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In this paper, a semi-discrete spatial finite volume (FV)huodtis proposed and analyzed for approxi-
mating solutions of anomalous subdiffusion equationsliriag a temporal fractional derivative of order

a € (0,1) in a two-dimensional convex polygonal domain. Optimal eestimates ir.*(L?)- norm

is shown to hold. Superconvergence result is proved and assequence, it is established that quasi-
optimal order of convergence irf°(L”) holds. We also consider a fully discrete scheme that employs
FV method in space, and a piecewise linear discontinuousridalmethod to discretize in temporal di-
rection. It is, further, shown that convergence rate is deoD(h? + k%), whereh denotes the space
discretizing parameter aridrepresents the temporal discretizing parameter. Nunmexiggeriments in-
dicate optimal convergence rates in both time and spacealandllustrate that the imposed regularity
assumptions are pessimistic.

Keywords: Fractional diffusion equation, finite volume elementcdistinuous Galerkin method, variable
meshes, convergence analysis

1. Introduction

Let Q be a bounded, convex polygonal domainRifA with boundarydQ, and letf andug be given
functions defined on their respective domains. Considestibeiffusion equation:

u'(xt) + B Lu(xt) = f(xt) inQx(0,T], (1.1a)
u(x,t)=0 ondQ x (0,T], (1.1b)
u(x,0) = up(x) inQ, (1.1c)

where.Zu= —Au, U is the partial derivative ofi with respect to timeZ? :=RD1~? s the Riemann—
Liouville fractional derivative in time defined by: forQ o < 1,

tafl
r(a)

with .#9 being the temporal Riemann—Liouville fractional integsperator of orden.

%"t})(t):z%f"d)(t) :Z%/Otwa(t—s)d)(s)ds with g (t) ==

(1.2)
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Fractional diffusion models received considerable aitberdver the last two decades from both prac-
tical and theoretical point of view. Researchers have fawntierous porous media systems in which
some key underlying random motion conform to a model whezeliffusion is not classical, it is instead
anomalously slow (fractional subdiffusion) or fast (sugéfusion). For example, the fractional diffu-
sion problem (1.1) captures the dynamics of some subdiffysiocesses, where the growth of the mean
square displacement is slower compared to a Gaussian prasesPodlubny (1999) for more detail.
The modeling of this problem is actually based on continudns random walks and master equations
with power law waiting time densities (Henry & Wearne (200@hereu represents the probability den-
sity function for finding a particle at locationand at timet (with waiting time and the jumps that are
statistically independent). Fractional diffusion modedse been successfully used to describe diffusion
in several phenomenaincluding media with fractal geom@trgmatulin (1986)), highly heterogeneous
aquifer (Adams & Gelhar (1992)), and underground enviromiaeoroblem (Hatano & Hatano (1998)).

Many authors have proposed various techniques for appadiignthe solutioru of (1.1), however
obtaining sharp error bounds under reasonable regulssgyraptions oru has proved challenging.
Several types of finite difference schemes (implicit andlieitp were investigated; see Chen et al.
(2012), Cuesta et al. (2006), Cui (2009), Langlands & He§06), Mustapha (2011), Quintana-
Murillo & Yuste (2013), Zhang et al. (2014) and related refere, therein. The error analyses in most of
these papers typically assume that the solutignsufficiently smooth, including at= 0. This enforces
imposing compatibility conditions on the given data. Inliearworks on time-stepping discontinuous
Galerkin (DG) method (includingp-versions) combined with spatial standard Galerkin methothe
second author and McLean (McLean & Mustapha (2009, 2015%tafuha (2015), Mustapha & McLean
(2013)), unbounded time derivativeswést — 0 was allowed (which is typically the case) in the error
analysis, also the case of non-smooth initial data was dezlu Variable time steps were employed to
compensate the singular behaviomupfind consequently maintain optimal order rates of converge

Our main aim is to propose and analyze a method using exagration in time and finite volume
(FV) method for the space discretization for the two-dimemal fractional model (1.1). Then, we
combine the FV scheme in space with a piecewise-linear sitepping DG scheme which will then
define a fully-discrete scheme. Compared to finite diffeesrand finite elements, FV method is easier
to implement on structured as well as unstructured mesheéofers flexibility in tackling domains
with complex boundaries. Further, it ensures local coragérm property of the fluxes which makes
this method more attractive in applications. The approatibwed here is to formulate the problem in
the Petrov-Galekin frame using two different meshes to ddfie trial space and test space, see Bank
& Rose (1987), Cai (1991) and Suli (1991) for some earlisults in this direction. This frame work
helps us to derive error estimates which are similar in sfiriools developed for the error analysis of
finite element method. The choice of the FV method for the l@rmlunder consideration is as used in
Chatzipantelidis et al. (2004), Ewing et al. (2000), and &d_i (2000).

