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Abstract: Atmospheric neutrino experiments can determine the neutrino mass hierarchy

for any value of δCP . The Iron Calorimeter (ICAL) detector at the India-based Neutrino

Observatory can distinguish between the charged current interactions of νµ and ν̄µ by

determining the charge of the produced muon. Hence it is particularly well suited to

determine the hierarchy. The hierarchy signature is more prominent in neutrinos with

energy of a few GeV and with pathlength of a few thousand kilometers, i.e. neutrinos

whose direction is not close to horizontal. We use adaptive neural networks to identify

such events with good efficiency and good purity. The hierarchy sensitivity, calculated

from these selected events, reaches a 3σ level, with a ∆χ2 of 9.
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1 Introduction

Neutrino oscillations provide us with the first glimpse of physics beyond the standard model.

They explain the observed deficits in the solar and the atmospheric neutrino fluxes. The

mass-squared differences needed to solve the solar neutrino problem [1] and the atmospheric

neutrino problem [2] are widely different. Hence at least three neutrino mass eigenstates

are required. This requirement fits nicely with the picture of three active neutrino flavours,

established by the invisible decay width of Z0 boson [3]. The three flavours mix to form

three non-degenerate mass eigenstates with masses m1,m2 and m3. We get two indepen-

dent mass-squared differences ∆m2
21 = m2

2−m2
1 = ∆m2

solar and ∆m2
31 = m2

3−m2
1 = ∆m2

atm.

Solar and atmospheric neutrino data indicate that ∆m2
solar ∼ 0.03∆m2

atm. Hence the third

mass-squared difference ∆m2
32 = ∆m2

31 −∆m2
21 is approximately equal to ∆m2

31. The en-

ergy dependence of the solar neutrino survival probability requires ∆m2
21 to be positive but

there is no experimental information on ∆m2
31. Thus two very different patterns of neutrino

masses are allowed: m1 < m2 < m3 called normal hierarchy (NH) and m3 < m1 < m2

called the inverted hierarchy (IH).

The unitary mixing matrix, relating the flavour eigenstates to the mass eigenstates, is

parameterized by three angles θ12, θ13 and θ23 and one CP violating phase δCP . In the three

flavour oscillation framework, it was shown that the solar neutrino survival probability
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depends on the mixing angles θ12 and θ13 and the atmospheric νµ survival probability

depends on θ13 and θ23 [4, 5]. CHOOZ reactor neutrino experiment set a strong upper limit

on θ13 of sin2 2θ13 ≤ 0.1 [6, 7]. In the limit of θ13 → 0, the solar neutrino oscillations become

effective two flavour oscillations, controlled by ∆m2
21 and θ12. Similarly the atmospheric

neutrino oscillations are also effective two flavour oscillations, controlled by ∆m2
31 and θ23.

A systematic program of experiments with both natural [8–11] and man made sources

[12–18] have led to a wealth of data on neutrino oscillation parameters. A three flavour

oscillation fit to all the data gives the following values for these parameters, as in table 1.

ν-oscillation parameters Best fit values 3σ-range

∆m2
21 in 10−5eV2 7.60 7.11-8.18

∆m2
31 (NH) in 10−3eV2 2.48 2.30-2.65

∆m2
31 (IH) in 10−3eV2 2.38 2.20-2.54

sin2 θ12 0.323 0.278-0.375

sin2 θ23 (NH) 0.567 0.392-0.643

sin2 θ23 (IH) 0.573 0.403-0.640

sin2 θ13 (NH) 0.0234 0.0177-0.0294

sin2 θ13 (IH) 0.0240 0.0183-0.0297

δCP/π (NH) 1.34 0.0-2.0

δCP/π (IH) 1.48 0.0-2.0

Table 1. Best fit results and the 3σ-range of the global 3ν oscillations, as from the reference [19]

The following questions still remain unanswered in the neutrino oscillation studies:

• What is the pattern of neutrino masses? Is the true hierarchy normal or inverted?

• What is the octant of the angle θ23? Is it < 45◦ or > 45◦?

• Most importantly, is there CP violation in the neutrino sector?

