted by X, these

are independent of the operator insertion. These are only dependent on the initial state

partons of any process. Hence, being a process of gluon fusion, we can make use of the

existing results up to three loop:

XA
g = Xg . (3.22)

fg can be found in [58, 73], Ag,i in [62, 63, 73, 74] and Bg,i in [62, 73] up to three loop

level. Utilising the results of these known quantities and comparing the above expansion

of GA
g,i(ǫ), Eq. (3.19), with the results of the logarithm of the form factors, we extract the

relevant gA,k
g,i and γAg,i’s up to three loop. For soft-virtual cross section at N3LO we need

gA,1
g.3 in addition to the quantities arising from one and two loop. The form factors for the
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pseudo-scalar production up to two loop can be found in [58] and the three loop one is

calculated very recently in the article [59] by some of us. However, in this computation of

SV cross section at N3LO, we need the form factor in a particular form which is little bit

different than the ones presented in our recent article [59], though the required one can be

extracted from the results provided there. For readers’ convenience, we have presented the

form factors FA
g up to three loop in the beginning of this section which have been employed

to extract the required gA,k
g,i ’s using Eq. (3.16), (3.17) and (3.19). Below we present our

finding of the relevant gA,k
g,i ’s up to three loop level:

gA,1
g,1 = CA

{

4 + ζ2

}

,

gA,2
g,1 = CA

{

− 6− 7

3
ζ3

}

,

gA,3
g,1 = CA

{

7− 1

2
ζ2 +

47

80
ζ22

}

,

gA,1
g,2 = C


A

{

11882

81
+

67

3
ζ2 −

44

3
ζ3

}

+CAnf

{

− 2534

81
− 10

3
ζ2 −

40

3
ζ3

}

+CFnf

{

− 160

3

+ 12 ln

(

µ2R
m2

t

)

+ 16ζ3

}

,

gA,2
g,2 = CFnf

{

2827

18
− 18 ln

(

µ2R
m2

t

)

− 19

3
ζ2 −

16

3
ζ22 − 128

3
ζ3

}

+CAnf

{

21839

243
− 17

9
ζ2

+
259

60
ζ22 +

766

27
ζ3

}

+C

A

{

− 223861

486
+

80

9
ζ2 +

671

120
ζ22 +

2111

27
ζ3 +

5

3
ζ2ζ3 − 39ζ5

}

,

gA,1
g,3 = nfC

()
J

{

− 6

}

+CFn

f

{

12395

27
− 136

9
ζ2 −

368

45
ζ22 − 1520

9
ζ3 − 24 ln

(

µ2R
m2

t

)

}

+C

Fnf

{

457

2
+ 312ζ3 − 480ζ5

}

+C

Anf

{

− 12480497

4374
− 2075

243
ζ2 −

128

45
ζ22

− 12992

81
ζ3 −

88

9
ζ2ζ3 +

272

3
ζ5

}

+C

A

{

62867783

8748
+

146677

486
ζ2 −

5744

45
ζ22 − 12352

315
ζ32

− 67766

27
ζ3 −

1496

9
ζ2ζ3 −

104

3
ζ23 +

3080

3
ζ5

}

+CAn

f

{

514997

2187
− 8

27
ζ2 +

232

45
ζ22

+
7640

81
ζ3

}

+CACFnf

{

− 1004195

324
+

1031

18
ζ2 +

1568

45
ζ22 +

25784

27
ζ3 + 40ζ2ζ3 +

608

3
ζ5

+ 132 ln

(

µ2R
m2

t

)

}

. (3.23)
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The component of the Wilson coefficient, C
(2)
J , which is defined through Eq. (2.3), is not

available in the literature. The other constants γAg,i up to three loop (i = 3) are obtained

as

γAg,1 =
11

3
CA − 2

3
nf ,

γAg,2 =
34

3
C2
A − 10

3
CAnf − 2CFnf ,

γAg,3 =
2857

54
C3
A − 1415

54
C2
Anf − 205

18
CACFnf +C2

Fnf +
79

54
CAn

2
f +

11

9
CFn

2
f . (3.24)

As a matter of emphasising the fact, note that the γAg,i’s are found to satisfy

γAg = − β

as
up to 3-loop , (3.25)

where, β = −
∑∞

i=0 βia
i+2
s is the usual QCD β-function. For more elaborate discussion on

this, see recent article [59] (also see [60, 61]).

3.2 Operator Renormalisation Constant

The strong coupling constant renormalisation through Zas is not sufficient to make the

form factor FA
g completely UV finite, one needs to perform additional renormalisation to

remove the residual UV divergences which is reflected through the presence of non-zero γAg
in Eq. (3.19). This additional renormalisation is called the overall operator renormalisation

which is performed through the constant ZA
g . This is determined by solving the underlying

RG equation:

µ2R
d

dµ2R
lnZA

g

(

âs, µ
2
R, µ

2, ǫ
)

=
∞
∑

i=1

aisγ
A
g,i . (3.26)

Using the results of γAg,i from Eq. (3.24) and solving the above RG equation, we obtain the

overall renormalisation constant up to three loop level given by

ZA
g = 1 + as

[

22

3ǫ
CA − 4

3ǫ
nf

]

+ a2s

[

1

ǫ2

{

484

9
C2
A − 176

9
CAnf +

16

9
n2f

}

+
1

ǫ

{

34

3
C2
A

− 10

3
CAnf − 2CFnf

}]

+ a3s

[

1

ǫ3

{

10648

27
C3
A − 1936

9
C2
Anf +

352

9
CAn

2
f −

64

27
n3f

}

+
1

ǫ2

{

5236

27
C3
A − 2492

27
C2
Anf −

308

9
CACFnf +

280

27
CAn

2
f +

56

9
CFn

2
f

}

+
1

ǫ

{

2857

81
C3
A − 1415

81
C2
Anf −

205

27
CACFnf +

2

3
C2
Fnf +

79

81
CAn

2
f +

22

27
CFn

2
f

}]

.