The major contribution of the present article can be sunzedrias follows. We first prove that,
under certain regularity assumptions wiof problem (1.1), the error of the FV approximation to the
solutionu in the L*(L?)-norm (that isL* (0, T;L?(Q))-norm) converge with order?, whereh is the
maximum diameter of the elements of the spatial mesh; seeréhe4.1. The imposed regularity
conditions oru can be satisfied by imposing some compatibility conditianghe given data taking into
consideration that the derivative ofis not bounded nedr= 0, see the discussion after Theorem 4.1.
In addition, under more restrictive regularity assumpgione show errors of orddr? in the stronger
L*(L*)-norm, see Theorem 4.2. Since in the limiting case> 0 the problem (1.1) reduces to the
classical heat problem, these convergence results extenad bbtained in Chatzipantelidis et al. (2004,
2009) and Chou & Li (2000) for the heat equation. This extem$s indeed not straightforward, we
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make the full use of several important properties of thetfoaal derivative operator and also use clever
steps (see for instance the proof of Lemma 4.2) to achievgaair In the second part of the paper, we
derive the error from the fully-discrete scheme (DG in timel &V in space) for (1.1). In the™(L?)-
norm, we show convergence of order+ k'@ (that is, suboptimal in time) whetleis the maximum
time step-size. Proving this rate of convergence in thenged_* (L*)-norm is beyond the scope of the
paper due to several technical difficulties. It is worthy tention that the numerical results demonstrate
optimal convergence rate in both time and space ii.th&®)-norm, and also shows that the regularity
conditions oru are pessimistic. In this regard, the approach used in thestepping DG error analysis
in Mustapha (2015) might be beneficial to prove a better cayarece rate in timek“Ta instead ok!*9.

An outline of the paper is as follows. In the next section, wegaduce some notations and state
some important properties of the time fractional opera#sr. In Section 3, we introduce our semi-
discrete FV scheme in space for problem (1.1) and define sotagpolation operators that play an
important role in our error analysis. Section 4 is devotegriove the main convergence result from
the FV discretization, Theorems 4.1 and 4.2. Particulalgvant to thisa priori error analysis is the
appropriate use of several important properties of theatpefg?. In Section 5, we define our fully-
discrete DG FV scheme and show the corresponding convergenualts in the following section, see
Theorem 6.1. Finally, in Section 6, we present some nunlaegsalts to demonstrate our theoretical
achievements and illustrate optimal rates of convergemnbeth time and space (not only in space as the
theory suggested) in tHe’(L*)-norm under weaker regularity assumptions than the thesapyired.

2. Notation and Preliminaries.

Denote by(-,-) and|| - || theL2-inner product and its induced norm bfA(Q), respectively. Th&®(Q)-
norm is denoted by - ||». Let H™(Q) =W™2(Q) denote the standard Sobolev space equipped with
the usual nornj - ||m. With H}(Q) = {ve H1(Q) : v=00ndQ}, letA(-,-) : H}(Q) x H}(Q) — R be

the bilinear form associated with the operatdrwhich is symmetric and positive definite mfg}(Q).
Then, the weak formulation for (1.1) is to seek(0, T] — H3(Q) such that

(U, V) +AB,V) = (f,v) YveHQ) with u(0) = u. (2.1)
Note that forgp € W1(0,T), “ satisfies the following property (Theorem A.1, McLean (2012
T T
/ BB p(t)dt > caT‘H/ 9(t)2dt for 0<a <1,
Jo 0
wherecy = % (1—a)*%(2— a)??sin(am/2) is a positive constant.
In contrast, the Riemann-Liouville operatgi” has also some positivity property but with a weaker

lower bound compared to the one of the opera#dr. More precisely, by Lemma 3.1(ii) in Mustapha &
Schdtzau (2014), it follows that for piecewise continufwectionsg : [0, T] — R,

T T
/ UG P(t)dt > cos(an/Z)/ |.79/2¢ t)|2dt > 0 for O< a < 1. 2.2)
0 0
Since the bilinear forn(-, -) is symmetric positive definite, the following holds: f#-1(0, T; H}(Q)),

T T
[ A 9000t > caT [T0g(0)2ct. 23)

JO JO
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FiG. 1. The control Volumes for the boundary nodes