A number of experiments are currently running [17, 18, 20] or being planned [21–26] to

address these issues. Among the current experiments, NOνA can determine the hierarchy

for the following two favorable combinations: (i) The hierarchy is normal and δCP is in

the lower half-plane or (ii) The hierarchy is inverted and δCP is in the upper half-plane. If

nature chooses one of the other two combinations, then NOνA has no hierarchy sensitivity

[27, 28]. Present data shows a slight preference for normal hierarchy and δCP in the lower

half-plane [17, 29].

When a neutrino passes through a medium, its propagation gets modified due to the

coherent forward scattering. All three flavours undergo this scattering due to neutral

current (NC) interactions whereas only νe has an additional scatteting amplitude due to

charged current (CC) scattering off electrons [30, 31]. The scattering amplitudes give rise

to potential terms in the evolution equation. Since the NC interactions of all flavours

are identical, the NC potential term does not lead to any modification of the oscillation

probabilities. The CC potential term can lead to observable changes in the oscillation and
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survival probabilities. For the muon neutrino survival probability, Pµµ, a large change is

possible only if ∆m2
31 is positive, which corresponds to normal hierarchy (NH). For ∆m2

31

negative, called inverted hierarchy (IH), the change in Pµµ is negligible. For anti-neutrino

the situation is reversed. The changes in the muon neutrino (or anti-neutrino) survival

probability are significant when the following two conditions are satisfied [32]:

∆m2
31 cos 2θ13 ∼ ±2EVCC , (1.1)

sin2

(
1.27

∆m2
31 sin 2θ13L

E

)
∼ 1, (1.2)

where E is the energy of the neutrino, VCC is the potential due to CC scattering and L

is the pathlength of the neutrino. The Wolfenstein matter term A = 2EVCC (in eV2) is

given by 0.76× 10−4ρ (in g/cc) E (in GeV), where ρ is the density of the matter through

which the neutrino propagates. For ∆m2
31 ≈ 2.5 × 10−3 eV2, eq. (1.1) is satisfied for

ρE ≈ 33. For the density 5 gm/cc of earth’s mantle, the corresponding energy is E ≈ 7

GeV. Substituting this in eq. (1.2), we obtain a pathlength L of the order of a few thousand

km. A large majority of upgoing atmospheric neutrinos pass only through earth’s mantle

hence the conditions mentioned above are the most relevant. Thus, we find that there

is a broad range of energies around 7 GeV and a broad range of pathlengths of a few

thousand kilometers for which there is an observable change in the muon neutrino survival

probability [32]. However, these changes can be measured and hierarchy can be determined

only if the detector has good energy and direction resolutions [33].

The plots of the muon neutrino survival probability Pµµ for atmospheric neutrinos, as

a function of neutrino energy, are shown in figure 1 for various different values of cos θz,

where θz is the zenith angle.
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Figure 1. Oscillation probability plot Pµµ for neutrinos at different zenith angles for either hierar-

chies (top panel). Difference between the values of Pµµ in the NH and the IH conditions (bottom

panel).

From these plots, we note that the signature for the neutrino mass hierarchy is most

prominent in the energy range Eν > 4 GeV and for cos θz > 0.5. Hence, for the purpose

of hierarchy determination, νµCC events in the vertical cone (i.e. with | cos θz| > 0.5) with

Eν > 4 GeV should be considered as the signal events and all other events should be termed

background. It is imperative to develop a procedure by which it is possible to select the

signal events with high efficiency and purity. In this report, we develop such a procedure

based on artificial neural network.

2 INO and ICAL

India-based Neutrino Observatory (INO) [21] is an upcoming experimental facility which

can house a number of experiments requiring low cosmic ray backgrounds. A major com-

ponent of the experimental program at INO is the magnetised Iron Calorimeter (ICAL)

neutrino detector. It will study neutrino interactions of various types, with the atmospheric
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neutrinos as the source. ICAL will be constructed in 3 modules, each of which contains

151 horizontal iron layers. The iron layers are 5.6 cm thick and they are interspersed with

resistive plate chambers (RPCs) [34–36]. The total mass of the detector is made very large

(more than 50 kilotons) to obtain a large sample of neutrino interaction. The area of each

RPC is approximately 2m× 2m and the total number of RPCs in the detector is ∼30,000.

When a neutrino interacts with an iron nucleus, it produces a set of charged particles.

