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In this paper, a semi-discrete spatial finite volume (FV) method is proposed and analyzed for approxi-
mating solutions of anomalous subdiffusion equations involving a temporal fractional derivative of order
α ∈ (0,1) in a two-dimensional convex polygonal domain. Optimal error estimates inL∞(L2)- norm
is shown to hold. Superconvergence result is proved and as a consequence, it is established that quasi-
optimal order of convergence inL∞(L∞) holds. We also consider a fully discrete scheme that employs
FV method in space, and a piecewise linear discontinuous Galerkin method to discretize in temporal di-
rection. It is, further, shown that convergence rate is of order O(h2+ k1+α ), whereh denotes the space
discretizing parameter andk represents the temporal discretizing parameter. Numerical experiments in-
dicate optimal convergence rates in both time and space, andalso illustrate that the imposed regularity
assumptions are pessimistic.

Keywords: Fractional diffusion equation, finite volume element, discontinuous Galerkin method, variable
meshes, convergence analysis

1. Introduction

Let Ω be a bounded, convex polygonal domain inR
2 with boundary∂Ω , and let f andu0 be given

functions defined on their respective domains. Consider thesubdiffusion equation:

u′(x, t)+B
α
L u(x, t) = f (x, t) in Ω × (0,T ], (1.1a)

u(x, t) = 0 on∂Ω × (0,T ], (1.1b)

u(x,0) = u0(x) in Ω , (1.1c)

whereL u = −∆u, u′ is the partial derivative ofu with respect to time,Bα := RD1−α is the Riemann–
Liouville fractional derivative in time defined by: for 0< α < 1,

B
α ϕ(t) :=

∂
∂ t

I
α ϕ(t) :=

∂
∂ t

∫ t

0
ωα(t − s)ϕ(s)ds with ωα(t) :=

tα−1

Γ (α)
(1.2)

with I α being the temporal Riemann–Liouville fractional integraloperator of orderα.
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Fractional diffusion models received considerable attention over the last two decades from both prac-
tical and theoretical point of view. Researchers have foundnumerous porous media systems in which
some key underlying random motion conform to a model where the diffusion is not classical, it is instead
anomalously slow (fractional subdiffusion) or fast (super-diffusion). For example, the fractional diffu-
sion problem (1.1) captures the dynamics of some subdiffusion processes, where the growth of the mean
square displacement is slower compared to a Gaussian process, see Podlubny (1999) for more detail.
The modeling of this problem is actually based on continuoustime random walks and master equations
with power law waiting time densities (Henry & Wearne (2000)), whereu represents the probability den-
sity function for finding a particle at locationx and at timet (with waiting time and the jumps that are
statistically independent). Fractional diffusion modelshave been successfully used to describe diffusion
in several phenomena including media with fractal geometry(Nigmatulin (1986)), highly heterogeneous
aquifer (Adams & Gelhar (1992)), and underground environmental problem (Hatano & Hatano (1998)).

Many authors have proposed various techniques for approximating the solutionu of (1.1), however
obtaining sharp error bounds under reasonable regularity assumptions onu has proved challenging.
Several types of finite difference schemes (implicit and explicit) were investigated; see Chen et al.
(2012), Cuesta et al. (2006), Cui (2009), Langlands & Henry (2005), Mustapha (2011), Quintana-
Murillo & Yuste (2013), Zhang et al. (2014) and related reference, therein. The error analyses in most of
these papers typically assume that the solutionu is sufficiently smooth, including att = 0. This enforces
imposing compatibility conditions on the given data. In earlier works on time-stepping discontinuous
Galerkin (DG) method (includinghp-versions) combined with spatial standard Galerkin methodby the
second author and McLean (McLean & Mustapha (2009, 2015), Mustapha (2015), Mustapha & McLean
(2013)), unbounded time derivatives ofu ast → 0 was allowed (which is typically the case) in the error
analysis, also the case of non-smooth initial data was included. Variable time steps were employed to
compensate the singular behavior ofu, and consequently maintain optimal order rates of convergence.

Our main aim is to propose and analyze a method using exact integration in time and finite volume
(FV) method for the space discretization for the two-dimensional fractional model (1.1). Then, we
combine the FV scheme in space with a piecewise-linear time-stepping DG scheme which will then
define a fully-discrete scheme. Compared to finite differences and finite elements, FV method is easier
to implement on structured as well as unstructured meshes and offers flexibility in tackling domains
with complex boundaries. Further, it ensures local conservation property of the fluxes which makes
this method more attractive in applications. The approach followed here is to formulate the problem in
the Petrov-Galekin frame using two different meshes to define the trial space and test space, see Bank
& Rose (1987), Cai (1991) and Süli (1991) for some earlier results in this direction. This frame work
helps us to derive error estimates which are similar in spirit to tools developed for the error analysis of
finite element method. The choice of the FV method for the problem under consideration is as used in
Chatzipantelidis et al. (2004), Ewing et al. (2000), and Chou & Li (2000).

The major contribution of the present article can be summarized as follows. We first prove that,
under certain regularity assumptions onu of problem (1.1), the error of the FV approximation to the
solutionu in theL∞(L2)-norm (that is,L∞(0,T ;L2(Ω)

)