(3.27)
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We emphasise that ZA
g = ZGG which is introduced in Eq. (3.12) has been discussed in

great detail in [59]. The complete UV finite form factor [FA
g ]R in terms of this ZA

g is

[FA
g ]R = ZA

g FA
g . (3.28)

This is presented in our recent article [59] up to three loops in the form of hard matching

coefficients of soft-collinear effective theory.

3.3 Mass Factorisation Kernel

The UV finite form factor contains additional divergences arising from the soft and collinear

regions of the loop momenta. In this section, we address the issue of collinear divergences

and describe a prescription to remove them. The collinear singularities that arise in the

massless limit of partons are removed in the MS scheme using mass factorisation kernel

Γ (âs, µ
2, µ2F , z, ǫ). The kernel satisfies the following RG equation :

µ2F
d

dµ2F
Γ (z, µ2F , ǫ) =

1

2
P
(

z, µ2F
)

⊗ Γ
(

z, µ2F , ǫ
)

(3.29)

where, P
(

z, µ2F
)

are Altarelli-Parisi splitting functions (matrix valued). Expanding P
(

z, µ2F
)

and Γ (z, µ2F , ǫ) in powers of the strong coupling constant we get

P (z, µ2F ) =

∞
∑

i=1

ais(µ
2
F )P

(i−1)(z) (3.30)

and

Γ (z, µ2F , ǫ) = δ(1− z) +

∞
∑

i=1

âis

(

µ2F
µ2

)i ǫ
2

Si
ǫΓ

(i)(z, ǫ) . (3.31)

The RG equation of Γ (z, µ2F , ǫ), Eq. (3.29), can be solved in dimensional regularisation in

powers of âs. In theMS scheme, the kernel contains only the poles in ǫ. The solutions up to

the required order Γ (3)(z, ǫ) in terms of P (i)(z) can be found in Eq. (33) of [40]. The relevant

ones up to three loop, P (0)(z), P (1)(z) and P (2)(z) are computed in the articles [62, 63]. For

the SV cross section only the diagonal parts of the splitting functions P
(i)
gg (z) and kernels

Γ
(i)
gg (z, ǫ) contribute.

3.4 Soft-Collinear Distribution

The resulting expression from form factor along with operator renormalisation constant

and mass factorisation kernel is not completely finite, it contains some residual divergences

which get cancelled against the contribution arising from soft gluon emissions. Hence,

the finiteness of ∆A,SV
g in the limit ǫ → 0 demands that the soft-collinear distribution,

ΦA
g (âs, q

2, µ2, z, ǫ), has pole structure in ǫ similar to that of residual divergences. In arti-

cles [40] and [41] it was shown that ΦA
g must obey KG type integro-differential equation,

which we call KG equation, to remove that residual divergences:

q2
d

dq2
ΦA
g

(

âs, q
2, µ2, z, ǫ

)

=
1

2

[

K
A
g

(

âs,
µ2R
µ2
, z, ǫ

)

+G
A
g

(

âs,
q2

µ2R
,
µ2R
µ2
, z, ǫ

)]

. (3.32)
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K and G play similar roles as those of K and G, respectively. Also, ΦA
g (âs, q

2, µ2, z, ǫ)

being independent of µ2R satisfy the RG equation

µ2R
d

dµ2R
ΦA
g (âs, q

2, µ2, z, ǫ) = 0 . (3.33)

This RG invariance and the demand of cancellation of all the residual divergences arising

from FA
g , Z

A
g and Γgg against ΦA

g implies the solution of the KG equation as [40, 41]

ΦA
g (âs, q

2, µ2, z, ǫ) = ΦA
g (âs, q

2(1− z)2, µ2, ǫ)

=

∞
∑

i=1

âis

(

q2(1− z)2

µ2

)i ǫ
2

Si
ǫ

(

iǫ

1− z

)

φ̂Ag,i(ǫ) (3.34)

with

φ̂Ag,i(ǫ) = LA
g,i(ǫ)

(

AA
g,j → −AA

g,j, G
A
g,j(ǫ) → GA

g,j(ǫ)
)

(3.35)

where, LA
g,i(ǫ) are defined in Eq. (3.17). The z-independent constants GA

g,i(ǫ) can be ob-

tained by comparing the poles as well as non-pole terms in ǫ of φ̂Ag,i(ǫ) with those arising

from form factor, overall renormalisation constant and splitting functions. We find

GA
g,i(ǫ) = −fAg,i + C

A
g,i +

∞
∑

k=1

ǫkGA,k
g,i , (3.36)

where,

C
A
g,1 = 0 ,

C
A
g,2 = −2β0GA,1

g,1 ,

C
A
g,3 = −2β1GA,1

g,1 − 2β0

(

GA,1
g,2 + 2β0GA,2

g,1

)