These charged particles pass through one or more RPCs, depending on the type of the

particle and its energy. Whenever a charged particle passes through an RPC, it produces

a hit. These hits are our primary observables. The layer number of RPC gives the z-

coordinate of the hit. The x and y-coordinates are given by the copper-strips of the pick-up

panels which are orthogonally oriented at the top and the bottom of the RPCs [37].

ICAL has a good ability to identify muon tracks, from the pattern of hits in successive

layers, and determine the energy and the direction of the muons with good precision [38].

In the present case, our signal events are νµCC events in the energy range of approx.

4-10 GeV, which are in the vertical cone. These events are expected to have long muon

tracks passing through many layers. The background events come from sources: (a) low

energy νµCC interactions, (b) νµCC interactions where neutrino direction is close to the

horizontal, (c) νeCC events and a small number of ντCC events and finally (d) NC events.

A large number of these background events do not give clear muon tracks. We aim to

select a set of events which is highly rich in signal events. These events will have long

muon tracks which can be recognized in a straight forward manner. We will utilize this

fact to design criteria to separate the signal events from the background.

We exploit the energy and the direction information of the neutrinos given to us by

Nuance, in order to devise/develop the selection criteria. The selection criteria, whose

developement is described in detail in the next section, depend only on the visible char-

acteristics of the ν-events in the detector, i.e. the output parameters given by GEANT4

simulation. The neural network is trained with a selected set of events. This trained net-

work is then applied on any random set of events. It assigns a probability to the event,

denoting how close it is to a perfect signal event. The signal-like events are finally chosen

based on this value. The choice of the cut is such that the signal selection efficiency and

the signal purity are significantly high.

In the previous section, we argued that events with Eν > 4 GeV and cos θz > 0.5 have

the best hierarchy sensitivity. However, neutrinos over a very broad range of energy and

over the full zenith angle range interact in the ICAL and produce observable events. Our

job here is to develop a procedure to distinguish between the events with good hierarchy

sensitivity and those without. Hence neutrino events over the full detectable range of energy

must be simulated. Five different sets of data, each equivalent to 500 years of ICAL run,

are generated using NUANCE in the energy range Eν= {0.1,100}GeV. Each set consists

of all types of interactions of all three neutrino flavours. The first set is generated with

the assumption of no neutrino oscillations (NOOSC). The next three sets are generated

assuming neutrino oscillations with normal hierarchy, with 3 different seeds. The final set

is generated assuming neutrino oscillations with inverted hierarchy. The generated events

are then propagated in ICAL using a Geant4 simulation of the detector. The pattern of hits
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thus generated are used to first identify the muon track and then reconstruct its energy Eµ
and the cosine of its zenith angle cos θµ [39]. In computing the oscillation probabilities, the

following values of neutrino parameters were used: ∆m21
2 = 7.5 × 10−5 eV2, |∆meff

2| =
2.47 × 10−3 eV2 (i.e. ∆m31

2(NH) = 2.51 × 10−3 eV2, ∆m31
2(IH) = −2.43 × 10−3 eV2),

sin2 θ12 = 0.31, sin2 2θ13 = 0.09, sin2 θ23 = 0.5 and δCP = 0.

3 Effective Selection Parameters

We first select only those events with hits in more than five layers (L > 5). This lower

limit on the number of layers is chosen to optimize the reconstruction efficiency of the muon

tracks [40]. This cut also has the advantage of eliminating most of the background due

to the non-νµCC events. About 90% of the events selected after this cut are νµCC events

[41]. We want the neural network to select signal events with high efficiency and good

purity. We need to choose appropriate input variables for the neural network to achieve

this aim. We consider a number of such variables and study their ability to distinguish

between signal and background among the νµCC events passing the L > 5 cut. For this

study, we divide these events into four subsets based on the neutrino energy and direction,

using the information from the event generator.

1. Signal events: Eν : 4-100 GeV and | cos θz| > 0.5,

2. High energy horizontal events: Eν : 4-100 GeV and | cos θz| ≤ 0.5,

3. Low energy vertical events: Eν : 0.1-4 GeV and | cos θz| > 0.5,

4. Low energy horizontal events: Eν : 0.1-4 GeV and | cos θz| ≤ 0.5.

We have checked that these variables discriminate against non-νµCC background very

effectively.