-norm) converge with orderh2, whereh is the
maximum diameter of the elements of the spatial mesh; see Theorem 4.1. The imposed regularity
conditions onu can be satisfied by imposing some compatibility conditions on the given data taking into
consideration that the derivative ofu is not bounded neart = 0, see the discussion after Theorem 4.1.
In addition, under more restrictive regularity assumptions, we show errors of orderh2 in the stronger
L∞(L∞)-norm, see Theorem 4.2. Since in the limiting caseα → 0 the problem (1.1) reduces to the
classical heat problem, these convergence results extend those obtained in Chatzipantelidis et al. (2004,
2009) and Chou & Li (2000) for the heat equation. This extension is indeed not straightforward, we
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make the full use of several important properties of the fractional derivative operator and also use clever
steps (see for instance the proof of Lemma 4.2) to achieve ourgoal. In the second part of the paper, we
derive the error from the fully-discrete scheme (DG in time and FV in space) for (1.1). In theL∞(L2)-
norm, we show convergence of orderh2+ k1+α (that is, suboptimal in time) wherek is the maximum
time step-size. Proving this rate of convergence in the strongerL∞(L∞)-norm is beyond the scope of the
paper due to several technical difficulties. It is worthy to mention that the numerical results demonstrate
optimal convergence rate in both time and space in theL∞(L∞)-norm, and also shows that the regularity
conditions onu are pessimistic. In this regard, the approach used in the time-stepping DG error analysis
in Mustapha (2015) might be beneficial to prove a better convergence rate in time,k

3+α
2 instead ofk1+α .

An outline of the paper is as follows. In the next section, we introduce some notations and state
some important properties of the time fractional operatorBα . In Section 3, we introduce our semi-
discrete FV scheme in space for problem (1.1) and define some interpolation operators that play an
important role in our error analysis. Section 4 is devoted toprove the main convergence result from
the FV discretization, Theorems 4.1 and 4.2. Particularly relevant to thisa priori error analysis is the
appropriate use of several important properties of the operatorBα . In Section 5, we define our fully-
discrete DG FV scheme and show the corresponding convergence results in the following section, see
Theorem 6.1. Finally, in Section 6, we present some numerical results to demonstrate our theoretical
achievements and illustrate optimal rates of convergence in both time and space (not only in space as the
theory suggested) in theL∞(L∞)-norm under weaker regularity assumptions than the theory required.

2. Notation and Preliminaries.

Denote by(·, ·) and‖ ·‖ theL2-inner product and its induced norm onL2(Ω), respectively. TheL∞(Ω)-
norm is denoted by‖ · ‖∞. Let Hm(Ω) = W m,2(Ω) denote the standard Sobolev space equipped with
the usual norm‖ ·‖m. With H1

0(Ω) = {v ∈ H1(Ω) : v = 0 on∂Ω}, let A(·, ·) : H1
0(Ω)×H1

0(Ω)→R be
the bilinear form associated with the operatorL which is symmetric and positive definite onH1

0(Ω).
Then, the weak formulation for (1.1) is to seeku : (0,T ]−→ H1

0(Ω) such that

(u′,v)+A(Bαu,v) = ( f ,v) ∀ v ∈ H1
0(Ω) with u(0) = u0. (2.1)

Note that forϕ ∈W 1,1(0,T ), Bα satisfies the following property (Theorem A.1, McLean (2012)):

∫ T

0
B

α ϕ(t)ϕ(t)dt > cα T α−1
∫ T

0
|ϕ(t)|2 dt for 0< α < 1,

wherecα = π1−α(1−α)1−α(2−α)α−2sin(απ/2) is a positive constant.
In contrast, the Riemann–Liouville operatorI α has also some positivity property but with a weaker

lower bound compared to the one of the operatorBα . More precisely, by Lemma 3.1(ii) in Mustapha &
Schötzau (2014), it follows that for piecewise continuousfunctionsϕ : [0,T ]→R,

∫ T

0
I

α ϕ(t)ϕ(t)dt > cos(απ/2)
∫ T

0
|I α/2ϕ(t)|2 dt > 0 for 0< α < 1. (2.2)

Since the bilinear formA(·, ·) is symmetric positive definite, the following holds: forW 1,1(0,T ;H1
0(Ω)),

∫ T

0
A(Bα ϕ(t),ϕ(t))dt > cα T α−1

∫ T

0
‖∇ϕ(t)‖2 dt. (2.3)
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FIG. 1. The control Volumes for the boundary nodes

In the sequel, we shall use the adjoint operatorI α
ad of I α (Lemma 3.1, Mustapha & McLean (2013)):

I
α

ad ϕ(t) =
∫ T

t
ωα(s− t)ϕ(s)ds for ϕ ∈C0[0,T ] with 0< α < 1. (2.4)

For later use, we recall the following property (Section 3, Cockburn & Mustapha (2015)):

I
1−α(

B
α ϕ

)

(t) = ϕ(t) for ϕ ∈C1(0,T ). (2.5)

3. Finite volume element method

This section deals with primary and dual meshes on the domainΩ , construction of finite dimensional
spaces, FV element formulation and some preliminary results.

Let Th be a family of regular (quasi-uniform) triangulations of the closed, convex polygonal domain
Ω into trianglesK, and leth = maxK∈Th hK , wherehK denotes the diameter ofK. Let Nh be set of nodes
or vertices, that is,Nh :=

{

Pi : Pi is a vertex of the elementK ∈ Th andPi ∈ Ω
}

and letN0
h be the set

of interior nodes inTh. Further, letT ∗
h be the dual mesh associated with the primary meshTh, which

is defined as follows. WithP0 as an interior node of the triangulationTh, let Pi (i = 1,2· · ·m) be its
adjacent nodes (see, Figure 1 withm = 6 ). Let Mi, i = 1,2· · ·m denote the midpoints ofP0Pi and let
Qi, i = 1,2· · ·m, be the barycenters of the triangle△P0PiPi+1 with Pm+1 = P1. Thecontrol volume K∗

P0
is constructed by joining successivelyM1, Q1, · · · , Mm, Qm, M1. With Qi (i = 1,2· · ·m) as the nodes of
control volume K∗

pi
, let N∗

h be the set of all dual nodesQi. For a boundary nodeP1, the control volume
K∗

P1
is shown in Figure 1. Note that the union of the control volumes forms a partitionT ∗

h of Ω .