. (3.37)

However, due to the universality of the soft gluon contribution, ΦA
g must be the same as

that of the Higgs boson production in gluon fusion:

ΦA
g = ΦH

g = Φg

i.e. GA,k
g,i = GH,k

g,i = Gk
g,i . (3.38)

In the above expression, Φg and Gk
g,i are written in order to emphasise the universality

of these quantities i.e. ΦH
g and GH,k

g,i can be used for any gluon fusion process, these

are independent of the operator insertion. The relevant constants GH,1
g,1 ,G

H,2
g,1 ,G

H,1
g,2 are

determined from the result of the explicit computations of soft gluon emission to the Higgs

boson production [31]. Later, these corrections are extended to all orders in dimensional

regularisation parameter ǫ in the article [75], using which we extract GH,3
g,1 and GH,2

g,2 . The

third order constant GH,1
g,3 is computed from the result of SV cross section for the production
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of the Higgs boson at N3LO [46]. This was presented in the article [50]. The GH,k
g,i ’s required

to get the SV cross sections up to N3LO are listed below:

GH,1
g,1 = CA

{

− 3ζ2

}

,

GH,2
g,1 = CA

{

7

3
ζ3

}

,

GH,3
g,1 = CA

{

− 3

16
ζ2

2

}

,

GH,1
g,2 = CAnf

{

− 328

81
+

70

9
ζ2 +

32

3
ζ3

}

+C

A

{

2428

81
− 469

9
ζ2 + 4ζ2

2 − 176

3
ζ3

}

,

GH,2
g,2 = C


A

{

11

40
ζ2

2 − 203

3
ζ2ζ3 +

1414

27
ζ2 +

2077

27
ζ3 + 43ζ5 −

7288

243

}

+CAnf

{

− 1

20
ζ2

2 − 196

27
ζ2 −

310

27
ζ3 +

976

243

}

,

GH,1
g,3 = CA

3

{

152

63
ζ2

3 +
1964

9
ζ2

2 +
11000

9
ζ2ζ3 −

765127

486
ζ2 +

536

3
ζ3

2 − 59648

27
ζ3

− 1430

3
ζ5 +

7135981

8748

}

+CA
2nf

{

− 532

9
ζ2

2 − 1208

9
ζ2ζ3 +

105059

243
ζ2 +

45956

81
ζ3

+
148

3
ζ5 −

716509

4374

}

+CACFnf

{

152

15
ζ2

2 − 88 ζ2ζ3 +
605

6
ζ2 +

2536

27
ζ3 +

112

3
ζ5

− 42727

324

}

+CAnf


{

32

9
ζ2

2 − 1996

81
ζ2 −

2720

81
ζ3 +

11584

2187

}

. (3.39)

The above GH,k
g.i ’s enable us to compute the ΦA

g up to three loop level. This completes all

the ingredients required to compute the SV cross section up to N3LO that are presented

in the next section.

4 SV Cross Sections

In this section, we present our findings of the SV cross section at N3LO along with the

results of previous orders. Expanding the SV cross section ∆A,SV
g , Eq. (3.7), in powers of

as, we obtain

∆A,SV
g (z, q2, µ2R, µ

2
F ) =

∞
∑

i=0

ais∆
A,SV
g,i (z, q2, µ2R, µ

2
F ) (4.1)

where,

∆A,SV
g,i = ∆A,SV

g,i |δδ(1 − z) +

2i−1
∑

j=0

∆A,SV
g,i |Dj

Dj .
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Here, we present the results of the pseudo-scalar production cross section up to N3LO for

the choices of the scale µ2R = µ2F = q2 for which the Eq. (4.1) reads

∆A,SV
g (z, q2) =

∞
∑

i=0

ais(q
2)∆A,SV

g,i (z, q2) . (4.2)

with the following ∆A,SV
g,i (z, q2):

∆A,SV
g,0 = δ( − z) ,

∆A,SV
g,1 = δ( − z)

[

CA

{

8 + 8ζ2

}]

+D

[

CA

{

16

}]

,

∆A,SV
g,2 = δ( − z)

[

C

A

{

494

3
+

1112

9
ζ2 −

4

5
ζ22 − 220

3
ζ3

}

+CAnf

{

− 82

3
− 80

9
ζ2 −

8

3
ζ3

}

+CFnf

{

− 160

3
+ 12 ln

(

q2

m2
t

)

+ 16ζ3

}]

+D

[

CAnf

{

224

27
− 32

3
ζ2

}

+C

A

{

− 1616

27
+

176

3
ζ2 + 312ζ3

}]

+D

[

CAnf

{

− 160

9

}

+C

A

{

2224

9
− 160ζ2

}]

+D

[

C

A

{

− 176

3

}

+CAnf

{

32

3

}]

+D

[

C2
A

{

128

}]

,

∆A,SV
g,3 = δ( − z)