3.1 Hits

Low energy neutrino events give less number of hits compared to the high energy events.

Hence, the number of hits is a measure of the energy of the neutrino as illustrated in

figure (2). This variable is quite effective in distinguishing high energy events from low

energy events but not for distinguishing vertical events from horizontal events.
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Figure 2. Hits Distributions for νµCC events with L>5 for the NOOSC dataset. The top left plot

shows the distribution for the signal events (red).

Figure 2 shows that the signal-like events (top-left) give more hits than the low energy

neutrino events (bottom row). The high energy horizontal events too give comparatively

lower number of hits, if closely observed. This is due to the fact that the particles effectively

travel through larger lengths of iron in the horizontal direction.

3.2 Layers

This parameter refers to the number of layers in ICAL, which has received one or more

hits in an event. The high energy vertical neutrino events give hits in more number of

layers than the low energy/horizontal events. So, the vertical νµCC events containing high

energy muon tracks give hits in a larger number of layers than the other event types.

3.3 Maximum horizontal spread of an event (maxdist)

The energetic but near horizontal muons have a larger spread on the horizontal plane than

the vertical (or near-vertical) events. The horizontal spread between a pair of hits is given

by D =
√

((x2 − x1)2 + (y2 − y1)2). We calculate D for every pair of hits in an event

and define its maxdist to be the maximum value of D [41]. The maxdist is quite large in

case of high energy horizontal events and is moderate for the other three types of events,

as can be seen in figure 3.
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Figure 3. Maxdist distributions for νµCC events with L>5 for the NOOSC dataset. The top left

plot shows the distribution for the signal events (red).

3.4 Singlets

A high energy vertical muon passes through a number of layers. Any hadrons produced in

the same event will pass through a much smaller number of layers. Therefore, in a high

energy vertical event, there will be only hits due to the muon tracks after the initial few

layers. For these later layers, we expect one or two hits in a layer. Almost all signal events

must contain one or more layers with a single hit. The passage of a muon through an RPC

can produce a hit in a single strip or hits in two adjacent strips. Therefore, we define a

layer with a single hit to be one where there is only one hit or one where there are two hits

in adjacent strips. Singlets is the number of layers in an event that contain a single hit.

A signal event is expected to contain more singlets than the low energy or the horizontal

νµCC events.

3.5 Triplets

This is an extension of the previous parameter. Triplets is the number of 3 consecutive

layers with single hits in an event. A signal event with a long muon track is expected

to contain at least one such triplet. This variable gives more weightage to events with

longer muon track with many consecutive single hit layers. For example, an event with five

consecutive single hit layers has three triplets.
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Figure 4. Distribution of the single-hit layers in the νµCC events (L>5), combined with

maxdist/layers≤10 and # possible triplets>0, for the NOOSC dataset. The top left plot shows

the distribution for the signal events (red).

Figure 4 shows an example of the efficacy of the listed parameters in selecting the

signal events and in discriminating against the background events. In this figure, the

singlet distribution is plotted for those satisfying the simple cuts: number of triplets non-

zero and the ratio maxdist/layers ≤ 10. These distributions show that a cut of number

of singlets ≥ 10 retains most of the signal events while rejecting a very large fraction of

background events.

3.6 Summarizing the effects of the selection parameters

The above subsections all lead to the following inference:

• Hits or layers can distinguish the low energy from the high energy range ν events.

• Maxdist distinguishes the horizontal high energy events from the rest.

• The high energy vertical νµCC events contain significantly larger number of singlets

than the low energy/ horizontal events.

• The hits-pattern across the layers in case of the high energy vertical νµCC events

form more number of triplets than the the other three categories of νµCC events

considered.
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4 Choice of the analysis tool

The parameters discussed in the above section indicate a reliable way to select our required

signal events. A selection based on neural network techniques, with these parameters as

inputs, can select the signal events efficiently. So, we employ tools for multi variate analysis

(TMVA), a package integrated in ROOT, for our signal selection [42].