We consider a FV element discretization of (1.1) in the standardC0-conforming piecewise linear
finite element spaceVh on the primary meshTh, which is defined by

Vh = {vh ∈C0(Ω) : vh|K is linear for allK ∈ Th andvh|∂Ω = 0},

and the dual volume element spaceV ∗
h on the dual meshT ∗

h given by

V ∗
h = {vh ∈ L2(Ω) : vh|K∗

P0
is constant for allK∗

P0
∈ T

∗
h andvh|∂Ω = 0}.
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The semi-discrete FV element formulation for (1.1) is to seek uh : (0,T ]−→Vh such that

(u′h,vh)+Ah(B
α uh,vh) = ( f ,vh) ∀vh ∈V ∗

h (3.1)

with givenuh(0) ∈Vh to be defined later. Here,Ah(·, ·) is defined by

Ah(wh,vh) =− ∑
Pi∈N0

h

vh(Pi)

∫

∂K∗
Pi

∇wh ·nds ∀ wh ∈Vh andvh ∈V ∗
h , (3.2)

with n denoting the outward unit normal to the boundary of the control volumeK∗
Pi

. Forv ∈ H2(Ω), a
use of Green’s formula yields

(L v,vh) = Ah(v,vh), ∀ vh ∈V ∗
h . (3.3)

Moreover asL =−∆ , the following identity holds:

A(wh,χ) = Ah(wh,Π ∗
h χ) ∀wh, χ ∈Vh. (3.4)

Hence, taking theL2-inner product of (1.1) withvh ∈V ∗
h yields

(u′,vh)+Ah(B
α u,vh) = ( f ,vh) ∀ vh ∈V ∗

h . (3.5)

For the error analysis, we first introduce two interpolationoperators. LetΠh : C0(Ω̄) −→ Vh be the
piecewise linear interpolation operator andΠ ∗

h : C0(Ω̄ )−→V ∗
h be the piecewise constant interpolation

operator. These interpolation operators are defined, respectively, by

Πhu = ∑
Pi∈N0

h

u(Pi)φi(x) and Π ∗
h u = ∑

Pi∈N0
h

u(Pi)χi(x). (3.6)

It is known thatΠh has the following approximation property (Ciarlet (1978)):

‖ψ −Πhψ‖0 6Ch2‖ψ‖2 for ψ ∈ H2(Ω) . (3.7)

We state next the properties of the interpolation operatorΠ ∗
h . For a proof, see (pp. 192, Li et al. (2000)).

For convenience, we introduce the following notations:〈φ ,v〉 := (φ ,Π ∗
h v) for φ ∈ L2 andv ∈C0(Ω̄ ).

LEMMA 3.1 The following statements hold true.

(i) 〈·, ·〉 defines an inner-product onVh ×Vh with its induced norm denoted by|‖ · |‖.

(ii) The norms|‖ · |‖ and‖ · ‖ are equivalent onVh .

(iii) The operatorΠ ∗
h is stable in the following sense:‖Π ∗

h χ‖6C‖χ‖ for anyχ ∈Vh.

4. A Priori Error Estimates

This section deals witha priori optimal order error estimates for the semi-discrete FV scheme (3.1). To
do so, we split the error as:

uh − u = (uh − R̄hu)+ (R̄hu− u) =: θ + ξ ,
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whereR̄h : H1
0(Ω)∩H2(Ω)→Vh is the finite volume elliptic projection operator defined by

Ah(R̄hv,χ) = Ah(v,χ) ∀χ ∈V ∗
h . (4.1)

For eacht ∈ (0,T ], the projection errorξ (t) satisfies the following estimates (Chou & Li (2000)):

‖ξ (t)‖ℓ+ ‖ξ ′(t)‖ℓ 6Ch2−ℓ
(

‖u(t)‖W3
p
+ ‖u′(t)‖W3

p

)

for ℓ= 0,1 with p > 1. (4.2)

Moreover, the following maximum estimate is also valid fort ∈ (0,T ]

‖ξ (t)‖∞ 6Ch2| log(h) |
(

‖u(t)‖3+ ‖u(t)‖W2,∞(Ω)

)

. (4.3)

From (3.1) and (3.5), it follows that

〈θ ′,χ〉+Ah(B
α θ ,Π ∗

h χ) =−(ξ ′,Π ∗
h χ) ∀ χ ∈Vh. (4.4)

On substitution of (3.4) in (4.4), we obtain

〈θ ′,χ〉+A(Bαθ ,χ) =−(ξ ′,Π ∗
h χ) ∀ χ ∈Vh . (4.5)

Below, we prove one of the main theorems of this section. We may chooseuh(0) = Πhu0, or even
L2-projection ontoVh, then, using approximation property and the equivalence of norms (ii) of Lemma
3.1, it follows that‖|θ (0)‖|6C‖θ (0)‖6Ch2 ‖u0‖2. In case, we chooseuh(0) = R̄hu0, thenθ (0) = 0.

THEOREM 4.1 Let u anduh be the solutions of(1.1) and (3.1), respectively. Further, letuh(0) be
chosen so that‖u0− uh(0)‖ = O(h2). Then for anyT > 0, there is a positive constantC, which may
depend onT andα, but independent ofh such that

‖(uh − u)(T)‖ 6C h2
(

‖u0‖3+ ‖u′‖L1(H3)

)

.