[

nfC
()
J

{

− 4

}

+CFn

f

{

1498

9
− 40

9
ζ2 −

32

45
ζ22 − 224

3
ζ3

}

+C

A

{

114568

27
+

137756

81
ζ2 −

61892

135
ζ22 − 64096

105
ζ32 − 3932ζ3 +

7832

3
ζ2ζ3

+
13216

3
ζ23 − 30316

9
ζ5

}

+C

Fnf

{

457

3
+ 208ζ3 − 320ζ5

}

+C

Anf

{

− 113366

81

− 10888

81
ζ2 +

21032

135
ζ22 +

8840

27
ζ3 −

2000

3
ζ2ζ3 +

6952

9
ζ5

}

+CAn

f

{

6914

81
− 1696

81
ζ2

− 608

45
ζ22 +

688

27
ζ3

}

+CACFnf

{

− 1797 − 4160

9
ζ2 +

176

45
ζ22 +

1856

3
ζ3 + 192ζ2ζ3

+ 160ζ5 + 96 ln

(

q2

m2
t

)

+ 96 ln

(

q2

m2
t

)

ζ2

}]

+D

[

C

Anf

{

173636

729
− 41680

81
ζ2

− 544

15
ζ22 − 7600

9
ζ3

}

+CACFnf

{

3422

27
− 32ζ2 −

64

5
ζ22 − 608

9
ζ3

}

+CAn

f

{

− 3712

729
+

640

27
ζ2 +

320

27
ζ3

}

+C

A

{

− 943114

729
+

175024

81
ζ2 +

4048

15
ζ22

+
210448

27
ζ3 −

23200

3
ζ2ζ3 + 11904ζ5

}]

+D

[

C

A

{

414616

81
− 13568

3
ζ2 −

9856

5
ζ22
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− 22528

3
ζ3

}

+C

Anf

{

− 79760

81
+

6016

9
ζ2 +

2944

3
ζ3

}

+CAn

f

{

1600

81
− 256

9
ζ2

}

+CACFnf

{

− 1000 + 384ζ3 + 192 ln

(

q2

m2
t

)

}]

+D

[

CACFnf

{

32

}

+CAn

f

{

− 640

27

}

+C

Anf

{

16928

27
− 2176

3
ζ2

}

+C

A

{

− 79936

27
+

11968

3
ζ2

+ 11584ζ3

}]

+D

[

C

Anf

{

− 10496

27

}

+CAn

f

{

256

27

}

+C

A

{

86848

27

− 3584ζ2

}]

+D

[

C

A

{

− 7040

9

}

+C

Anf

{

1280

9

}]

+D

[

C

A

{

512

}]

. (4.3)

The SV cross section up to NNLO are in agreement with the existing ones, computed in

the article [31, 35, 36].

5 Threshold Resummation

Despite the spectacular accuracy of the fixed order results which are defined in power series

expansions of the strong coupling constant as, it is necessary, in certain cases, to resum the

dominant contributions to all orders in as to get more reliable predictions and to reduce

the scale uncertainties significantly. In case of threshold corrections, due to soft-gluon

emission the fixed order pQCD calculation may yield large threshold logarithms of the

kind Di, defined in Eq. (3.6), hence we must resum these contributions to all orders in

as. The resummation of these so-called Sudakov logarithms is usually pursued in Mellin

space using the formalism developed in [64, 65, 76, 77]. Alternatively, it is performed in

the framework of soft-collinear effective field theory (SCET) [78–84]. Here, we will discuss

this in the context of Mellin space formalism.

5.1 Mellin Space Prescription

Under this prescription, the threshold resummation is performed in Mellin-N space where

the N -th order Mellin moment is defined with respect to the partonic scaling variable

z. In Mellin space, the threshold limit z → 1 corresponds to N → ∞ and the plus

distributions Di, Eq. (3.6), take the form lni−1N . These logarithmic contributions are

evaluated to all orders in perturbation theory by performing the threshold resummation

through [64, 65, 76, 77]

∆A,res
g,N (q2, µ2R, µ

2
F ) = CA,th

g (q2, µ2R, µ
2
F )∆g,N (q2) . (5.1)

The component CA,th
g depends on both the initial as well as final state particles, though it is

independent of the variable N . On the other hand, the remaining part ∆g,N does not care

about the details of the final state particle, it only depends on the initial state partons and

the variable N . Being independent of the nature of the final state, ∆g,N can be considered

as a universal quantity which is same for any operator. In addition, it is investigated in
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the articles [64, 65] that it arises solely from the soft parton radiation and it resums all

the perturbative contributions ans ln
mN (m ≥ 0) to all orders. Our goal is to calculate the

threshold resummation factor CA,th
g which encapsulates all the remaining N -independent

contributions to the resummed partonic cross section 5.1. Below, we demonstrate the

prescription based on our formalism to calculate this quantity CA,th
g order by order in

perturbation theory.