There are a number of applicable methods that involve multivariate analysis. Meth-

ods like BDT (Boosted Decision Trees), MLP (Multi-Layer Perceptron), LikelihoodPCA

(Likelihood method using the input variables after Principal Component Analysis), HMa-

trix (method involving the inverse of the covariance matrix; a covariance matrix is devised

based on the input variables for both, the signal and the background), and TMlpANN (a

ROOT [43] class TMultiLayerPerceptron) are all competitive. We did a preliminary anal-

ysis using each of these methods and compared the results. It was found that the event

sample selected by TMlpANN had the best signal efficiency and purity. In addition, the

time taken for the method to learn the discrimination and apply it to an event sample was

also the least. In view of this the analysis was done using TMlpANN. Detailed optimization

has shown that the stochastic learning method with three nodal steps and three hundred

iterations gave the best performance. We applied the method on a training set of 20000

events with the signal to background ratio being the same as that in the actual data. The

size of the training set was chosen after detailed optimization. The training and testing

sets, post optimization, were taken from the NOOSC data set.

During the training, the selection parameters, discussed in section 3, are given as inputs

to the adaptive neural network (ANN). The ANN combines these inputs in various weights

to perform a number of intermediate calculations. Over a number of iterations, the trained

ANN optimizes the weights and finally learns to assign a number to an event. This number

is the probability of the event being a signal event. After the training, the ANN is fed the

events from the NH data sets and the IH data set. The signal events are selected from each

data set based on a cut on the probability assigned by the ANN (called ANNcut).

In our initial analysis, we defined the signal events to be νµCC events with Eν > 4

GeV and | cos θz| > 0.5. But some hierarchy discrimination is present in events with lower

energy and smaller | cos θz|. So we systematically lowered the minimum values of Eν and

cos θz and found that the best hierarchy discrimination sensitivity is obtained with Eν > 2

GeV and | cos θz| > 0.2, as shown in figure 5. The details of the calculation of the hierarchy

discrimination sensitivity are given in the next section.
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Figure 5. Hierarchy discrimination sensitivity for different signal definitions

5 Calculation of Mass Hierarchy < ∆χ2 >

Our redefined signal consists of the νµCC events with Eν = {2,100}GeV and |cosθ| >
0.2. Therefore, the background comprises of all the rest of the νµCC events as well as all

non-νµCC events (i.e., all NCs, νeCC and ντCC). If we impose the cut L > 5 on the 500

year dataset with IH oscillations, the remaining data sample has the composition shown in

table 2. The numbers for NH oscillations are similar.

Total Total

signal events bkg. events

∼350,000 ∼400,000

Table 2. Counts of the events after a cut of Layers>5, in a 500 years data sample.

For the selected signal-like events, the muon energy Eµ and its direction cos θµ are

reconstructed. The events are sorted into bins of the reconstructed Eµ and cos θµ. A

better angular resolution leads to a better hierarchy discrimination in atmospheric neutrino

experiments [33, 44]. Hence the bin width in cos θµ needs to be as small as possible. Here

it is chosen to be 0.01, which is the cos θµ resolution of the ICAL [38]. The down going

events undergo no oscillation and hence there will not be any signature of matter effect in
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them. It is present only in the up going events. Hence in computing the ∆χ2 for hierarchy

signal, we will consider only the up going events, i.e. events with cos θµ ∈ [0, 1]. This has

the advantage of eliminating the contribution of the fluctuations in the down going events

to the χ2.

Figure 6. The distribution of muon energy and direction (given by NUANCE) of the events

surviving the cut on the neural network probability = 0.7.

Regarding the binning in muon energy, different schemes were tested. We restricted

the range of muon energies to be (0,17) GeV. Since events with very high energy muons are

rather small in number, their contribution to hierarchy discrimination is very small. Also,

the smaller event numbers have large fluctuations which lead to spurious contribution to

hierarchy sensitivity. Therefore a binning scheme with uniform energy bins is not preferred.

We have verified that the results are much better for a scheme with differential energy bins

compared to a scheme with uniform energy bins. The L > 5 cut as well as the selection

based on ANN strongly discriminate against events with Eµ < 1 GeV. This can be seen in

figure 6. Therefore, our lowest energy bin is chosen to be (0, 2) GeV, so that the number

of events in this bin are substantial. We found the following 10 Eµ bins to be optimal:

(0, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7.5), (7.5, 9), (9, 11), (11, 14) and (14, 17) GeV.

The binning is done separately for µ− and µ+ events. Differential binning schemes are also

tried out for cos θµ. But results of the uniform binning scheme with 0.01 bin width are

always better.