Proof. Sinceuh − u = ξ +θ , where the estimate ofξ is given in (4.2), it is sufficient to estimateθ . To
this end, chooseχ = θ in (4.5) and obtain

〈θ ′,θ 〉+A(Bα θ ,θ ) =−(ξ ′,Π ∗
h θ ). (4.6)

Integrating from 0 tot and using〈θ ′,θ 〉= 1
2

d
dt |‖θ |‖2 yield

‖|θ (t)‖|2+2
∫ t

0
A(Bα θ ,θ )ds 6 |‖θ (0)|‖2+2

∫ t

0
|(ξ ′,Π ∗

h θ )(s)|ds . (4.7)

By the stability property for the operatorΠ ∗
h in Lemma 3.1 (iii), and the equivalence of norms in Lemma

3.1 (ii), we have|(ξ ′,Π ∗
h θ )| 6 ‖ξ ′‖ ‖Π ∗

h θ‖ 6 C‖ξ ′‖ ‖|θ‖|. On substitution this in (4.7), and use the
positivity property ofBα in (2.3) to obtain after simplification

‖|θ (t)‖|2 6 ‖|θ (0)‖|2+C
∫ t

0
‖ξ ′(s)‖ ‖|θ (s)‖| ds. (4.8)

Let t∗ ∈ [0, t] be such that‖|θ (t∗)‖| := max06s6t ‖|θ (s)‖|. Then, it is easy to check from (4.8) that

‖|θ (t)‖|6 ‖|θ (t∗)‖|6 ‖|θ (0)‖|+C
∫ t

0
‖ξ ′(s)‖ ds . (4.9)
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Therefore, the desired error estimate follows from the decompositionuh − u = ξ + θ , the inequality
‖θ (T )‖ 6 C |‖θ (T )|‖ by Lemma 3.1 (ii), the above bound, the finite volume ellipticprojection error
(4.2), and the inequality‖u(T )‖3 6 ‖u0‖3+

∫ T
0 ‖u′(t)‖3dt. This completes the rest of the proof. �

Due to the singular behaviour of the solutionu of (1.1) neart = 0, some regularity and compatibility
assumptions on the given datau0 and f are required to make sure that the term‖u0‖3+ ‖u′‖L1(H3) is
bounded. Consequently, by Theorem 4.1, the error for the spatial discretization by FV method is of
orderO(h2). For instance, iff ≡ 0, we assume thatu0 ∈ H4(Ω)∩H1

0 (Ω) andL u0 ∈ H1
0(Ω), then by

(Theorem 4.2, Mclean (2010)),

‖u′(t)‖2+ t
α
2 ‖u′(t)‖3 6C1 tα−1 for t > 0. (4.10)

Hence, from Theorem 4.1,‖(uh − u)(t)‖ 6 C h2 for t > 0. Here, we can argue that the assumptions on
u0 can be slightly relaxed. Instead, we assume thatu0 ∈ H3(Ω)∩H1

0(Ω) andL u0 ∈ H1
0(Ω), and again

by (Theorem 4.2, Mclean (2010)), we arrive at

‖u′(t)‖1+ t
α
2 ‖u′(t)‖2+ tα‖u′(t)‖3 6Ctα−1 for t > 0. (4.11)

Using the elliptic projection bound‖ξ ′(t)‖ 6 Ch‖u′(t)‖2, and also the projection bound in (4.2), we
observe forε > 0 that

‖ξ (t)‖6 ‖ξ (0)‖+
∫ t

0
‖ξ ′(s)‖ds

6C h2
(

‖u0‖3+ h−1
∫ ε

0
‖u′(s)‖2 ds+

∫ t

ε
‖u′(s)‖3 ds

)

for t > 0.

Thus, by the regularity property (4.11), it follows that

‖ξ (t)‖6C h2
(

‖u0‖3+ h−1
∫ ε

0
s

α
2 −1 ds+

∫ t

ε
s−1 ds

)

6C h2
(

1+ h−1ε
α
2 + |log(t/ε)|

)

6C h2 (1+ |log h|) with ε = min{h
2
α , t} .

(4.12)

Therefore, a use of the obtained estimate ofξ (t) in the proof of the Theorem 4.1 yields

‖(uh − u)(t)‖6C h2 (1+ |log h|) .

Our next aim is to derive an estimate of orderO(h2), but in the strongerL∞(L∞)-norm. To do so,
we start by estimatingθ ′ in the next lemma. This bound is needed for showing the super-convergence
result of∇θ in L∞(L2)-norm.

LEMMA 4.1 Withuh(0) = R̄hu0, there exists a positive constantC independent ofh such that

∫ t

0
‖θ ′‖2 ds 6C

∫ t

0
‖ξ ′‖2ds for 0< t 6 T .

Proof. Chooseχ = θ ′ in (4.5) to obtain

|‖θ ′|‖2+A(Bα θ ,θ ′) =−(ξ ′,Π ∗
h θ ′).
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Sinceθ (0) = 0, Bα θ = I α θ ′. Using this and the positivity property ofI α , (2.2), we arrive at
∫ t

0
A(Bα θ ,θ ′)ds =

∫ t

0
(I α(∇θ ′),∇θ ′)ds > 0.

Hence, by the Cauchy-Schwarz inequality, the stability property ofΠ ∗
h , and also by Lemma 3.1(ii),

∫ t

0
|‖θ ′|‖2ds 6

∫ t

0
|(ξ ′,Π ∗

h θ ′)|ds 6C
∫ t

0
‖ξ ′‖‖θ ′‖ ds 6C

∫ t

0
‖ξ ′‖‖|θ ′|‖ ds.

Therefore, a use of Holder’s inequality and again Lemma 3.1(ii) complete the rest of the proof. �

Below, we derive an upper bound of∇θ in L∞(L2)-norm.

LEMMA 4.2 Assume that the solutionu of (1.1) satisfies the regularity property (4.10). Withuh(0) =
R̄hu0, there exists a positive constantC, independent ofh, such that

‖∇θ (t)‖2 6Ch2
∫ t

0
‖θ ′‖ds+Ch4| log(t/min{h

2
α , t})|.

Proof. Chooseχ = I
1−α

ad θ ′ in (4.5) and integrate the resulting equation over the interval (0, t). Use
(2.5) to arrive at

∫ t

0
〈I 1−α θ ′,θ ′〉ds+

∫ t

0
A(θ ,θ ′)ds =−

∫ t

0
(ξ ′,Π ∗

h I
1−α

ad θ ′)ds. (4.13)

To bound the term on the right hand side of (4.13), we decomposeξ as

ξ = (Πhu− u)+ (R̄hu−Πhu) =: ξ1+ ξ2.

