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Over the last two decades, several experiments have reported anoma-
lous results that could be hinting at the exciting possibility of sterile neu-
trino states in the eV2 mass scale. Liquid Argon Time Projection Cham-
bers (LArTPCs) are a particularly promising technology to explore this
physics due to their fine-grained tracking and exceptional calorimetric ca-
pabilities. The MicroBooNE experiment, a 170 ton LArTPC scheduled
to start taking data very soon with Fermilab’s Booster Neutrino Beam
(BNB), will combine LArTPC development with the main physics goal of
understanding the low-energy electromagnetic anomaly seen by the Mini-
BooNE experiment. Looking towards the future, MicroBooNE will be-
come a part of the short-baseline neutrino program which expands the
physics capabilities of the BNB in many important ways by adding addi-
tional LArTPC detectors to search for light sterile neutrinos and bring a
definitive resolution to the set of existing experimental anomalies. This
paper will give an overview of the accelerator-based short-baseline neu-
trino oscillation program with a focus on the MicroBooNE experiment
while highlighting the prospects for further addressing the short-baseline
anomalies in the near future.
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1 Motivation

The Standard Model (SM) of Particle Physics predicts three active neutrino flavors.
This was later confirmed by the experiments on the Large Electron-Positron ring
(LEP) ring that demonstrated that only three neutrino flavors couple to the Z bo-
son [1]. As shown in Table 1, in the last two decades, several short-baseline (<1
km) oscillation experiments reported anomalous results that do not fit the SM 3-ν
scenario.

As seen from the Table below, even though each measurement alone lacks dis-
covery potential, together they could be hinting at new physics. The most common
interpretation of these hints is high ∆m2 neutrino oscillations with one (or more)
additional sterile neutrino states with masses at or below a few eV2. Sections 1.1
and 1.2 briefly discuss the anomalous results observed by the LSND and MiniBooNE
experiments.

Experiment Channel Significance
LSND Charged-current 3.8σ

νµ → νe
MiniBooNE Charged-current 3.4σ

νµ → νe
MiniBooNE Charged-current 2.8σ

νµ → νe
GALLEX/SAGE νe disappearance 2.8σ

Reactors νe disappearance 3.0σ

Table 1: Table listing interesting experimental anomalies from short-baseline neu-
trino and source experiments [2]. LSND and MiniBooNE are accelerator-based short-
baseline experiments. The rest are radioactive source and reactor experiments [3, 4].

1.1 High ∆m2 results: the LSND experiment

The Liquid Scintillator Neutrino Detector (LSND) experiment [5] at Los Alamos
lab was the first to observe evidence for neutrino oscillations beyond the SM 3-ν
scenario. The LSND detector consisted of a cylindrical tank filled with 167 tons of
mineral oil and 0.031 g/l of b-PBD organic scintillating material. An array of 1220
photomultiplier tubes covered the inner surface of the detector. The baseline (distance
from the neutrino source to the detector) of the experiment was approximately 30 m.

The LSND experiment primarily searched for νe in a νµ beam originated by µ+

at rest with Eν approximately between 0 and 53 MeV. The νe candidate events are
identified through the inverse beta decay process (νep → e+n) which resulted in a
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two-fold signature of a prompt positron emitting 52.8 MeV cherenkov radiation and
a correlated 2.2 MeV γ from neutron capture. The LSND experiment measured an
excess of 87.9±23.2 νe events (see Figure 1 Left). Interpreting the excess as oscillations
in a two-neutrino model (see Figure 1 Right), LSND obtained 3.8σ evidence for
νµ → νe oscillations with ∆m2 > 0.2 eV 2 [6].

Figure 1: (Left) LSND event excess as a function of L/Eν and comparison to the
predicted oscillation signal. (Right) LSND allowed (∆m2, sin2 2θ) parameter space
and limits from KARMEN for a 2-ν oscillation model [6, 7].