In the sequel, we shall use the adjoint operatg of ./ (Lemma 3.1, Mustapha & McLean (2013)):

a(t) = /t'Twa(s—t)qs(s) ds for ¢ € CO0,T] with 0< a < 1. (2.4)

For later use, we recall the following property (Section 8¢ckburn & Mustapha (2015)):
T B%)(t) =(t) for g €CHO,T). (2.5)

3. Finite volume element method

This section deals with primary and dual meshes on the do®@aionstruction of finite dimensional
spaces, FV element formulation and some preliminary result

Let %, be a family of regular (quasi-uniform) triangulations oéttlosed, convex polygonal domain
Q into triangleK, and leth= maXxcc 7, hi, wherehk denotes the diameter &f. Let N, be set of nodes
or vertices, that isN, := {P : R is a vertex of the elemerk € ., andP, € Q} and letN? be the set
of interior nodes in%,. Further, let7" be the dual mesh associated with the primary m&shwhich
is defined as follows. With® as an interior node of the triangulatio#, let B (i = 1,2---m) be its
adjacent nodes (see, Figure 1 with=6). LetM;, i = 1,2---mdenote the midpoints d%P, and let
Qi, i=1,2---m, be the barycenters of the triangte)P R 1 with Py, 1 = P;. Thecontrol volume K5
is constructed by joining successivélly, Q1,---, Mm, Qm, M1. With Q; (i=1,2---m) as the nodes of
control volume K, let Ni be the set of all dual nod&€g. For a boundary node,, the control volume

Kpg, is shown in Figure 1. Note that the union of the control volsrfeems a partitionZ;" of Q.

We consider a FV element discretization of (1.1) in the stad@°-conforming piecewise linear
finite element spacd, on the primary mest,, which is defined by

Vi = {vh € C%(Q) : Wk is linear for allK € .} andvy|yo = 0},
and the dual volume element spageon the dual mesl¥;* given by

Vi = {wh e L3(Q) : vh|K;,0 is constant for alKp € 7, andvp|sq = 0}.
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The semi-discrete FV element formulation for (1.1) is toksag: (0, T] — V;, such that
(Up, V) + An(Z%Un, Vi) = (F,vh)  Wvh € VY (3.1)

with givenup(0) € V,, to be defined later. Herdy(-,-) is defined by

An(Wh, Vh) = — z vh(l3|)/a Ow,-nds ¥V w, € Vi andvy €V, (3.2)
K*
ReN? R

with n denoting the outward unit normal to the boundary of the avplumeKg . Forv € H?(Q), a
use of Green’s formula yields

(LV,Vh) = An(V,\Vh), YVh€Vy. (3.3)
Moreover asZ = —A, the following identity holds:

AWh, X) = An(Wh, [T X)  YWh, X € Vh. (3.4)
Hence, taking th&?-inner product of (1.1) witlv,, € V' yields

(U, Vh) +An(B%u,vh) = (f,vh) VvheVy. (3.5)

For the error analysis, we first introduce two interpolatiperators. LefTy, : C°(Q) — \, be the
piecewise linear interpolation operator afig CoYQ) — V' be the piecewise constant interpolation
operator. These interpolation operators are defined, cégply, by

Mu= S uP)@aX and Miu= S uR)xix. (3.6)
ReN? ReN?

It is known thatlT,, has the following approximation property (Ciarlet (1978))

@ —Mhllo<Ch?|[gl2 for eH*(Q). 3.7

We state next the properties of the interpolation operdforFor a proof, see (pp. 192, Li et al. (2000)).
For convenience, we introduce the following notatiofy:v) := (¢, 1;:v) for ¢ € L2 andv € C°(Q).

LEMMA 3.1 The following statements hold true.
(i) (,-) defines an inner-product &f x j, with its induced norm denoted By} - |||
(i) The norms|||-||| and|| - || are equivalent ok, .

(iii) The operatorfT;; is stable in the following senséf7; x|| < C| x| for any x € V.

4. A Priori Error Estimates

This section deals with priori optimal order error estimates for the semi-discrete FV s&h€3.1). To
do so, we split the error as:

Up— U= (Up— RU) + (RiU—U) =: 6+,
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whereR, : H&(Q) NH?(Q) — W, is the finite volume elliptic projection operator defined by
An(RaV,X) =An(V,X) VX €W (4.1)
For eacht € (0,T], the projection erroé (t) satisfies the following estimates (Chou & Li (2000)):
1E@le+ 18" ®lle < (Ilu(t) lug + W O)lwg ) for £=0.1 with p>1. (42)

Moreover, the following maximum estimate is also validfer (0, T]

1)l < CRllog(h)|(lu(®) 3+ Iu(t) e )- (4.3)
From (3.1) and (3.5), it follows that
(6".X) +An(£76, My X) = —(&', MR X) VX € Vh. (4.4)

On substitution of (3.4) in (4.4), we obtain
(0", X) +A(#°0,x) = —(&'.MliX) VX € Vh. (4.5)

Below, we prove one of the main theorems of this section. Wg chaoseu,(0) = IM,up, or even
L2-projection ontdvi, then, using approximation property and the equivalenceahs (ii) of Lemma
3.1, it follows that]||8(0)||| < C||8(0)|| < Ch? ||ug]|2. In case, we choosg,(0) = Ryuo, thend(0) = 0.