Sinceξ2 ∈Vh and sinceΠ ∗
h commutes withI 1−α

ad ,
∫ t

0
(ξ ′,Π ∗

h I
1−α

ad θ ′)ds =
∫ t

0
(I 1−α ξ ′

1,Π
∗
h θ ′)ds+

∫ t

0
〈I 1−αξ ′

2,θ
′〉ds

By the continuity property (see Lemma 3.1(iii) in Mustapha &Schötzau (2014)) ofI 1−α ,
∣

∣

∣

∫ t

0
〈I 1−α ξ ′

2,θ
′〉ds

∣

∣

∣
6Cα

∫ t

0
〈I 1−αξ ′

2,ξ
′
2〉ds+

1
2

∫ t

0
〈I 1−α θ ′,θ ′〉ds .

Substitute the above equations in (4.13) and use the equality
∫ t

0 A(θ ,θ ′)ds = 1
2‖∇θ (t)‖2 (because

θ (0) = 0) to obtain after simplifying
∫ t

0
〈I 1−αθ ′,θ ′〉ds+ ‖∇θ (t)‖2 6 2

∣

∣

∣

∫ t

0
(I 1−αξ ′

1,Π
∗
h θ ′)ds

∣

∣

∣
+Cα

∫ t

0
〈I 1−αξ ′

2,ξ
′
2〉ds . (4.14)

By the stability ofΠ ∗
h , it follows that

2
∣

∣

∣

∫ t

0
(I 1−αξ ′

1,Π
∗
h θ ′)ds

∣

∣

∣
+Cα

∫ t

0
〈I 1−αξ ′

2,ξ
′
2〉ds

6C
∫ t

0
‖I 1−α ξ ′

1‖‖θ ′‖ds+Cα

∫ t

0
‖I 1−α ξ ′

2‖‖ξ ′
2‖ds

6C
∫ t

0

∫ s

0
(s− τ)−α

(

‖ξ ′
1(τ)‖‖θ ′(s)‖+ ‖ξ ′

2(τ)‖‖ξ ′
2(s)‖

)

dτ ds.
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Now split ξ2 asξ2 = ξ − ξ1 and use the elliptic projection with (4.2) and (3.7) to arrive at

2
∣

∣

∣

∫ t

0
(I 1−αξ ′

1,Π
∗
h θ ′)ds

∣

∣

∣
+C

∫ t

0
〈I 1−αξ ′

2,ξ
′
2〉ds

6Ch2
∫ t

0

∫ s

0
(s− τ)−α‖u′(τ)‖2‖θ ′(s)‖dτ ds

+Ch3
(

∫ ε

0
‖u′(s)‖2+ h

∫ t

ε
‖u′(s)‖3

)

∫ s

0
(s− τ)−α‖u′(τ)‖3 dτ ds

6Ch2
∫ t

0
‖θ ′(s)‖ds+Ch4

(

h−1
∫ ε

0
s

α
2 −1 ds+

∫ t

ε
s−1 ds

)

6Ch2
∫ t

0
‖θ ′(s)‖ds+Ch4

(

h−1 ε
α
2 + log

( t
ε

))

.

(4.15)

where in the second last step, we have used the regularity assumption (4.10) and the inequalities:
∫ s

0
(s− τ)−ατ

α
2 −1 dτ 6C s−

α
2 and

∫ s

0
(s− τ)−ατα−1 dτ 6C .

Substitute (4.15) in (4.14), chooseε = min{h
2
α , t}, and use the positivity property (2.2) of the operator

I 1−α to complete the rest of the proof. �

As a consequence of the super-convergent result proved in Lemma 4.2, we prove in the next theorem,
the following maximum norm convergence.

THEOREM 4.2 Letuh(0) = R̄hu0. Assume thatu ∈ H1(0,T ;H3(Ω))∩L∞(0,T ;W 2,∞(Ω)). Then,

‖(uh − u)(t)‖∞ 6Ch2|log h | for t ∈ (0,T ],

where the constantC depends onT andα, but independent ofh .

Proof. From the decompositionuh − u = ξ +θ and the estimates ofξ in (4.3), we obtain fort > 0

‖(uh − u)(t)‖∞ 6Ch2 |log h |
(

‖u(t)‖3+ ‖u(t)‖W2,∞(Ω)

)

+ ‖θ (t)‖∞ .

However, by Sobolev lemma whenΩ ⊂ R
2 and Lemma 4.2, we arrive fort > 0 at

‖θ (t)‖∞ 6C |log h | ‖∇θ (t)‖6Ch |log h |
∫ t

0
‖θ ′‖ds+Ch2 |log (t/min{h

2
α , t})| .

To complete the proof, we use the inequality
∫ t

0 ‖θ ′‖ds 6 t1/2
(

∫ t
0 ‖θ ′‖2 ds

)1/2
, Lemma 4.1, the bound

in (4.2), and the regularity assumptionu ∈ H1(0,T ;H3(Ω)). �

REMARK 4.1 The assumptionu ∈ H1(0,T ;H3(Ω)) is stronger than the one imposed in (4.10). Noting
that, under the regularity assumptions in (4.10) withα ∈ (1/2,1), one can show that the error in the

L∞(L∞) is of orderh
3
2 (ignoring the logarithmic factor), that is, suboptimal. Tosee this, we follow the

derivation in the above theorem, and use
∫ t

0
‖θ ′‖2ds 6C

∫ t

0
‖ξ ′‖2 ds 6C h2

∫ t

0
‖u′‖2

2ds 6C h2
∫ t

0
s2α−2 ds 6C h2.