Worth mentioning here is the KARMEN experiment [7] (at a baseline of 17.7 m)
that took data around the same time as the LSND experiment and saw no evidence of
an oscillation signal. However, an analysis of LSND and KARMEN data [8] excluded
the high ∆m2 (> 10 eV 2) region and restricted the allowed region to ∆m2 < 1 eV 2

or ∆m2 ≈ 7 eV 2 in the (∆m2, sin2 2θ) space (see Figure 1).

1.2 High ∆m2 results: the MiniBooNE experiment

MiniBooNE, a 12m diameter Cherenkov detector [9] filled with 800 tons of mineral
oil was initially conceived as a test of the LSND anomaly. MiniBooNE sits on the
Fermilab’s Booster neutrino beam line (BNB) [10] at a distance of 541 m from the
neutrino source. In contrast to LSND, the νµ (νµ) beam from the Fermilab BNB is
produced by π+ and K+ (π− and K−) that decay-in-flight in a 50 m decay pipe and
typically has an energy that peaks around 800 MeV. This results in a similar L/E
(≈ 1 m/MeV) as LSND but the signal, backgrounds and systematic uncertainties
are very different than in LSND. Particles are identified in the MiniBooNE detector
through their cherenkov light patterns. For example, particles such as electrons and
photons produce a fuzzy Cherenkov ring, while muons produce a sharp outer ring
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with a fuzzy inner region, neutral pions that make two electron/photon like tracks
result in two fuzzy rings and so on. The νe-like candidate events are identified by a
single isolated electron-like cherenkov ring.

Figure 2: (Left) The neutrino mode (top) and antineutrino mode (bottom) re-
constructed neutrino energy distribution for νe CCQE candidate events. (Center)
Comparison of CCQE event excesses in neutrino (top) and antineutrino mode (bot-
tom) to the 2-ν and 3 + 2 oscillation best fits. Also shown are the two reference
values (magenta and green lines) in the LSND allowed region. (Right) MiniBooNE
combined neutrino and anti-neutrino mode allowed regions in (∆m2, sin22θ) phase
space for candidate CCQE events with energies between 200 and 3000 MeV. The
black star shows the best fit point for a 2-ν osicllation model [13].

The MiniBooNE experiment ran for 10 years (2002 to 2012) switching between
neutrino and anti-neutrino modes. The first MiniBooNE data taking started in neu-
trino mode since it was understood that the anti-neutrino mode suffers from higher
backgrounds especially coming from νµ contamination and running in the neutrino
mode prior to anti-neutrino mode gave the opportunity to understand and constrain
backgrounds directly from measurements in the detector [11, 12] and achieve higher
statistics. The final MiniBooNE oscillation results [13] showed an excess in both ν
(3.4σ) and ν (2.8σ) modes in the low energy region (below 475 MeV). The excess in
neutrino mode is only marginally compatible with a simple 2-ν oscillation hypothesis
while the excess in the anti-neutrino mode is consistent with anti-ν oscillations in the
0.01 < ∆m2 < 1.0 eV 2 range with some overlap with the LSND signal (see Figure 2).

Although MiniBooNE greatly constrained various backgrounds by direct measure-
ments and observed a statistically significant excess, there are some limiting factors
to the MiniBooNE oscillation analysis. The MiniBooNE detector being a Cherenkov
detector cannot distinguish electrons (signal events) from single photons (background
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Figure 3: Basic principle of a LArTPC.

events). The measured signal in neutrino mode is only marginally compatible with
the expected sterile neutrino signal. Any further test of the MiniBooNE signal re-
quires a highly granular detector that can distinguish between photons and electrons
and obtain more information on the neutrino interactions themselves.