THEOREM 4.1 Letu anduy, be the solutions of1.1) and (3.1), respectively. Further, laiy(0) be
chosen so thatup — uy(0)|| = O(h?). Then for anyT > 0, there is a positive consta@t which may
depend om anda, but independent dfi such that

I un—=u)(T) | < Ch? (Jluolla+ I e )

Proof. Sinceu, —u= & + 0, where the estimate & is given in (4.2), it is sufficient to estimat: To
this end, choosg = 6 in (4.5) and obtain

(6',0) +A(#90,0)=—(&',1:6). (4.6)
Integrating from O td and using/6’,0) = %%H\BH\Z yield
it 't
ll6I>+2 [ A#76.0)ds<[[8(0)I2+2 [ I(5'.T;6)(s)|ds. @4.7)
By the stability property for the operatdl; in Lemma 3.1 (iii), and the equivalence of norms in Lemma

3.1 (i), we have|(&',1:0)| < [|&) |ME6] < C||&’]| |||6]l]. On substitution this in (4.7), and use the
positivity property of#“ in (2.3) to obtain after simplification

t
EIGI[RS |\|e(0)|\|2+c/0 1€'(s)[l lI16(s)]l| ds. (4.8)
Lett* € [0,t] be such thaf]|6(t*)||| := maXx<s<t |||0(9)]||- Then, itis easy to check from (4.8) that

I8 < IOl < [IIe(0)]] +C'/o't 1€ (s)]] ds. (4.9)
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Therefore, the desired error estimate follows from the dgmusitionu, —u = & + 8, the inequality
|6(T)| < CJ||6(T)||| by Lemma 3.1 (ii), the above bound, the finite volume elligtiojection error
(4.2), and the inequalitju(T)||3 < ||uolla+ [y [|U'(t)||3dt. This completes the rest of the proof. [J

Due to the singular behaviour of the solutionf (1.1) neat = 0, some regularity and compatibility
assumptions on the given dataand f are required to make sure that the tefug||s + ||| 1) iS
bounded. Consequently, by Theorem 4.1, the error for th@asmhscretization by FV method is of
orderO(h?). For instance, iff =0, we assume thak € H4(Q) NH}(Q) and Lug € H}(Q), then by
(Theorem 4.2, Mclean (2010)),

U (®)]l2+t2U(t)]s <Cit® ! for t>0. (4.10)

Hence, from Theorem 4.1|(un — u)(t)|| < Ch? for t > 0. Here, we can argue that the assumptions on
Up can be slightly relaxed. Instead, we assumetihat H3(Q) NH}(Q) andLug € H}(Q), and again
by (Theorem 4.2, Mclean (2010)), we arrive at

IV (O]l +t2 U/ (©)]]2+t7 ()]s < CtT* for t>0. (4.11)

Using the elliptic projection boundé’(t)|| < Ch||u’(t)]]2, and also the projection bound in (4.2), we
observe fore > 0 that

o
IEOI < 1E©]+ [ 1€ ds
' £ t
<Ch2<|uo|3+h1 [ @ ldst [ ||u’<s>||3ds) for 0.

Thus, by the regularity property (4.11), it follows that

el <ct (Juoash? [sE 2as ['s o)
<Ch?(1+h%% + flog(t/2)) (4.12)
<Ch2(1+]logh|) with & =min{h? t}.
Therefore, a use of the obtained estimaté @ in the proof of the Theorem 4.1 yields
I(un—u) ()] < Ch? (1+ [loghl).

Our next aim is to derive an estimate of ord®(ih?), but in the stronget®(L*)-norm. To do so,
we start by estimating’ in the next lemma. This bound is needed for showing the sopevergence
result ofJ8 in L*(L?)-norm.