However, our numerical experiments illustrate that the imposed regularity assumptions are pessimistic.
We observe optimal rates of convergence in the absence of theregularity assumptions (4.10).
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5. The fully-discrete numerical scheme

This section is devoted to our fully-discrete scheme for thefractional diffusion model problem (1.1).
We discretize in time using a piecewise linear DG method (Mustapha & McLean (2011)) and the FV
method for the spatial discretization. To this end, we introduce a (possibly non-uniform) partition of
the time interval[0,T ] given by the points: 0= t0 < t1 < t2 < · · · < tN = T, and define the half-open
subintervalIn = (tn−1, tn] with lengthkn = tn − tn−1 for 16 n 6 N and setk := max16n6N kn.

Next, we introduce ourtime-space finite dimensional spacesW andW ∗ as

W := {v ∈ L2((0,T );Vh) : v|In ∈ P1(Vh),16 n 6 N},
W

∗ := {v ∈ L2((0,T );V
∗
h ) : v|In ∈ P1(V

∗
h ),16 n 6 N},

whereP1(S) denotes the space of linear polynomials int with coefficients in a given spaceS.
The DG FV approximationU ∈ W for (1.1) is now defined as follows: GivenU(t) for 06 t 6 tn−1

with U(0) :=U0 =U0
+ ≈ u0, the solutionU ∈ P1(Vh) onIn is determined by requiring that for 16 n6N,

(Un−1
+ ,Xn−1

+ )+

∫

In

{

(U ′,X)+Ah
(

B
αU,X

)}

dt = (Un−1,Xn−1
+ )+

∫

In
( f ,X)dt ∀ X ∈ P1(V

∗
h ), (5.1)

where

Un :=U(tn) =U(t−n ), Un
+ :=U(t+n ), [U ]n :=Un

+−Un .

For our error analysis, we recast the DG FV method using the global bilinear form:

G(v,w) := 〈v0
+,w

0
+〉+

N−1

∑
j=1

〈[v] j,w j
+〉+

N

∑
j=1

∫

I j

〈v′,w〉dt. (5.2)

Integration by parts yields an alternative expression for the bilinear form as

G(v,w) = 〈vN ,wN〉−
N−1

∑
j=1

〈v j, [w] j〉−
N

∑
j=1

∫

I j

〈v,w′〉dt . (5.3)

One can see that the local DG FV scheme (5.1) holds if and only if U ∈ W satisfies

G(U,X)+

∫ T

0
Ah

(

B
αU,Π ∗

h X
)

dt = 〈U0,X0
+〉+

∫ T

0
〈 f ,X〉dt ∀ X ∈ W . (5.4)

Since the exact solutionu of (1.1) satisfies (3.5) and the identity[u] j = 0 for all j, it follows that

G(u,X)+

∫ T

0
Ah

(

B
α u,Π ∗

h X
)

dt = 〈u0,X
0
+〉+

∫ T

0
〈 f ,X〉dt .

Thus, the following Galerkin orthogonality property follows at once

G(U − u,X)+

∫ T

0
Ah

(

B
α (U − u),Π ∗

h X
)

dt = 〈U0− u0,X
0
+〉 ∀ X ∈ W . (5.5)
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6. Error analysis of the DG FV scheme

To estimate the error from the time-space discretization, we start from the following decomposition:

U − u = (U −ΠkR̄hu)+ (Πku− u)+Πk(R̄hu− u) =: ψ +η +Πkξ , (6.1)

whereR̄h is the finite volume elliptic projection operator defined as in (4.1), andΠk : C0(In;L2(Ω)) →
C0(In;P1(L2(Ω)) is the local (in time)L2-projection defined for 16 n 6 N by

Πkv(tn)− v(tn) = 0 and
∫

In
(Πkv− v,w)dt = 0 ∀ w ∈ L2(Ω). (6.2)

The projectionΠk satisfies the error property (Equation 25, Mustapha & McLean(2011)):

‖η‖In 6 2kn

∫

In
‖u′′(t)‖dt for 16 n 6 N, (6.3)

and also the following error bound property which involves the fractional derivative operatorBα :

∣

∣

∣

∫ T

0
A(Bα η ,Π ∗

h X)dt
∣

∣

∣
6C‖X‖J E, (6.4)

where

E := kα
1

∫

I1
‖Au′‖dt +

N

∑
n=2

k1+α
n

∫

In
‖Au′′‖dt . (6.5)

Noting that, we used in (6.4) the following notations

‖v‖J :=
N

max
n=1

‖v‖In with ‖v‖In := sup
t∈In

‖v(t)‖ .

For the proof of (6.4), we refer to (Lemma 2, Mustapha & McLean(2011)) in addition, to the use of the
stability property ofΠ ∗

h in Lemma 3.1 (iii).
Next, we estimateψ . In our proof, we use the following spatial discrete analogue of (2.3):

∫ T

0
Ah

(

B
α χ ,Π ∗

h χ
)

dt =
∫ T

0
A
(

B
α χ ,χ

)

dt > cα T α−1
∫ T

0
‖∇χ(t)‖2dt ∀ χ ∈ W , (6.6)

which follows from the identity (3.4) and the coercivity property in (2.3).

LEMMA 6.1 Givenψ =U −ΠkR̄hu, the following estimate holds

‖ψ‖J 6C‖U0− R̄hu0‖+
∫ T

0
‖ξ ′(t)‖dt +C E,

whereE is defined in (6.5).

Proof. The Galerkin orthogonality property (5.5) along with the decomposition (6.1) and the identity
(3.4) implies that

G(ψ ,X)+

∫ T

0
Ah

(

B
α ψ ,Π ∗

h X
)

dt = 〈U0− u0,X
0
+〉

−G(ΠkR̄hu− u,X)−
∫ T

0
A
(

B
α (ΠkR̄hu− u),X

)

dt ∀ X ∈ W . (6.7)
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Since
∫

In〈ΠkR̄hu− R̄hu,X ′〉dt = 0 by (6.2), integration by parts yields

∫

In
〈ΠkR̄hu− u,X ′〉dt =

∫

In
〈ξ ,X ′〉dt = 〈ξ n,Xn〉− 〈ξ n−1,Xn−1

+ 〉−
∫

In
〈ξ ′,X〉dt .