2 Liquid Argon Time Projection Chambers

Liquid Argon Time Projection Chambers (LArTPCs) are imaging detectors that offer
exceptional calorimetric and position resolution capabilities for studying neutrino
interactions in argon and are rapidly evolving as a desirable detector technology for
future neutrino experiments. The idea to use LArTPC technique for particle detection
was first proposed in the 1970s [14, 15] and a tremendous amount of progress has
been made since then in terms of developing this technology [16, 17, 18]. A LArTPC
typically consists of a cathode plane and finely segmented anode planes enclosed in a
volume of highly purified liquid argon (LAr) (see Figure 3). Neutrino interactions with
LAr in the TPC produces charged particles that cause the ionization and excitation of
the argon. A large electric field drifts electrons towards finely segmented (mm-scale)
anode wire planes oriented at different angles to provide stereoscopic views of the
same interaction. The excitation of argon produces prompt scintillation light giving
important timing information about the neutrino interaction.
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2.1 e−/γ separation in a LArTPC

LArTPCs combine topology and energy deposition information along the track (dE/dx)
to distinguish electrons from photons.

• In the case of a γ or π0, since they are neutral, one can look for a gap between
the vertex and electro-magnetic shower

• If no gap is observed, one can measure the charge deposition (dE/dx) at the start
of the shower (first few cm of the shower). If the measured dE/dx corresponds
to 2.1 MeV/cm, equivalent to a minimum ionizing particle (MIP) in argon, then
it is more likely an e-like candidate. If the measured dE/dx corresponds to twice
the MIP deposition (4.2 MeV/cm), then it is γ-like since a γ pair produces.

The ArgoNeuT detector [18] on the NuMI (Neutrinos from the Main Injector) beam-
line at Fermilab served as the proof of principle for the above strategy as shown in
Figure 4 [19].

Figure 4: e−/γ separation measured in ArgoNeuT [19]. The solid blue/red lines
represent MC based separation and the blue/red points represent separation based
on topology and measured dE/dx.

2.2 The MicroBooNE LArTPC

MicroBooNE is a new 170-ton LArTPC neutrino experiment (largest so far in the
U.S.) built on the Fermilab Booster neutrino beamline. MicroBooNE is an important
step towards LArTPC R&D in establishing large-scale detectors for neutrino physics.
MicroBooNE is currently commissioning and will start taking neutrino data very
soon. MicroBooNE brings several technological advances including argon purification
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without evacuation, cold (in argon) front-end electronics, and a large (2.5 m) electron
drift. Physics-wise, MicroBooNE has two main goals: 1). Investigate the MiniBooNE
low energy excess and 2). Produce first high-statistics precision measurements of ν-
Ar interactions in the 1 GeV range. The MicroBooNE detector sits at a baseline of
470 m on the BNB yielding an L/E of approximately 1 m/MeV similar to that of
MiniBooNE.

The MicroBooNE LArTPC consists of approximately 80 tons (active volume) of
liquid argon. The distance between cathode and anode is 2.56 m and an ionization
electron takes about 1.6 ms to travel the full drift distance. The anode region consists
of 3 wire planes oriented at different angles with a total of 8256 wires (each wire is
150 µm thick). The spacing between consecutive wires and wire planes is 3 mm.
The MicroBooNE light collection system consists of 32 8-inch PMTs that are located
just behind the wire planes and detect scintillation light from ν-Ar interactions. The
PMT information is used to trigger on beam events and significantly reduce the data
throughput.

It is important to note here that in the 1 GeV energy range, several neutrino
processes contribute and nuclear effects are large. Understanding ν-Ar cross-sections
over the energy range valid for short and long baseline experiments is vital for any
oscillation measurement and MicroBooNE will provide valuable information on these
low energy ν-Ar cross-sections.

Given the fine granularity and exceptional calorimetric capabilities, MicroBooNE
will be capable of telling whether the MiniBooNE excess is electron-like or photon-
like. If the excess is electron-like, it will likely indicate beyond the SM oscillations
involving sterile neutrinos. If the excess is photon-like, it will likely indicate a new
unmodeled source of background impacting νe appearance experiments. likely indi-
cate new unknown cross-sections. While MicroBooNE can address a critical piece of
the short-baseline puzzle, MicroBooNE by itself is not large enough to explore the
complete sterile neutrino oscillation parameter space. This motivated the idea of a
combined short-baseline neutrino (SBN) program at Fermilab.