LEMMA 4.1 Withu,(0) = ﬁhuo, there exists a positive constahindependent ofi such that
t t
/ 162 ds < c/ I€'|2ds for 0<t<T.
Jo Jo

Proof. Choosey = 6’ in (4.5) to obtain
116111>+A(26,6") = — (&', 8").
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Sincef(0) =0, 90 = .#%6'. Using this and the positivity property of 9, (2.2), we arrive at
t t
/ A(%°6,6')ds— / (79(06'),06") ds > 0.
0 JO

Hence, by the Cauchy-Schwarz inequality, the stabilitypprty of 17, and also by Lemma 3 (ii),

't 't 't 't
[nezas< [ & mienias<c [1&1 e’ ds<c [ e)11e))ds

Therefore, a use of Holder’s inequality and again Lemmgi8) tomplete the rest of the proof. O
Below, we derive an upper bound@® in L*(L?)-norm.

LEMMA 4.2 Assume that the solutianof (1.1) satisfies the regularity property (4.10). With0) =
Rnup, there exists a positive constaitindependent off, such that

t
||D6(t)|\2<Ch2/ 16/ || ds+Ch?|log(t/min{h# t})].
JO

Proof. Choosex = falc;“ 0’ in (4.5) and integrate the resulting equation over the vatgi0,t). Use
(2.5) to arrive at

/Ot (799 0 ds+ /Ot A6,6')ds= _/Ot(ff,n;faldfa §')ds. (4.13)
To bound the term on the right hand side of (4.13), we decomfas
& = (Mhu—u) + (Ryu—Mhu) =: &1+ &
Sinceé; € Vi and sinceT;; commutes withﬂald*“,
/0 (M0 0 ds— /O (g 0 ds+ /0 (19 0')ds
By the continuity property (see Lemma 3.1(iii) in Mustaph&&hotzau (2014)) o717,
\/0 g gy ds| < C /0 tag g ds+% /0 (g gy ds,

Substitute the above equations in (4.13) and use the egyglk(8,6’)ds = $106(t)[? (because
6(0) = 0) to obtain after simplifying

it -t 't
|0 o) ds 062 <2 [ (78 m0)ds| +Co [ (S UG Gds. (4.1
0 0 JO

By the stability off7;, it follows that
ot 't
2| [ (756 s+ Ca [ (51085 ds
Jo Jo
t t
<C [ g0/ ds+Ca [ 51 7&) IE) ds

< C/: /:(5— ) (Hfiml\ 16'(s)| + 1€5(T)]| H£§<s>|\) drds.
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Now splité, asé, = & — &; and use the elliptic projection with (4.2) and (3.7) to agrat
t 1
2| [ g e ds +c [ (7108 s
0 0
t S
<cr [ [ (s— 1) u(1)]2]18'(5) | drds
0 Jo
3 N ! t / S /
wof([1u@llz+h [ W()a) [ (5= ul(1)a drds (4.15)
ot £ 4 t
<Ch / 6/(3)]ds+ch(h? / s 1ds+ / s 1ds)
0 0 £

't a t
2 / 4 (-1 2 t
<Ch/0|\6(s)|\ds+Ch (htef+iog(5))-
where in the second last step, we have used the regularityngsi®n (4.10) and the inequalities:

'S a a 'S
/ (s—1) %rz 'dr<Cs 2z and / (s—1)"9r*ldr <C.
Jo Jo

Substitute (4.15) in (4.14), choose= min{hg ,t}, and use the positivity property (2.2) of the operator
19 to complete the rest of the proof. O

As a consequence of the super-convergentresult provedmmizae4.2, we prove in the next theorem,
the following maximum norm convergence.

THEOREM4.2 Letun(0) = RyUp. Assume thati € H(0, T;H3(Q)) NL®(0, T;W2“(Q)). Then,
[ (Uh—u) ()]l < Ch?|logh| for t e (0,T],
where the constai@ depends off anda, but independent di.

Proof. From the decomposition, — u= & + 6 and the estimates @fin (4.3), we obtain fot > 0
U= W) )1l < Ch2 flog h | (JIu(t)la-+ [ut) lwes () ) + 10l
However, by Sobolev lemma when C R? and Lemma 4.2, we arrive for> 0 at

t
16Vl <C llogh] [06()] <Chllogh| | (|6’ ds-+Ch? flog (t/min{h? t})].
JO

_ . 1/2
To complete the proof, we use the inequalify|6’|| ds < tl/z(_fo ||9’|\2ds) , Lemma 4.1, the bound
in (4.2), and the regularity assumptiare H(0, T;H3(Q)). O

REMARK 4.1 The assumption< H(0,T;H3(Q)) is stronger than the one imposed in (4.10). Noting
that, under the regularity assumptions in (4.10) watke (1/2,1), one can show that the error in the