In the article [41], it was shown how the soft-collinear distribution ΦA
g (= Φg), Eq. (3.34),

captures all the features of the N -space resummation. In this section, we discuss that pre-

scription briefly in the present context. Using the well known identity

1

1− z

[

(1− z)2
]j ǫ

2 =
1

jǫ
δ(1 − z) +

(

1

1− z

[

(1− z)2
]j ǫ

2

)

+

, (5.2)

we can express the soft-collinear distribution 3.34 as

ΦA
g =

(

1

1− z

{

∫ q2(1−z)2

µ2

R

dλ2

λ2
AA

g

(

as(λ
2)
)

+G
A
g

(

as(q
2(1− z)2), ǫ

)

})

+

+ δ(1 − z)
∞
∑

j=1

âjs

(

q2

µ2

)j ǫ
2

Sj
ǫ φ̂

A
g,j(ǫ) +

(

1

1− z

)

+

∞
∑

j=1

âjs

(

µ2R
µ2

)j ǫ
2

Sj
ǫK

A
g,j(ǫ) (5.3)

where, all the quantities are already introduced in Sec. 3 except K
A
g,j(ǫ) which is defined

through the expansion of K
A
g , appeared in Eq. (3.32), in powers of âs in the following way:

K
A
g

(

âs,
µ2R
µ2
, z, ǫ

)

= δ(1 − z)

∞
∑

j=1

âjs

(

µ2R
µ2

)j ǫ
2

Sj
ǫK

A
g,j(ǫ) . (5.4)

The identification of the first plus distribution part of ΦA
g , Eq. (5.3), with the factor con-

tributing to the process independent ∆g,N (q2) has been discussed in the same article [41]

which reads

∆g,N = exp

[

∫ 1

0
dz
zN−1 − 1

1− z

{

2

∫ q2(1−z)2

q2

dλ2

λ2
Ag

(

as(λ
2)
)

+Dg

(

as(q
2(1− z)2)

)

}]

(5.5)

with

Dg

(

as(q
2(1− z)2)

)

= 2Gg

(

as(q
2(1− z)2), ǫ

)

|ǫ=0 . (5.6)

In the above expression, the superscript A has been omitted to emphasise the universal

nature of these quantities. The remaining part of the Eq. (5.3) along with the other parts,

namely, form factor, operator renormalisation constant and mass factorisation kernel in

Eq. (3.9) contribute to CA,th
g . Expanding this in powers of as as

CA,th
g = 1 +

∞
∑

j=1

ajsC
A,th
g,j , (5.7)
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we determine CA,th
g,j up to three loop (j = 3) order which are provided below (with the

choice µ2R = µ2F = q2):

CA,th
g,1 = CA

{

8 + 8ζ2

}

,

CA,th
g,2 = C


A

{

494

3
+

1112

9
ζ2 + 12ζ22 − 220

3
ζ3

}

+CAnf

{

− 82

3
− 80

9
ζ2 −

8

3
ζ3

}

+CFnf

{

− 160

3
+ 12 ln

(

q2

m2
t

)

+ 16ζ3

}

,

CA,th
g,3 = nfC

()
J

{

− 4

}

+CFn

f

{

1498

9
− 40

9
ζ2 −

32

45
ζ22 − 224

3
ζ3

}

+C

Fnf

{

457

3
+ 208ζ3

− 320ζ5

}

+C

Anf

{

− 113366

81
− 10888

81
ζ2 +

17192

135
ζ22 +

584

3
ζ3 −

464

3
ζ2ζ3 +

808

9
ζ5

}

+C

A

{

114568

27
+

137756

81
ζ2 −

4468

27
ζ22 − 32

5
ζ32 − 80308

27
ζ3 −

616

3
ζ2ζ3 + 96ζ23

+
3476

9
ζ5

}

+CAn

f

{

6914

81
− 1696

81
ζ2 −

608

45
ζ22 +

688

27
ζ3

}

+CACFnf

{

− 1797

+ 96 ln

(

q2

m2
t

)

− 4160

9
ζ2 + 96 ln

(

q2

m2
t

)

ζ2 +
176

45
ζ22 +

1856

3
ζ3 + 192ζ2ζ3

+ 160ζ5

}

. (5.8)

The above new result of CA,th
g,3 along with the universal factor ∆g,N provide the threshold

resummed cross section of the pseudo-scalar production at N3LL accuracy. The more elab-

orate discussion on this prescription to perform threshold resummation will be presented

elsewhere by us.

6 Numerical Impact of SV Cross Section

In this section, we present our findings on the numerical impact of threshold N3LO predic-

tions in QCD for the production of a pseudo-scalar Higgs boson at the LHC and also make

comparison with the corresponding results for the SM Higgs boson. As we are interested

in quantifying the QCD effects, we assume that pseudo-scalar couples only to top quarks.

Hence, the dominant contribution resulting from bottom quark initiated processes can be

included in a systematic way in our numerical study but we do not do it here. Moreover, our

predictions are based on the effective theory approach where the top quarks are integrated

out and we have only light quarks. Like in the case of predictions for the Higgs production

in the effective theory, for the pseudo-scalar production we multiply the born cross section

computed using the finite top mass (mt = 172.5 GeV) with higher orders which are ob-

tained in the effective theory. Without loss of generality, we normalise the cross section
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by cot2β. The mass of the pseudo-scalar is taken to be mA = 200 GeV and the compo-

nent of the Wilson coefficient C
(2)
J is considered to be zero due to its unavailability in the

literature. We use MSTW2008 [85] parton distribution functions (PDFs) throughout where

the LO, NLO and NNLO parton level cross sections are convoluted with the corresponding

MSTW2208lo, MSTW2008nlo and MSTW2008nnlo PDFs while for N3LOSV cross sections we

use MSTW2008nnlo PDFs. The strong coupling constant is provided by the respective PDFs

from LHAPDF with αs(mZ) = 0.1394(LO), 0.12018(NLO) and 0.11707(NNLO).