Hence, by the alternative formulation ofG in (5.3) with(ΠkR̄hu−u)(tn) = ξ n (by the definition ofΠk),

G(ΠkR̄hu− u,X) = 〈ξ N ,XN〉−
N−1

∑
n=1

〈ξ n, [X ]n〉−
N

∑
n=1

∫

In
〈ΠkR̄hu− u,X ′〉dt

=
N

∑
n=1

〈ξ n,Xn〉−
N

∑
n=2

〈ξ n−1,Xn−1
+ 〉−

N

∑
n=1

∫

In
〈ΠkR̄hu− u,X ′〉dt

= 〈ξ 0,X0
+〉+

N

∑
n=1

∫

In
〈ξ ′,X〉dt.

On the other hand, by (3.4), the following explicit representation ofΠkR̄hu :

ΠkR̄hu(t) = R̄hu(t j)+
(

R̄hu(t j)− k−1
j

∫ t j

t j−1

R̄hu(s)ds
) 2

k j
(t − t j) for t ∈ I j,

the definition of the projection̄Rhu, and the identity (3.3), we notice that

A
(

B
α ΠkR̄hu,Π ∗

h X
)

= Ah
(

B
α ΠkR̄hu,Π ∗

h X
)

= Ah
(

B
α Πku,Π ∗

h X
)

= (Bα
L Πku,Π ∗

h X) on In .

Substitute the above contribution in (6.7) and use again theidentity (3.4) to obtain

G(ψ ,X)+

∫ T

0
A
(

B
α ψ ,X

)

dt = 〈U0− R̄hu0,X
0
+〉−

N

∑
j=1

∫

I j

(

〈ξ ′,X〉+(Bα
L η ,Π ∗

h X)
)

dt.

To proceed in our proof, we chooseX = ψ , and use the positivity property ofBα in (2.3)) to arrive at

G(ψ ,ψ)6 〈U0− R̄hu0,ψ0
+〉−

N

∑
j=1

∫

I j

(

〈ξ ′,ψ〉+(Bα
L η ,Π ∗

h ψ)
)

dt.

However, by the definition ofG given in (5.2),

G(ψ ,ψ) = |‖ψ0
+‖|2+

N−1

∑
n=1

〈[ψ ]n,ψn
+〉+

1
2

N

∑
n=1

[|‖ψn‖|2−|‖ψn−1
+ ‖|2]

=
1
2

(N−1

∑
n=1

|‖[ψ ]n‖|2+ |‖ψN‖|2+ |‖ψ0
+‖|2

)

>
1
8
|‖ψ‖|2J,

where in the last step we used the fact that for 16 n 6 N, ‖ψ‖In = max{‖ψn‖,‖ψn−1
+ ‖} and the follow-

ing inequality‖ψn−1
+ ‖2 = ‖ψn−1+[ψ ]n−1‖2 6 2‖ψn−1‖+2‖[ψ ]n−1‖2 . Therefore,

|‖ψ |‖2
J 6C|〈U0− R̄hu0,ψ0

+〉|+C
∣

∣

∣

∫ T

0

[

(ξ ′,Π ∗
h ψ)+ (Bα

L η ,Π ∗
h ψ)

]

dt
∣

∣

∣
.
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By the stability property ofΠ ∗
h and the equivalence of the norms‖ · ‖ and|‖ · ‖| onVh, Lemma 3.1,

‖ψ‖2
J 6C‖ψ‖J

(

‖U0− R̄hu0‖+
∫ T

0
‖ξ ′‖dt

)

+C
∣

∣

∣

∫ T

0
(Bα

L η ,Π ∗
h ψ)dt

∣

∣

∣
,

and finally, the desired result follows after substituting the estimate (6.4) in the above inequality. �

In the next theorem, we prove the main convergence results ofthe fully-discrete scheme. Following
Mustapha & McLean (2011, 2013), we employ time graded meshesbased on concentrating the time-
steps neart = 0 to compensate the singular behavior ofu of problem (1.1).

To this end, for a chosen mesh grading parameterγ > 1, we assume that

tn = (n/N)γ T for 06 n 6 N. (6.8)

It is clear that for 26 n 6 N, this time mesh has the following properties:

γ21−γk tn
1− 1

γ 6 kn 6 γ k tn
1− 1

γ and tn 6 2γtn−1. (6.9)

Under suitable regularity assumptions on the solutionu, we achieve a convergence rate of orderh2+
k1+α in the L∞(L2)-norm, that is, optimal in space but suboptimal in time. However, the numerical
results demonstrate optimal rates of convergence in both variables, in the strongerL∞(L∞)-norm.

THEOREM 6.1 Assume that the solutionu of (1.1) has the regularity properties (4.11) in addition to
following property

‖u′(t)‖+ t‖u′′(t)‖+ tα‖Au′(t)‖+ t1+α‖Au′′(t)‖6 Mtσ−1 for 0< t 6 T (6.10)

for someM, σ > 0. Assume that the initial datau0 ∈ H1(Ω). LetU be the DG FV solution defined by
(5.1) withU0 = R̄hu0. Then, there is a positive constantC, depends onα, T , M, σ andγ, such that

‖U − u‖J 6Ch2 (1+ |log h|)+Ck1+α for γ > (1+α)/σ .