L*(L*) is of orderh? (ignoring the logarithmic factor), that is, suboptimal. See this, we follow the
derivation in the above theorem, and use

ot 't 't 't
/ He’HstgC/ HE/HstgChZ/ ||u’||§ds<0h2/ 2% 2ds< Ch2,
0 JO 0 JO

However, our numerical experiments illustrate that thedsga regularity assumptions are pessimistic.
We observe optimal rates of convergence in the absence odgiadarity assumptions (4.10).
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5. Thefully-discrete numerical scheme

This section is devoted to our fully-discrete scheme forftaetional diffusion model problem (1.1).
We discretize in time using a piecewise linear DG method (isfoisa & McLean (2011)) and the FV
method for the spatial discretization. To this end, we idtree a (possibly non-uniform) partition of
the time interval0, T| given by the points: 8=ty <t; <tp < --- <ty =T, and define the half-open
subintervalp = (ty_1,th] with lengthk, =ty —t,_1 for 1 < n < N and setk := max<n<n kn.

Next, we introduce outime-space finite dimensional spaceg” and?* as

W ={veLa((0,T);Vh) : V]I, € PL(Vh),1 < n< N},
W i={veLa((0,T);Vy) Vi, € PL(Vy), 1< n< N},

whereP;(S) denotes the space of linear polynomials with coefficients in a given spac®
The DG FV approximatio € # for (1.1) is now defined as follows: Givén(t) for 0 <t <tp 1
with U (0) :=U%=U?% ~ up, the solutiord € P;(Vy) only is determined by requiring that fordn < N,

(UL X1y ¢ / {(U",X)+An (27U, X) Y dt = (UM, XM1) / (£.X)dt VX eP(V), (5.1)
Jln J1In
where
UM:=U(t)) =U(t,), Ul :=U(t]), [U]":=ul-U".
For our error analysis, we recast the DG FV method using thieagbilinear form:

N-1 N
G i= (. wh)+ 5 (MLwhh+ 5 | (V.wet (5.2)
=1 =1
Integration by parts yields an alternative expressiontierdilinear form as

N-1 N

Gluw) = (M) = 5 W) = 5 [ (ww)at. (5.3)
=1 =1 Ij
One can see that the local DG FV scheme (5.1) holds if and dblyd % satisfies
T
G(U.X) +/ (U, 1T X )dt:<U°,x$>+/ (£ X)dt VX e (5.4)
0
Since the exact solutiomof (1.1) satisfies (3.5) and the identity) = 0 for all j, it follows that
T T
G(u,X)+/ Ah(%“u,l'lﬁx)dt:<uo,x2>+/ (,X) dt
0 0

Thus, the following Galerkin orthogonality property folls at once

U—uX) +/ U —u), MgX)dt = (U0~ g, X%) ¥ Xe. (5.5)
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6. Error analysisof the DG FV scheme

To estimate the error from the time-space discretizatianstart from the following decomposition:

U —u= (U —MRat) + (Mt —u) + Me(Rou— u) =2 g+ 1 + M€, (6.1)
whereR; is the finite volume elliptic projection operator definedmg4.1), andTy : CO(T,; L2(Q)) —
CO(Tn; 21(L?(Q)) is the local (in time)?-projection defined for X n < N by

Mv(th) —v(ta) =0 and | (Myv—v,w)dt =0 Ywe Ly(Q). (6.2)

In

The projection’y satisfies the error property (Equation 25, Mustapha & McL@a11)):

1N, < 2k / W) dt for 1< n<N, 6.3)
Jn
and also the following error bound property which involvies fractional derivative operatog®:
T
|| A n.mix)dt| <ClX|LE. (6.4)
where N
ikl / AU dt + sz}ﬁ“/ 1AL dt. (6.5)
B |1 n=. II’]

Noting that, we used in (6.4) the following notations

N .
Il =iV, with [V, == suplv(t)].

€ln

For the proof of (6.4), we refer to (Lemma 2, Mustapha & McL€2011)) in addition, to the use of the
stability property off7; in Lemma 3.1 (ii).
Next, we estimatey. In our proof, we use the following spatial discrete anagfi(2.3):

T T T
/ Ah(%"x,/'lﬁx)dt:/ A(%"x,x)dwcaT"*l/ IOx®)]2dt v x e, (6.6)
0 0 0

which follows from the identity (3.4) and the coercivity jperty in (2.3).

LEMMA 6.1 Giveny =U — MRU, the following estimate holds

_ T
W]l < CJU° = Rutio +/0 1E/(t) dt + CE,

whereE is defined in (6.5).