For the hierarchy discrimination analysis the four data sets NH1, NH2, NH3 and IH
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were used. Each of them was binned according to the scheme described above. From this

binned data, we compute 3 values of χ2
true as χ2(NH1 − NH2), χ2(NH1 − NH3) and

χ2(NH2−NH3), and take their average to obtain < χ2
true >. This is expected to be twice

the number of bins. We also compute 3 values of χ2
false as χ2(NH1− IH), χ2(NH2− IH)

and χ2(NH3 − IH), and take their average to obtain < χ2
false >. From these we obtain

< ∆χ2 > = < χ2
false > − < χ2

true >. We obtained a maximum < ∆χ2 >= 9 (assuming a

10 year run) for an ANN probability cut of 0.6. The variation in < ∆χ2 > with the ANN

probability is plotted in figure 7.

Figure 7. Values of < ∆χ2 > for 10 years, against varying cuts on the probability obtained from

the neural network analysis, in the range Eµ = {0, 17} GeV and cos θ > 0, using a differential

binning scheme. The red circles correspond to the case where Eµ and cos θµ are obtained from the

ICAL reconstruction code. The magenta squares correspond to the case where Eµ is restricted to

be within 30% of its Nuance value. The blue triangles show the result assuming an ideal momentum

reconstruction.

Figure 7 contains two other plots which are put in for comparison. The blue curve

in figure 7 shows the hierarchy discrimination of an ideal detector, which gives the exact

values of Eµ and cos θµ. This sets the upper limit on the hierarchy discrimination of ICAL,

when only Eµ and cos θµ are used as inputs. In addition, we considered the possibility that

the fluctuations due to inefficiencies in the reconstruction are responsible for < ∆χ2 >. To

rule out this possibility, we considered only those events which satisfied the following two
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criteria: (i) The charge of the muon is correctly identified and (ii) The reconstructed Eµ is

within 30% of the NUANCE value. These restrictions give us a smaller event sample. The

< ∆χ2 > from this subset is shown as the magenta curve in figure 7. For this restricted set,

the maximum < ∆χ2 >= 7, which is close to the value of 9 obtained for the full sample.

Therefore, the hierarchy discrimination we obtained comes mostly from well reconstructed

events.

6 Discussion

We have used a neural network to identify high energy νµCC events in the vertical direction.

The neural network is able to select such events with an efficiency > 70%. The purity of

the selected samples is also > 70%. We have binned the selected signal events in Eµ and

cos θµ to compute the hierarchy sensitivity of ICAL. Since this sensitivity depends strongly

on the angular resolution, we chose a rather fine bin width of 0.01 for cos θµ. For binning

Eµ, we found that a scheme with differential bin widths gives a much better sensitivity.

Hence we chose a set of ten bins with finer bins at lower energy and wider bins at higher

energy. We also imposed an upper limit Eµ ≤ 17 GeV.

From figure 7, we see that the < ∆χ2 > has only a mild dependence on ANNcut.

Hence we did a brief study on the role played by the ANN in signal selection. These results

are summarised in figure 8, which plots < ∆χ2 > vs. ANNcut, for uniform energy binning

scheme and for differential energy binning scheme. The < ∆χ2 > for the differential scheme

is always larger than the uniform scheme. In case of the uniform scheme, signal selection

through ANN plays an important role and improves < ∆χ2 > from 3.5 to 8. On the other

hand, the differential scheme inherently extracts the differences between the event spectra

of NH and IH. For this scheme, the event selection due to ANN leads only to a small

improvement in < ∆χ2 > from 7 to 9.
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Figure 8. Values of < ∆χ2 > for 10 years against ANNcut, in the range Eµ = {0, 17} GeV and

cos θ >0, using a uniform binning scheme and a differential binning scheme.

For the sample we chose, we obtained a maximum < ∆χ2 >= 9, i.e. a 3σ hierarchy

discrimination. We have calculated the increase in < ∆χ2 > which can happen in the

case of an ideal detector. It is found that with absolute energy reconstruction, very fine

direction resolution and perfect charge identification, one can obtain a < ∆χ2 >∼ 15.

Therefore improvement in the muon energy reconstruction and charge identification will

certainly improve the hierarchy sensitivity of ICAL.
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