Proof. Using the decomposition (6.1), the stability property of the time projectionΠk: ‖Πkξ‖J 6

3‖ξ‖J (see Equation 26, Mustapha & McLean (2011)), the inequality‖ξ‖J 6 ‖ξ0‖+
∫ T
0 ‖ξ ′(t)‖dt, the

achieved estimate ofψ in Lemma 6.1, and the bound in (4.12), we observe that

‖U − u‖J 6 ‖ψ‖J + ‖η‖J +3‖ξ‖J

6 ‖η‖J +C
(

‖ξ0‖+
∫ T

0
‖ξ ′(t)‖dt +E)

6 ‖η‖J +C h2(1+ |logh|)+CE,

whereE is defined in (6.5). From the bound ofη in (6.3), the regularity assumption (6.10), the time
mesh property (6.9), and the corresponding grading mesh assumptionγ > (1+α)/σ ,

‖η‖J 6

∫

I1
‖u′(t)‖dt +C

N
max
n=1

kn

∫

In
‖u′′(t)‖dt 6Ctσ

1 +C
N

max
n=1

k2
ntσ−2

n

6C kγσ +C
N

max
n=1

k1+α
n tσ−(1+α)

n 6C kγσ +Ck1+α N
max
n=1

tσ−(1+α)/γ
n 6C k1+α .
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FIG. 2. The FV element meshTh with M = 8.

In a similar fashion, we estimateE as

E 6C
∫

I1
tσ−1dt +C

N

∑
j=2

k1+α
∫

I j

t(1−1/γ)(1+α)‖Au′′(t)‖dt

6Ctσ
1 +Ck1+α

N

∑
j=2

∫

I j

tσ−(1+α)/γ−1dt

6Ckγσ +Ck1+α
∫ T

t1
tσ−(1+α)/γ−1dt 6Ck1+α for γ > (1+α)/σ .

Therefore, to complete the proof, we combine the above estimates. �

7. Numerical Experiments

In this section, we present some numerical tests to validateour theoretical predictions from the fully-
discrete DG FV scheme (5.4). We actually demonstrate that our achieved convergence rates are pes-
simistic and also the imposed regularity assumptions in ourerror analysis are not sharp. More precisely,
for a sufficiently graded time meshes of the form (6.8), our tests reveal optimal convergence rates in
both time and space (that is, of orderO(k2+ h2) in the strongerL∞(L∞)-norm under weaker regularity
conditions. However, Theorem 6.1 suggestO(kα+1+ h2) rates of convergence in theL∞(L2)-norm.

In our test example, we considerΩ = (0,1)× (0,1) and [0,T ] = [0,1] in the fractional diffusion
problem (1.1). We choose the initial datau0 and the source termf such that the exact solutionu(x, t) =
tα sin(πx)sin(πy), and therefore our regularity assumptions (4.11) and (6.10)hold forσ = α.

We employ time meshes of the form (6.8) for various choices ofthe mesh grading parameterγ > 1.
Let Th be a family of uniform (right-angle) triangular mesh of the domainΩ with diameterh =

√
2/M,

see Figure 2. For measuring the error in our numerical solution, we introduce a time finer grid

GN,m = { t j−1+ qk j : 16 j 6 N,06 q 6 m}

and letNh be the set of all triangular nodes of the mesh familyThs where the diameterhs is half the
diameter of the finest meshTh in our spatial iterations, for instance,hs =

√
2/320 in Table 1. Define
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M α = 0.4 α = 0.75
10 3.6522e-02 3.1396e-02
20 9.6096e-03 1.9262 8.2601e-03 1.9263
40 2.4235e-03 1.9873 2.0831e-03 1.9874
80 5.8239e-04 2.0570 5.0059e-04 2.0570

120 2.4903e-04 2.0953 2.3145e-04 1.9026
160 1.3923e-04 2.0211 1.2713e-04 2.0827

Table 1. The error|‖U −u‖|d,10 and the spatial rates of convergence for different choices of α .
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FIG. 3. The FV error forα = 0.4 andα = 0.75.

the following discrete-time-space maximum norm

|‖v‖|d,m := max{|v(x, t)|, (x, t) ∈ Nh ×GN,m} .

Thus, for large values ofN,M andm, |‖U − u‖|d,m approximates the error measured inL∞(L∞).
To demonstrate the convergence rates from the spatial discretization by FV method, we refine the

time steps so that the FV errors are dominant. This is achieved by fixing the ratiok1+α

h2 to a given number

< 1. Hence, ignoring the logarithmic term, by Theorem 6.1, an error of orderO(h2) in theL2-norm is
expected. Noting here, for the semi discrete FV scheme (3.1), we proved in Theorem 4.2 anO(h2)
rate of convergence in the strongerL∞(L∞)-norm under the assumption that the solutionu of (1.1) is in
H1(H3)∩L∞(W 2,∞). Indeed, this assumption holds forα > 1/2 in the current example. However, the
numerical results in Table 1 illustrate optimalO(h2) rates of convergence for bothα < 1/2 andα > 1/2.
So, the imposed regularity assumptions may not be practically required.

To illustrate the convergence rates from time discretization by piecewise linear DG method, we
refine the spatial FV meshes so that the time-stepping error dominates the spatial error. Forα = 0.6, we
observe from Table 2 convergence rates of orderO(kmin{2,αγ}) which is optimal forγ > 2/α. However,
a suboptimal convergence of orderO(k1+α) is proved in Theorem 6.1 assuming thatγ > (1+α)/α.
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N γ = 1 γ = 2 γ = 3.4
10 1.0313e-02 3.2357e-03 2.0414e-03
20 7.2124e-03 0.5159 1.5719e-03 1.0416 6.2591e-04 1.7055
40 5.0788e-03 0.5060 7.3189e-04 1.1028 1.7878e-04 1.8078
60 4.1411e-03 0.5034 4.6047e-04 1.1428 8.4038e-05 1.8619
80 3.5604e-03 0.5252 3.2953e-04 1.1630

Table 2. The error|‖U − u‖|d,10 and the temporal convergence rates forα = 0.6 with different choices of the mesh grading
parameterγ .
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