Proof. The Galerkin orthogonality property (5.5) along with thedmposition (6.1) and the identity
(3.4) implies that

)
G X)+ [ An(# g, MiX) dt = (U0~ o, XD)

—G(nkﬁhu—u,X)—/o A(Z° (MR —u),X)dt ¥X e . (6.7)
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Since; (MRnu— Ry, X’) dt = 0 by (6.2), integration by parts yields

/<nk§hu—u,x’>dt=/|<5,x/>dt= <E“,X”)—<E”’1,Xﬂf1>—/l<E/,X)dt

In

Hence, by the alternative formulation @fin (5.3) with (ITRaU— ) (t,) = & (by the definition offT,),
_ N-1 N _
Gl =0, X) = (€ X = 5 (€0 X)") = 3 [ (MR- Xt
N n n J n—-1 n—-1 N =) /
= 3 (EX -5 e X - nzl/ln<l'lthu—u,X>dt
N
= (€x)+ 3 [ (€ X

n=1-

On the other hand, by (3.4), the following explicit repretsgion of [1,Ru :

MRau(t) = Ruu(tj) + (ﬁhu(tj) —k*t k

tj—1

F?hu(s)ds)k%(t—tj) for t €,

the definition of the projectio§hu, and the identity (3.3), we notice that
(%"I‘Ithu MEX) = Ah(%"l'lthu MEX) = An (B9, M X) = (27 2 M, MEX) - on y.

Substitute the above contribution in (6.7) and use agaiidénity (3.4) to obtain
T _ N
Gy, X) +/0 A(#° . X) dt = (U0~ R0, X°) — 5 /| (&', X) + (2920, 17 X)) dt.
=171
To proceed in our proof, we choo¥e= , and use the positivity property & in (2.3)) to arrive at
_ N,
G ) < U0 —Ruo.9?) — 3 [ (&) +(#°.Zn. M) ct
=171

However, by the definition o6 given in (5.2),

N
Z 7

I\)ll—‘

N-1
Gy, g) = [ [IP+ Zl<[4f]"
1 N-1 1
= 5 (3 IMPIP-+ ™I+ 119211P) > gl

where in the last step we used the fact that fer A < N, ||¢[|1, = max{|| "], |¢" ||} and the follow-
ing inequality| Y12 = [y 2+ [W]" 1|2 < 2|y Y + 2] [w)" Y. Therefore,

_ T
19113 < CIHU° = Ruto, )| +C| [ (€, )+ (#° 20, )] .
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By the stability property of 7} and the equivalence of the norns|| and||| - ||| onV;, Lemma 3.1,

_ T T
@13 < Clwla(IV°—Ruwol + [ 1€dt) +C| [ (2720, miy)t]

and finally, the desired result follows after substituting estimate (6.4) in the above inequality. [

In the next theorem, we prove the main convergence resultedtilly-discrete scheme. Following
Mustapha & McLean (2011, 2013), we employ time graded mebhssd on concentrating the time-
steps near = 0 to compensate the singular behaviouaif problem (1.1).

To this end, for a chosen mesh grading paramgeterl, we assume that

th=(n/N)YT forO<n<N. (6.8)
Itis clear that for 2< n < N, this time mesh has the following properties:

VI Ykt IV < ko < vtk Y and ty < 2% 1. (6.9)

Under suitable regularity assumptions on the solutipwe achieve a convergence rate of orbiés-
k9 in the L(L?)-norm, that is, optimal in space but suboptimal in time. Heevethe numerical
results demonstrate optimal rates of convergence in baihbles, in the strongdr™(L*)-norm.

THEOREM 6.1 Assume that the solutianof (1.1) has the regularity properties (4.11) in addition to
following property

U/ ()] +t][u” () || + AL (@) || + 1AL (1) < Mt9 L forO<t<T (6.10)

for someM, o > 0. Assume that the initial dat® < Hl(Q). LetU be the DG FV solution defined by
(5.1) withU® = Ryup. Then, there is a positive constatdepends om, T, M, g andy, such that

|U —ull3 <Ch?(1+ |logh|) +CKk*® for y> (1+a)/o.
Proof. Using the decomposition (6.1), the stability property o tme projectiony: ||[IT&||s <

3||€ | (see Equation 26, Mustapha & McLean (2011)), the inequagty; < || &l + Jy [|€'(t)]|dt, the
achieved estimate a@f in Lemma 6.1, and the bound in (4.12), we observe that

U —ulls<ll¢la+Inlla+3l<l

:
<lnla+c(igl+ [ 1€ ®dt+E)
< |Inlls+Ch*(1+|logh|)+CE,

whereE is defined in (6.5). From the bound gfin (6.3), the regularity assumption (6.10), the time
mesh property (6.9), and the corresponding grading mesimgg®ny > (1+a)/0,

Il < [ W@ dt+Crelaxdkn [ lu'(0)]dit < Ctf + Crredits 2
Jlp n= Jln n=

< Ck¥° +CmNalxk,11+"tr?7(1+a) < CKYO 4+ CKLta mNa}thgf(lw)/v < CcKita,
n= n=
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FIG. 2. The FV element mesh;, with M = 8.