To estimate the impact of QCD corrections, we define the K-factors as

K(1) =
σNLO

σLO
, K(2) =

σNNLO

σLO
, K(3) =

σN
3LOSV

σLO
(6.1)

In fig. 1, for LHC13, we plot the pseudo-scalar production cross section as a function of

LO

NLO
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Figure 1: Pseudo-scalar production cross section (left panel) for LHC13 and the corresponding

K-factors (right panel). The observed spike at 345 GeV indicates the top quark pair threshold

region.

its mass mA. Since we retain the dependence on the mt at the born level, beyond the top

pair threshold (τA > 1), due to change in the functional dependence of τA one finds a spike

at 2mt (left panel). The corresponding K-factors are given in the right panel and are in

general found to increase with mA. The NLO correction enhances the LO predictions by

as much as 100% for mA = 1 TeV, whereas the NNLO correction adds about an additional

45%. On the other hand the N3LOSV correction is found to be about 1.5% of LO for small

mass region mA < 300 GeV and for higher mA values the correction at the N3LOSV level

becomes even smaller, about 0.3% for mA = 1 TeV. In either case, these N3LOSV effects

show a convergence of the perturbation series.

In fig. 3, we present the cross sections as a function of the center of mass energy
√
S

of the incoming protons at the LHC. The increase in the cross sections (left panel) with√
S is simply because of the increase in the corresponding parton fluxes for any given mA.

On the contrary, the corresponding K-factors (right panel) increase with decreasing
√
S
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Figure 2: Same as fig. 1 but smaller values of mA.

LO
NLO
NNLO
N3LOsv

dσ (pp → A) (pb)

µA = 200 GeV

MSTW 2008
µR = µF = mA

 √S (TeV)

-10

0

10

20

30

40

50

60

7 8 9 10 11 12 13 14

K(1)

K(2)

K(3)

K-factors dσ (pp → A) (pb) mA = 200 GeV

MSTW 2008

µR = µF = mA

√S (TeV)

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

7 8 9 10 11 12 13 14

Figure 3: Pseudo-scalar production cross section as a function of
√
S (left panel) and the

corresponding K-factors (right panel).

for fixed mA. A similar pattern is shown both in figs. (1 & 2) where the K-factors increase

with mA for a given
√
S. The guiding principle for the behaviour of the K-factors in these

two cases is the same, namely, as mA approaches
√
S, the cross sections are dominated by

large soft gluon effects.

Next, we present the scale (µR, µF ) uncertainties up to N3LOSV in fig. 4 for the choice

of mA = 200 GeV. In the left panel, we vary the renormalisation scale µR between mA/4

and 4mA, keeping µF = mA fixed. Unlike the Drell-Yan process, for the pseudo-scalar

production the renormalisation scale µR enters even at LO through the strong coupling

constant as. This is identical to the SM Higgs boson production in the gluon fusion channel.

This is the main source of large scale uncertainty at LO. It gets significantly reduced when

we include NLO and NNLO corrections as expected and it continues to do so at N3LO
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Figure 4: Scale uncertainties associated with the pseudo-scalar production cross section for

LHC13. Variation with µR keeping µF = mA fixed (left panel). Variation with µF keeping

µR = mA fixed (right panel).
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Figure 5: Scale uncertainties associated with the pseudo-scalar production cross section for

LHC13 with µ = µR = µF .

level. In the right panel, we show the factorisation scale uncertainties by varying µF from

mA/4 to 4mA and fixing µR = mA. Here, the fixed order results show improvement in

the reduction of factorisation scale uncertainty from NLO to NNLO. However, due to the

lack of parton distribution functions at N3LO level and also due to the missing regular

contributions from the parton level cross sections, the SV corrections at three loop level do

not show any improvement of the factorisation scale uncertainties. In fig. 5, we show the

combined effect of µR and µF scale uncertainties by varying the scale µ between mA/4 and

4mA, where µ = µR = µF . Here, the NNLO cross sections show a good improvement over

the NLO ones, while the scale uncertainties at N3LOSV are slightly larger but comparable
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to the NNLO ones.

√
S TeV

SM Higgs Pseudo-scalar

K(1) K(2) K(3) K(1) K(2) K(3)

7 1.83 2.31 2.44 1.84 2.34 2.37

8 1.79 2.27 2.40 1.81 2.29 2.33

10 1.74 2.19 2.33 1.76 2.22 2.26

13 1.68 2.10 2.24 1.69 2.13 2.18

14 1.66 2.08 2.22 1.67 2.10 2.16

Table 1: K-factors for Higgs and pseudo-scalar Higgs boson production cross sections up

to N3LOSV for different energies at LHC. Here, mH = mA = 125GeV.

The QCD corrections to pseudo-scalar Higgs production are found to be similar to

those of the SM Higgs production due to universal infrared structure of the gluon initiated

processes. We give a numerical comparison between their K-factors at various orders. We

takemH = mA = 125 GeV and ignore bottom as well as other light quarks and electro weak

effects for both the cases. Although the full N3LO QCD corrections are already available

for the SM Higgs boson, for comparison we take into account only the N3LOSV. Table 1

contains the K-factors, defined in Eq. (6.1) up to N3LOSV in QCD for both Higgs and

pseudo-scalar Higgs boson as a function of
√
S. For this mass region, the QCD corrections

are positive and hence the K-factors increase with the order in the perturbation theory.