3 Short-baseline Neutrino Program at Fermilab

The SBN program at Fermilab builds upon the already existing MicroBooNE detector
by adding additional detectors along the BNB. The Short-baseline Near Detector
(SBND) with 112 tons of active LAr mass will sit closest to the Booster Neutrino
source at 110 m. The main physics goal of SBND is to characterize the intrinsic
BNB content before any oscillations occur. The SBND construction is expected to
start soon. The ICARUS-T600 detector with 476 tons of active LAr mass will move
from CERN to Fermilab in 2017 and will act as the far detector sitting at 600 m
on the BNB. Together with OPERA experiment, ICARUS already made important
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contributions to the sterile neutrino search by limiting the window of LSND anomaly.
The two main advantages of using the Booster neutrino source for the SBN pro-

gram are the following: 1). BNB produces a shallow beam, approximately 10 m
detector hall depth at all baselines (no additional costs incurred for specialized un-
derground buildings but the surface location results in more cosmic background) and
2). a well understood beam (more than 10+ years of experience from MiniBooNE
and SciBooNE, also from HARP and BNL E910 experiments). This multiple-detector
arrangement allows a definitive search for sterile neutrinos in the region where there
are existing hints. Using the same neutrino source (BNB) and requiring that all three
detectors have the same detector technology will significantly reduce systematic un-
certainties to % level.

3.1 SBN Oscillation searches

Global analysis of short-baseline neutrino results from Giunti et al. [20] and Kopp
et al. [4] show that the allowed parameter regions for neutrino and anti-neutrino
data indicate preferred ∆m2

41 values in the [0.2−2] eV 2 range. Multiple LArTPC
detectors at different baselines along the BNB (as discussed in the previous section)
will allow a very sensitive search of neutrino oscillations in multiple channels in the
current experimental ∆m2 landscape. The sterile neutrino search through νµ → νe
appearance and νµ → νx disappearance constitute the flagship measurements of the
SBN program. A detailed Monte Carlo study was performed in order to understand

Figure 5: Sensitivity of the SBN Program to νµ → νe appearance [21] (left). Sen-
sitivity of the SBN Program to νµ → νx disappearance [21] (right). In both cases,
sensitivity analysis is done assuming a 6.6×1020 protons on target (POT) exposure in
SBND and ICARUS-T600 and 13.2× 1020 POT in MicroBooNE (since MicroBooNE
will have commenced its data-taking earlier).
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the combined sensitivity of the SBN experiments. This study is explained in detail
in Ref. 21.

Figure 5 (left) shows the sensitivity of the SBN Program to νµ → νe appearance
oscillation signals [21]. One can see from the figure that the LSND 99% C.L. allowed
region is covered at ≥ 5σ level above ∆m2 = 0.1 eV 2 (please note that the region
below ∆m2 = 0.1 eV 2 is already ruled out [4, 20]). A νe appearance signal should be
accompanied by a corresponding νµ disappearance signal with equal or higher prob-
ability in order to confirm any νe appearance oscillation signal that will be observed.
Figure 5 (right) shows the sensitivity of the SBN Program to νµ → νx disappear-
ance [21]. Comparing the red curve and the solid black curve in the Figure, one can
see that the SBN program can extend the search for νµ disappearance an order of
magnitude beyond the combined analysis of SciBooNE and MiniBooNE.

4 Summary

The SBN program at Fermilab is well positioned to explore the sterile neutrino pa-
rameter space where there are existing hints. Existence of sterile neutrinos would be
a revolutionary discovery. The first experiment in the SBN program, MicroBooNE,
will start taking data very soon and in addition to addressing the MiniBooNE low-
energy excess, MicroBooNE will advance the powerful LArTPC technology for future
multi-kiloton detectors and also perform precision ν-Ar cross-section measurements.
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