In a similar fashion, we estimateas

. N S
E<C/ t“’ldt+C%k1+“/ (-1 @ra) | Ay (1) | ol
11 = J1j
N
éCtla—i-Ck:Ha %/ ta—(l+a)/y—1dt
=27l

;
< CKY cktte [ 1o +aly-1gt <k for y> (14-a)/0.
ty

Therefore, to complete the proof, we combine the above agtisn O

7. Numerical Experiments

In this section, we present some numerical tests to validateheoretical predictions from the fully-
discrete DG FV scheme (5.4). We actually demonstrate thatichieved convergence rates are pes-
simistic and also the imposed regularity assumptions ireowr analysis are not sharp. More precisely,
for a sufficiently graded time meshes of the form (6.8), ostst@eveal optimal convergence rates in
both time and space (that is, of ord@fk? + h?) in the stronget.®(L®)-norm under weaker regularity
conditions. However, Theorem 6.1 sugg@gk? 1 + h?) rates of convergence in thé (L2)-norm.

In our test example, we consid& = (0,1) x (0,1) and [0, T] = [0,1] in the fractional diffusion
problem (1.1). We choose the initial dataand the source terrh such that the exact solutiarix,t) =
t9 sin(7x) sin(mty), and therefore our regularity assumptions (4.11) and (ha@) foro = a.

We employ time meshes of the form (6.8) for various choicegb®imesh grading parametep 1.
Let %, be a family of uniform (right-angle) triangular mesh of thenghinQ with diameterh = /2/M,
see Figure 2. For measuring the error in our numerical solutve introduce a time finer grid

Gum={tji_1+0kj:1<j<N,0<g<m}

and let.4f, be the set of all triangular nodes of the mesh faruify where the diametdrs is half the
diameter of the finest mes#H, in our spatial iterations, for instancle; = \/5/320 in Table 1. Define
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M a=04 a=0.75

10 3.6522e-02 3.1396e-02

20 9.6096e-03 1.9262 8.2601e-03 1.9263

40 2.4235e-03 1.9873 2.0831e-03 1.9874

80 5.8239%e-04 2.0570 5.0059e-04 2.0570
120 2.4903e-04 2.0953 2.3145e-04 1.9026
160 1.3923e-04 2.0211 1.2713e-04 2.0827

Table 1. The errof{|U —u||q,10 and the spatial rates of convergence for different choi€es o

—6—0=0.75

Error

I I I !
20 40 60 80 100 120 140 160
M

FiG. 3. The FV error form = 0.4 anda = 0.75.

the following discrete-time-space maximum norm
[IVIlg.m = max{[v(x,t)|, (X,t) € A x Gnm}-

Thus, for large values df,M andm, |||U — ul||4,m approximates the error measured.f(L*).
To demonstrate the convergence rates from the spatiaktizziion by FV method, we refine the

time steps so that the FV errors are dominant. This is actiieyédixing the ratioklh; to a given number

< 1. Hence, ignoring the logarithmic term, by Theorem 6.1, mareof orderO(h?) in the L2-norm is
expected. Noting here, for the semi discrete FV scheme, (@@ )proved in Theorem 4.2 aB(h?)
rate of convergence in the strond&t(L*)-norm under the assumption that the solutioof (1.1) is in
HY(H3) NL*(W?2*). Indeed, this assumption holds fer> 1/2 in the current example. However, the
numerical results in Table 1 illustrate optin@(h?) rates of convergence for both< 1/2 anda > 1/2.
So, the imposed regularity assumptions may not be pralgtiegjuired.

To illustrate the convergence rates from time discretiratly piecewise linear DG method, we
refine the spatial FV meshes so that the time-stepping eoroirthtes the spatial error. Far= 0.6, we
observe from Table 2 convergence rates of o@ig""{22¥}) which is optimal fory > 2/a. However,

a suboptimal convergence of ordetk'*?) is proved in Theorem 6.1 assuming thyat (1+a)/a.
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