Moreover, these K-factors, following the line of argument given before, are found to decrease

with
√
S but they are identical in both the cases. The difference between the Higgs and the

pseudo-scalar cross sections in their respective K-factors is noticed at the second decimal

place only. At three loop level, K(3) is found to be around 2.4(2.2) for 7(14) TeV case.

Mass
SM Higgs Pseudo-scalar

LO NLO NNLO N3LOSV LO NLO NNLO N3LOSV

124 20.32 34.08 42.76 45.60 47.02 79.46 100.03 102.54

125 20.01 33.58 42.13 44.92 46.32 78.35 98.61 101.06

126 19.70 33.10 41.51 44.26 45.63 77.26 97.22 99.62

Table 2: Higgs and pseudo-scalar Higgs cross sections up to N3LOSV for LHC13.

The tiny difference between them can be attributed to the presence of an additional

operator present in the effective interaction, namely OJ which along with the matching

coefficient formally enters from NNLO onwards for the gluon initiated processes. For

quark anti-quark initiated processes, this contribution vanishes as the quark flavours are

massless. The gluon initiated processes involving only OJ can contribute at N4LO and

beyond. However, the interference effects of OG and OJ will show up in the gluon initiated

processes at NNLO. Thus, the operator OJ has non-zero contributions at the lowest order

namely at two loop level. However, the presence of such an interference contribution is

found to be very small and is the main difference between the SM Higgs and the pseudo-
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scalar contribution. The QCD corrections through soft and collinear gluon emissions for

this interference contribution will be of even higher order and hence will contribute at the

three loop level and beyond. In table. 2, we present the Higgs and pseudo-scalar Higgs

boson production cross sections up to N3LOSV as a function of the scalar mass around 125

GeV. The pseudo-scalar cross section is about twice as big as that of the Higgs boson and

the convergence of perturbation series is good and the K-factors are roughly the same for

both the cases.
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Figure 6: Scale uncertainties associated with the pseudo-scalar production cross section for

LHC13. Variation with µR keeping µF = mA fixed (left panel). Variation with µF keeping

µR = mA fixed (right panel).

Next, we study the renormalisation and factorisation scale variations of both the cross

sections for the production of SM Higgs boson and pseudo-scalar Higgs boson for mH =

mA = 125 GeV by varying them between mA/4 and 4mA. In fig. 6, the renormalisation

scale uncertainties are given for Higgs boson (left panel) and for pseudo-scalar boson (right

panel), for µF = mA = mH . In fig. 7, we present similar results but for the factorisation

scale uncertainties keeping µR = mH = mA. Moreover, in fig. 8, we present the combined

effect by varying µ = µR = µF . The pattern of the results for the µR, µF and the combined

variations are similar to the earlier analysis for mA = 200 GeV where the renormalisation

scale uncertainties get stabilised further after including the third order threshold corrections

while the uncertainties due to µF variation get improved up to NNLO and does not show

any improvement at the threshold N3LO.

Since the predictions are sensitive to the choice of parton density functions, we have

estimated the uncertainty resulting from them by choosing the central fit for various well

known PDF sets such ABM11 [86] , CT10 [87], MSTW2008 [85] and NNPDF23 [88]. For

N3LOSV cross sections, however, we use NNLO PDF sets. The corresponding strong cou-

pling constant is directly taken from the LHAPDF. In table. 3, we present the SM Higgs bo-

son and pseudo-scalar Higgs boson production cross sections at NLO, NNLO and N3LOSV

for LHC13. We find that for NLO, CT10 gives lowest cross section while MSTW2008
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PDF set
SM Higgs Pseudo-scalar

NLO NNLO N3LOSV NLO NNLO N3LOSV

ABM11 33.19 39.59 41.99 77.42 92.66 94.64

CT10 31.79 41.84 44.67 74.15 97.94 100.44

MSTW2008 33.59 42.13 44.92 78.35 98.61 101.06

NNPDF 23 33.55 43.01 45.87 78.26 100.70 103.19

Table 3: PDF uncertainties in the Higgs boson and pseudo-scalar Higgs boson cross

sections up to N3LOSV for LHC13 and for mH = mA = 125GeV.
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Figure 7: Scale uncertainties associated with the pseudo-scalar production cross section for

LHC13. Variation with µR keeping µF = mA fixed (left panel). Variation with µF keeping

µR = mA fixed (right panel).

gives highest, whereas for NNLO and N3LOSV, ABM11 gives lowest and NNPDF23 gives

highest. The percentage uncertainty arising from PDF sets at any order is defined as

(σAmax − σAmin)/σ
A
min × 100 where, σAmax and σAmin are the highest and lowest cross sections

at any order obtained from the PDFs considered, respectively. This PDF uncertainties in

the case of Higgs boson cross sections are about 5.7% at NLO, 8.6% at NNLO and 9.2%

at N3LOSV. For pseudo-scalar production the cross sections are approximately twice the

Higgs cross sections, but the percentage of PDF uncertainties are almost the same.

The SV corrections give a rough estimate of the fixed order (FO) QCD corrections and

are often useful in absence of the latter. However, the relative contribution of these SV

corrections to the full FO results crucially depends on the kinematic region and in some

cases on the process under study. For the SM Higgs or pseudo-scalar Higgs boson with a

mass of about 125 GeV, it is far from the threshold region τ = m2
H/S → 1 for

√
S = 13 TeV.

Since, the parton fluxes corresponding to this mass region are very high, apart from the

threshold logarithms the contributions of the regular terms as well as of other subprocesses

present in the FO corrections are expected to be reasonably very high. For Higgs or pseudo-
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Figure 8: Scale uncertainties associated with the pseudo-scalar production cross section for

LHC13. Variation with µR keeping µF = mA fixed (left panel). Variation with µF keeping

µR = mA fixed (right panel).

scalar, the prediction at NLOSV level differs from the LO by only a few percent whereas

the regular terms at NLO contribute significantly and increase LO prediction by about

70%. Similar is the case even at NNLO. Thus the SV corrections poorly estimate the FO

ones, however, if we redefine the hadron level cross sections without affecting the total cross

sections in such a way that the parton fluxes peak near the threshold region [46, 54, 89],

then the SV contributions can be shown to dominate over the regular ones. This is due

to arbitrariness involved in splitting the parton level cross section in terms of threshold

enhanced and regular ones. Using a regular function G(z), we can write the hadronic cross

section as

σA(τ) = σA,(0)
∑

a,b=q,q̄,g

∫ 1

τ
dy G

(

τ

y

)

Φab(y)





∆A
ab

(

τ
y

)

G
(

τ
y

)



 (6.2)

where ∆(z)/G(z) can be decomposed as

∆(z)/G(z) = ∆SV(z) + ∆̃hard(z) (6.3)

In the above equation the ∆SV is independent of G(z) (if limz→1G(z) → 1) and contains

only distributions, whereas the hard part ∆̃hard is modified due to G(z). Hence the SV part

of the cross section at the hadron level depends on the choice of G(z). For the peculiar

choice G(z) = z2, the ∆SV dominates over ∆̃hard in such a way that almost the entire

NLO and NNLO corrections (Eq. (6.2)) results from ∆SV alone. As was noted earlier

G(z) = 1 corresponds to the standard SV contribution. Note that the flux Φab is modified

to Φmod
ab (y) = Φab(y)G(τ/y) which is responsible for this behaviour. We may denote the SV

cross sections thus obtained with these modified fluxes as NLO(sv), NNLO(sv) and N3LO(sv)

while those obtained with the normal fluxes as NLOsv, NNLOsv and N3LOsv. In fig. 9, we
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depict the comparison between the SV cross sections obtained from the modified parton

fluxes using G(z) = z2 and the normal fixed order results that are obtained from the

standard parton fluxes, for both the SM Higgs boson (left panel) and the pseudo-scalar

(right panel). We notice that the SV results are significantly closer to the corresponding

fixed order ones. Incidentally, this agreement is good for NLO as well as for NNLO where

different subprocesses appear, and also for several values of
√
S where the integration

range over the parton fluxes is different. While this could be purely accidental, this good

agreement might hint some subtle aspect hidden and might be useful in the phenomenology.

Motivated by the above observation, one can convolute the perturbative coefficients

∆
(3)
SV with the modified parton fluxes Φmod

ab (y) for the choice of G(z) = z2 to get N3LO(sv)

which could approximate the full N3LO result. This way, we present in fig. 9, the SV

corrections obtained using G(z) = 1 and G(z) = z2 for Higgs as well as pseudo-scalar

Higgs boson productions.

LO

NLO(sv) NLO

NNLO(sv) NNLO

N3LO(sv) N3LOsv

dσ (pp → H) (pb)

µH = 125 GeV
MSTW 2008
µR = µF = mH

-10

0

10

20

30

40

50

60

7 8 9 10 11 12 13 14

LO

NLO(sv) NLO

NNLO(sv) NNLO

N3LO(sv) N3LOsv

dσ (pp → A) (pb)

mA = 125 GeV

MSTW 2008

µR = µF = mA

 √S (TeV)

-20

0

20

40

60

80

100

120

7 8 9 10 11 12 13 14

Figure 9: Soft-plus-virtual (SVmod) vs fixed order results for Higgs and pseudo-scalar Higgs

boson production cross section for different energies at LHC.

7 Conclusions

In this paper, using the recently available pseudo-scalar form factors up to three loops and

the third order soft function from the real radiations, a complete N3LO threshold correction

to the production of pseudo-scalar at the LHC has been obtained. The computation is

performed using z space representation of resummed cross section. We have exploited

the universal structure of soft function that appears in scalar Higgs boson production at

the LHC. We found that the singularities resulting from soft and collinear regions in the

virtual diagrams cancel against those from the universal soft functions as well as from mass

factorisation kernels. Using our approach, we have also computed the process dependent

coefficient that appears in the threshold resummed cross section. This will be useful for

resummed predictions at N3LL in QCD. Using threshold corrected N3LO results, we have
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presented a detailed phenomenological study of the pseudo-scalar production at the LHC for

various center of mass energies as a function of its mass. While the third order corrections

are small, they play an important role in reducing the theoretical uncertainty resulting

from renormalisation scale. In addition, we have made a detailed comparison against scalar

Higgs boson production and found their corrections are very close to each other confirming

the universal behaviour of the QCD effects even though the operators responsible for their

interactions with gluons are very different.
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